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ARTICLE INFO ABSTRACT

Keywords: The design and implementation of pre-fire management strategies in heterogeneous landscapes requires
Albedo the identification of the ecological conditions contributing to the most adverse effects of wildfires. This study
Burn severity evaluates which features of pre-fire vegetation structure, estimated through broadband land surface albedo
LiDAR and Light Detection and Ranging (LiDAR) data fusion, promote high wildfire damage across several fire-
Pre-fire management . . .

Sentinel-2 prone ecosystems dominated by either shrub (gorse, heath and broom) or tree species (Pyrenean oak and

Scots pine). Topography features were also considered since they can assist in the identification of priority
areas where vegetation structure needs to be managed. The case study was conducted within the scar of a
mixed-severity wildfire that occurred in the Western Mediterranean Basin. Burn severity was estimated us-
ing the differenced Normalized Burn Ratio index computed from Sentinel-2 multispectral instrument (MSI)
Level 2 A at 10 m of spatial resolution and validated in the field using the Composite Burn Index (CBI). Or-
dinal regression models were implemented to evaluate high burn severity outcome based on three groups of
predictors: topography, pre-fire broadband land surface albedo computed from Sentinel-2 and pre-fire Li-
DAR metrics. Models were validated both by 10-fold cross-validation and external validation. High burn
severity was largely ecosystem-dependent. In oak and pine forest ecosystems, severe damage was promoted
by a high canopy volume (model accuracy = 79%) and a low canopy base height (accuracy = 82%), re-
spectively. Land surface albedo, which is directly related to aboveground biomass and vegetation cover,
outperformed LiDAR metrics to predict high burn severity in ecosystems with sparse vegetation. This is the
case of gorse and broom shrub ecosystems (accuracy of 80% and 77 %, respectively). The effect of topogra-
phy was overwhelmed by that of the vegetation structure portion of the fire triangle behavior, except for
heathlands, in which warm and steep slopes played a key role in high burn severity outcome together with
horizontal and vertical fuel continuity (accuracy = 71%). The findings of this study support the fusion of
LiDAR and satellite albedo data to assist forest managers in the development of ecosystem-specific manage-
ment actions aimed at reducing wildfire damage and promote ecosystem resilience.
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1. Introduction

Fire is a major ecological disturbance in forest and shrub ecosystems
worldwide (Bennett et al., 2016; Bassett et al., 2017), affecting not
only vegetation structure and composition (Pausas and Keeley, 2009),
wildlife habitat (Dunn and Bailey, 2016) and ecosystem services provi-
sioning (Robinne et al., 2020), but also ecosystem biogeochemical cy-
cles (Lasslop et al., 2019) and land surface energy budgets, leading to a
forcing on the regional to global climate (Ward et al., 2012; Archibald
et al., 2018). Burn severity, quantified by the change in aboveground
and belowground organic matter (Keeley, 2009), is one of the most crit-
ical factors influencing long-term ecological effects of fire (Harris and
Taylor, 2017). In the Mediterranean Basin, forest surface burned at
high severity is expected to increase due to climate change (Niccoli et
al., 2019), land use changes (Chuvieco et al., 2010) and a lack of ade-
quate forest management practices for enhancing long-term adapta-
tion to global change (Vila-Cabrera et al., 2018). In most cases, burn
severity can exhibit a large spatial variability within single fire events
(mixed-severity wildfires), particularly with increasing landscape het-
erogeneity (Alexander et al., 2006; Viedma et al., 2020). Patterns of
burn severity in heterogeneous wildfires are mainly controlled by three
major drivers: topography, weather and vegetation (Alexander et al.,
2006; Oliveras et al., 2009; Viedma et al., 2015; Fang et al., 2018).
However, the role of these drivers and their complex interactions is not
always clear (Lecina-Diaz et al., 2014; Parks et al., 2018).

Topography strongly influences local weather conditions
(Mitsopoulos et al., 2019), vegetation composition and structure
(Lydersen and North, 2012), as well as fire behavior (Harris and Taylor,
2017). However, contradictory topographic effects on burn severity
have been reported. Several studies found a strong relationship be-
tween burn severity and topography even under extreme weather con-
ditions (Broncano and Retana, 2004; Viedma et al., 2015; Harris and
Taylor, 2017). Conversely, other studies have suggested either the ab-
sence of a clear effect of topography on burn severity (Turner et al.,
1999) or the overwhelming of their effects by fuel structure or fire
weather (Zald and Dunn, 2018; Garcia-Llamas et al., 2019a). Among
fire weather variables, temperature, relative humidity and wind have
proven to be strong drivers of fire behavior and burn severity (Dillon et
al., 2011; Estes et al., 2017; Garcia-Llamas et al., 2019a), as they con-
trol fire spread rate and fuel moisture content (Plucinski, 2003). How-
ever, the lack of meteorological data at high spatial and temporal reso-
lution restricts the use of weather variables for explaining the spatial
variation of burn severity at fine spatial scales (Fang et al., 2018;
Viedma et al. 2015, 2020). Fuel characteristics, mainly ecosystem dom-
inant species and vegetation structure, are usually reported to strongly
influence fire spread and burn severity (Coppoletta et al., 2016; Garcia-
Llamas et al., 2019a), sometimes regardless of topography and fire
weather conditions (Harris and Taylor, 2017). For example, in the
western Mediterranean Basin, Fernandes et al. (2010) found that fire
spread rate and burn severity decreased from a maritime pine (Pinus
pinaster Aiton) stand to contiguous stands of short-needled conifers and
deciduous broadleaved forest. The same behavior was observed by
Thompson and Spies (2009) in a Mediterranean mixed-forest of North
America. Also, they found that increased surface fuel loadings were re-
lated to high conifer crown damage. For its part, Safford et al. (2009)
stated that fuel loadings were more important than topography in dri-
ving burn severity under Mediterranean climate in Sierra Nevada,
United States. Conversely, fire weather conditions, rather than vegeta-
tion composition and structure, appear to exert the largest influence on
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burn severity in subalpine forests across the Rocky Mountains (Steel et
al., 2015). Thus, each type of ecosystem differs substantially with re-
gard to the relative influence of topography, climate and fuel on the
fire regime attributes (Steel et al., 2015).

Within this framework, predictive models of burn severity may help
forest managers in decision-making processes to be applied in fire-
prone landscapes (Alexander et al., 2006) with two essential aims: (1)
to identify priority areas for implementing pre-fire forest management
strategies (Mitsopoulos et al., 2019); (2) to decide the most suitable ac-
tions based on the relative importance of the drivers contributing to
high burn severity (Lecina-Diaz et al., 2014). This is particularly rele-
vant in heterogeneous landscapes, since the location, design and imple-
mentation of fuel treatments in these areas will be widely ecosystem-
specific (Lee et al., 2009; Stephens et al., 2013).

In this context, remote sensing techniques are valuable and cost-
effective tools for land managers, compared to traditional field-
sampling campaigns, allowing to model at large scale the relationships
between the factors of the fire behavior triangle (i.e. topography, vege-
tation and weather) and the ecosystem impact (Viedma et al., 2015).
Although field-based information provides the most direct and accu-
rate vegetation structure measures (Zhang et al., 2013), this approach
is not functional for monitoring extensive landscapes (Fernidndez-
Garecia et al., 2018), and usually pre-fire field data are not available at
fine spatial scale (Fernandez-Guisuraga et al., 2021). Recently, active
remote sensors, such as airborne Light Detection and Ranging (LiDAR),
have been used to establish relationships between pre-fire forest struc-
ture and burn severity with high reliability (Montealegre et al., 2014;
Kane et al., 2015a; Fernandez-Manso et al., 2019; Garcia-Llamas et al.,
2019a). However, LiDAR sensors traditionally used for retrieving forest
structure parameters at landscape level operate at one specific wave-
length (Wallace et al., 2012), given the limited availability of commer-
cial airborne multispectral LiDAR sensors (Morsy et al., 2017). In this
sense, remote sensing data derived from passive sensors, such as spectral
indices computed from multispectral satellite imagery, have been suc-
cessfully used in combination with single-wavelength LiDAR data to
estimate the contribution of pre-fire fuel load to burn severity (Garcia-
Llamas et al., 2019a; Viedma et al., 2020). In the context of pre-fire
fuel management, several studies (e.g. Koetz et al., 2008; Chirici et al.,
2013) also found that forest canopy fuel parameters were more accu-
rately estimated by combining both LiDAR and satellite optical data.
Nevertheless, broadband land surface albedo (bLSA) satellite products,
accounting for the fraction of the reflected downwelling irradiance by
earth surface (Tian et al., 2014) have not been yet considered in the lit-
erature as a proxy of pre-fire fuel structure to determine its influence on
burn severity. Noteworthy, bLSA is more sensitive than spectral indices
to subtle variations in biophysical parameters and structure of vegeta-
tion (Rodriguez-Caballero et al., 2015; Zhao et al., 2018).

Based on literature review, no study has explored up to now the po-
tential of LiDAR and bLSA data fusion to characterize pre-fire stand
structure for identifying the likelihood of high burn severity in hetero-
geneous landscapes as determined by variation in vegetation structure
and composition. Also, studies identifying fuel drivers of burn severity
as a function of ecosystem type by using specific fuel structure metrics
rather than coarse-scale maps of vegetation type, are still limited
(Viedma et al., 2020). Thus, the main objective of this research was to
identify which particular features of vegetation structure are related to
the probability of high burn severity occurrence in several fire-prone
shrub and forest ecosystems within the perimeter of a large mixed-
severity wildfire by means of remote sensing techniques (Sentinel-2
bLSA and LiDAR data). Topographic features were also considered in
the analysis since they can assist in the selection of priority areas where
vegetation structural drivers of high burn severity need to be managed
to reduce the most adverse fire ecological effects.
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2. Material and methods

The methodology comprised four steps: field measurement and
mapping of burn severity, vegetation mapping at ecosystem level, com-
putation of burn severity predictors from remote sensing data and data
analysis (. 1).

2.1. Study area

The study was conducted in the Sierra de Cabrera mountain range
(Northwest Spain; . 2), within the perimeter of a mixed severity mega-
fire that occurred in August 2017 (between 21st and 27th) and affected
9940 ha of shrubland and tree forest ecosystems. Wildfires have been a
crucial modeling process of the landscape in the study site (Fernandez-
Guisuraga et al., 2021), being the fire regime characterized by a high
wildfire frequency (8.5 fires x 10 years™!) (Garcia-Llamas et al.,
2020). The altitude ranges between 836 and 1938 m a.s.l. and the relief
is abrupt and heterogeneous. The soils, predominantly acidic, are origi-
nated from siliceous lithologies (slates in the north and quartzite in the
southernmost area) (GEODE, 2019; ITACyL, 2019). The site is located
at the transition of the Mediterranean and Eurosiberian biogeographic
regions (Rivas-Martinez et al., 2011). Annual mean precipitation
ranges between 600 and 1500 mm and annual mean temperature be-
tween 5 and 15 °C (Ninyerola et al., 2005). The fire occurred in a year
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in which low precipitation rates were registered in the study site during
the seasons preceding the fire date alarm (Garcia-Llamas et al., 2020).
Additionally, weather conditions during the fire progression were rela-
tively extreme, with maximum temperatures of 35 °C, relative humid-
ity of 35% and mean wind speed of 6 m/s, which facilitated fire spread,
(Garcia-Llamas et al., 2019b, 2020).

The mega-fire affected five different types of ecosystems dominated
by either shrub or tree species (. 3): (1) gorse shrublands dominated by
Genista hystrix Lange, (2) heath shrublands dominated by Erica aus-
tralis L., (3) broom shrublands dominated by Genista florida L., (4)
Pyrenean oak forests (type level 8.3 of the European Forest Types -
EFTs-classification scheme; Barbati et al., 2014) dominated by Quercus
pyrenaica Willd. and (5) Scots pine forests (EFTs level 10.4) dominated
by Pinus sylvestris L.

2.2. Burn severity mapping

To evaluate burn severity, two Sentinel-2 multispectral instrument
(MSI) Level 1C images covering the study area were obtained from the
Copernicus Open Access Hub (2020) for both August 13th- 2017 at
11:21:21 UTC (pre-fire conditions) and September 2, 2017 at 11:21:11
UTC (post-fire conditions). These images corresponded to the available
cloud cover free scenes closest to the date of the fire. Sentinel-2 MSI
Level 1C scenes were topographically and atmospherically corrected
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1. Methodology flowchart of the present study.
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2. Location of the study area within the perimeter of Sierra de Cabrera wildfire (NW Spain) and spatial patterns of burn severity classified according to the dif-

ference of the Normalized Burn Ratio (dANBR) thresholds.

for surface reflectance (Level 2 A with a spatial resolution of 10 m)
with the ATCOR algorithm (Richter and Schldpfer, 2018) included in
PCI Geomatica 2018. Fire severity was assessed through the differenced
Normalized Burn Ratio (ANBR) index scaled by 10° (Key and Benson,
2006), which was computed at a spatial resolution of 10 m using the
pre-fire and post-fire Sentinel-2 MSI Level 2 A scenes with bands 8
(near infrared -NIR-) and 12 (short wave infrared -SWIR-). The dNBR
has been demonstrated to be the most accurate index to assess fire
severity in previous research developed in the study site (Garcia-Llamas
et al., 2019c).

Additionally, two months after the wildfire, burn severity was esti-
mated in the field using 53 plots of 30 X 30 m randomly distributed
across burned homogeneous patches to ensure a uniform spectral re-
sponse in the plot to be captured by Sentinel-2 pixels (Key and Benson,
2006; Fernandez-Garcia et al., 2018). A set of 19 plots were also estab-
lished in unburned areas within the perimeter to be used as controls.
The center of each plot was georeferenced with a Global Positioning
System (GPS) receiver (Spectra Precision MobileMapper 50) with an
accuracy better than 0.5 m in post-processing mode. In each field plot,
initial burn severity assessment was conducted through the Composite
Burn Index (CBI; Key and Benson, 2006), using the modified protocol
described in Fernandez-Garcia et al. (2018) which does not include
post-fire responses. Field severity was rated between 0 (unburned) and
3 (high severity). Three burn severity categories were established
within the fire perimeter based on the CBI values: low (CBI < 1.25),
medium (1.25 < CBI < 2.25) and high (CBI > 2.25). CBI thresholds
correspond to those proposed by Miller and Thode (2007).

Using these CBI thresholds and a linear regression model (. 4), three
dNBR burn severity categories were identified (low: dNBR < 384;
medium: 384 < dNBR < 659; high: ANBR > 659) (. 2). The correlation
between dNBR and CBI presented a coefficient of determination of
0.84.

2.3. Pre-fire image classification: vegetation mapping

Pre-fire Sentinel-2 MSI Level 2 A image at a spatial resolution of
10 m was classified by means of a maximum likelihood (ML) classifier
(Strahler, 1980) approach to perform vegetation mapping. ML is a
parametric classifier in which the spectral data within each class is as-
sumed to be normally distributed (Wang et al., 2004). The probability
of a pixel to belong to a specific class is computed through the mean
vectors of the classes and the covariance matrix, as well as the class fre-

quency to estimate the prior probability of each class (Radoux et al.,
2014). ML is one of the most used algorithms in remote sensing data
classification as it usually provides accurate results when using a large
number of training samples (Radoux et al., 2014; Burai et al., 2015),
and avoids data overfitting (Yang et al., 2020). Moreover, this classi-
fier is an appropriate algorithm to use with not too fine-grained im-
agery (spatial resolution lower than 1 m) in which the class distribu-
tions are not highly spread and the noise is generally low (Volpi et al.,
2013). Six classes were considered to classify the satellite imagery
based on field knowledge: gorse, heath, broom, oak and pine ecosys-
tems, as well as rock outcrops. Training samples were delineated as
polygons through the pre-fire image within homogeneous patches
fairly distributed across the fire perimeter. For each class, training sam-
ples contained at least one thousand pure pixels. Pre-fire orthopho-
tographs (year 2017) at very high spatial resolution (0.5 m) of the
Spanish Aerial Orthophotography National Planning (PNOA, 2020)
supplied by the Spanish National Center of Geographic Information
(CNIG, 2020) were used to assist training samples delineation together
with field knowledge. A spatial majority filter was applied to the classi-
fied image with a kernel size of 3 X 3 pixels to reduce classification
noise. To assess the accuracy of the final map, overall classification ac-
curacy and Kappa statistic of the confusion matrix were quantified us-
ing a validation dataset of one thousand pixels randomly sampled
across the same orthophotographs. Finally, the area of every patch (ha)
was computed from the output of the classification algorithm for each
ecosystem.

2.4. Burn severity predictors

2.4.1. Topographic data

A digital terrain model (DTM) with a spatial resolution of 10 m,
computed from LiDAR data (see section 2.4.3), was used to derive a set
of topographic variables that have a well-known impact on burn sever-
ity (Broncano and Retana, 2004; Flatley et al., 2011; Fang et al., 2018)
(Table 1): (1) slope, in degrees; (2) aspect, transformed to a continuous
variable ranging between 0 (NNE slopes) and 1 (SSW slopes) (Roberts
and Cooper, 1989); (3) heat load index (McCune and Keon, 2002),
based on geographic latitude, aspect and steepness of the slope, with
the highest values corresponding to the warmest southwest facing
slopes; and, (4) integrated moisture index (Iverson et al., 1997), which
estimates potential soil moisture based on solar radiation, flow accu-
mulation and landscape curvature.
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3. Photographs of the five ecosystems affected by the mega-fire: (A) gorse shrublands dominated by Genista hystrix; (B) heath shrublands dominated by Erica
australis; (C) broom shrublands dominated by Genista florida; (D) Pyrenean oak forest dominated by Quercus pyrenaica; and (E) Scots pine forest dominated by

Pinus sylvestris L.

1200
y=29147x +34.703 .
—_— R?=08412 _—
L
[ ] e
200 . e .*
= * :g """ pL" o
o et L .
=1 600 . e ® e .=
=] - . . ®
400 - .8 s .
o .
. - .
00§ . L,
ey .
o =2
0.0 05 10 15 20 25 30
CBI

4. Linear model used to compute dNBR thresholds from CBI burn severity
categories.

2.4.2. bLSA as a measure of vegetation structure and composition

The surface reflectance bands of the pre-fire Sentinel-2 MSI Level
2 A image were used to retrieve several bLSA metrics (Table 1) follow-
ing the approaches proposed by Liang (2001), Li et al. (2018) and
Vanino et al. (2018).

(€8]

(2)

3)

Liang (2001) provided several albedo conversion equations for
Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper
Plus (ETM +) sensors based on radiative transfer simulations
using a wide range of reflectance spectra (Liang et al., 2012).
The equation coefficients specified by Liang (2001) for Landsat
TM/ETM + and the best matching Sentinel-2 surface reflectance
bands (Naegeli et al., 2017) were used to retrieve total
shortwave bLSA metric, three visible bLSA metrics (total, direct
and diffuse) and three NIR bLSA metrics (total, direct and
diffuse). Hereafter referred to as Liang bLSA metrics.

Li et al. (2018) generated specific conversion equations for
Sentinel-2 surface reflectance bands through radiative transfer
simulations. These equations were used in this study to retrieve
total shortwave bLSA, total visible bLSA and total NIR bLSA.
Hereafter referred to as Li bLSA metrics.

Total shortwave bLSA was also retrieved following the
methodology by Vanino et al. (2018) who used weighting
coefficients that represent the fraction of solar radiation within
the spectral width of each Sentinel-2 surface reflectance band.
Hereafter referred to as Vanino bLSA metric.
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Table 1
Groups of burn severity predictors considered in this study.

Topographic variables

slope (°)
transformed as pect Roberts and Cooper
(1989)

McCune and Keon (2002)

Iverson et al. (1997)

heat load index

integrated moisture index

broadband Land Surface Albedo (bLSA)
metrics

Liang total shortwave bLSA

Liang total visible bLSA

Liang direct visible bLSA

Liang diffuse visible bLSA

Liang total NIR bLSA

Liang direct NIR bLSA

Liang diffuse NIR bLSA

Li total shortwave bLSA

Li total visible bLSA

Li total NIR bLSA

Vanino total shortwave bLSA

LiDAR metrics

25th percentile return height

95th percentile return height

coefficient of variation (CV) of first return
heights

standard deviation (SD) of vegetation height

rumple index

canopy volume model

canopy cover

Liang (2001)
Liang (2001)
Liang (2001)
Liang (2001)
Liang (2001)
Liang (2001)
Liang (2001)
Li et al. (2018)
Li et al. (2018)
Li et al. (2018)
Vanino et al. (2018)

Kane et al. (2010)
McGaughey (2018)
Kane et al. (2008)

See Liang (2001), Li et al. (2018) and Vanino et al. (2018) for the
detailed bLSA retrieval equations.

2.4.3. LiDAR data as a measure of vegetation structure

LiDAR data were acquired for the period between October 2010 and
November 2010 from PNOA (2020). Data were collected using a Leica
ALS50 sensor aboard a fixed-wing aircraft, with a side overlap of 25%
and a maximum scan angle of *+25°from nadir. The LiDAR sensor oper-
ated with a pulse frequency of 90.85 kHz on average, producing a
mean first-return point density of 0.54 m? (nominal pulse spacing of
1.36 m). The sensor captured a maximum of four returns per pulse.

Areas affected by fire events occurred between 2010 (LIDAR data
collection) and 2017 (fire event) were discarded from further analyses
to avoid large changes in vegetation structural attributes, following
the same criteria than other authors (Kane et al., 2013; Fernandez-
Manso et al., 2019; Garcia-Llamas et al., 2020). Both the nature of fu-
els and its spatial distribution were confirmed to be similar in unburned
areas during the 7-year time lag through photointerpretation of PNOA
orthophotographs dated between 2008 and 2015 (Garcia-Llamas et
al., 2020). Thus, LiDAR data collected in 2010 were assumed to be rep-
resentative of pre-fire vegetation conditions in August 2017 according
to Fernandez-Manso et al. (2019).

The LiDAR return point cloud was processed using the US Forest
Service's FUSION software package Version 3.80 (McGaughey, 2018).
A DTM at 10 m of spatial resolution was computed from the filtered
ground returns of the LiDAR point cloud (Garcia-Llamas et al., 2019a).
LiDAR returns were then normalized to heights above ground by sub-
tracting, from each first return, the underlying DTM elevation (Kane et
al., 2013; Garcia-Llamas et al., 2019a). A set of LiDAR metrics closely
related with vegetation structure were computed from the returns
above ground and aggregated within a 10 m grid to match Sentinel-2
MSI Level 2 A spatial resolution (Table 1): (1) 25th percentile return
height, which has proved to be an adequate metric to estimate canopy
base height (Andersen et al., 2005; Kelly et al., 2018); (2) 95th per-
centile return height, as a measure of canopy mean height (Kane et al.,
2013; Kwak et al., 2014); (3) coefficient of variation (CV) of first re-
turn heights, which is a sensitive metric to canopy vertical complexity
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(Kane et al., 2010); (4) standard deviation (SD) of vegetation height
within a 3 X 3 pixel moving window, as a measure of canopy rough-
ness; (5) rumple index (surface area ratio), which measures the horizon-
tal and vertical variation of vegetation structure (Kane et al., 2010)
and was computed as the ratio of a 3D canopy surface model (CSM) at
1 m of spatial resolution (Kane et al., 2013) to the area of the underly-
ing DTM; (6) canopy volume model, computed from the vertices of a
triangular irregular network of top of canopy three dimensional points
to the area of the DTM grid size, and related to canopy density (Kane et
al., 2008; McGaughey, 2018); and, (7) canopy cover, as the proportion
of first returns higher than 20 cm above ground surface (Kane et al.,
2008, 2010). The canopy cover metric was related to understory and
canopy vegetation cover, rather than just to canopy cover, since
height-break was set to 20 cm (Garcia-Llamas et al., 2020).

2.5. Statistical analysis

The categorized burn severity was selected as response variable
since the primary objective of this study was to determine the influence
of topography and pre-fire vegetation structure on the probability of a
pixel to be burned at a high severity. Although the burn severity actu-
ally occurs on a continuum scale, its categorization improves the com-
munication of operational data required by resource managers (Rogan
and Franklin, 2001). In fact, the prediction of high burn severity out-
come is a key target in pre-fire decision making (Miller and Thode,
2007). The ordinal nature of the response variable (low: dNBR < 384;
medium: 384 < dNBR < 659; high: dNBR > 659) required the choice of
ordinal regression as the modeling technique to be applied in this study
(Guisan and Harrell, 2000). Specifically, a proportional odds (PO)
model was used given that the model is theoretically invariant to rever-
sals of the response categories (Walker and Duncan, 1967).

To avoid further problems of multicollinearity among the predic-
tors, bivariate Pearson correlations were previously evaluated to iden-
tify strongly correlated groups of burn severity predictors
(tpearson > 0.7). Within each group of correlated predictors, the predic-
tor with the highest predictive discrimination ability evaluated through
Nagelkerke R-Square (R?) (Nagelkerke, 1991) in univariate PO models
was preserved for subsequent analysis.

For each ecosystem, univariate and multivariate PO models were
fitted separately for each family of burn severity drivers (topographic,
pre-fire bLSA and pre-fire LIDAR metrics) and altogether, in a global
multivariate model including all uncorrelated predictors from all cate-
gories of burn severity drivers. A model calibration dataset was built for
each ecosystem consisting of three hundred random points, separated
at least 100 m and equally distributed within each burn severity cate-
gory, discarding burned areas during the 7-year time mismatch be-
tween LiDAR data acquisition and fire date. The relative importance of
the predictors in the global multivariate model was assessed through
Wald y? statistic (Mon et al., 2012). Multivariate and global multivari-
ate PO models were calibrated retaining only significant predictors (p
Wald y? < 0.05) using a forward selection procedure (Eskelson et al.,
2012). Model validation was conducted through 10-fold cross-
validation repeated 10 times and averaging the unbiased validation
statistics over the repetitions (Huy et al., 2019). Overfitting corrected
R2 was provided as a measure of quality of ordinal predictions (Guisan
and Harrell, 2000). Also, the models were tested on independent data
with the same size and sampling strategy as the calibration dataset. A
minimum distance of 100 m between calibration and validation points
was ensured. The PO models were applied to the independent dataset,
generating dNBR category predictions based on the output probability
for each observation (the dNBR category with the largest predicted
probability value is assigned as the predicted category; Christensen,
2018). The overall classification accuracy was computed from the pre-
dicted versus observed dNBR category of the confusion matrix. Statisti-
cal analyses were conducted in R (R Core Team, 2019) using “MASS”
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(Venables and Ripley, 2002), “rms” (Harrell, 2019), “ordinal”
(Christensen, 2019) and “effects” (Fox and Hong, 2009; Fox and
Weisberg, 2019) packages.

3. Results

The five ecosystems occurring in the study area were successfully
classified at 10 m of spatial resolution (overall accuracy = 0.91;
Kappa index = 0.89). None of the classes was significantly under or
overestimated (. 5A and B).

Over than 37% of the surface of the study site (3526 out of 9940 ha)
was burned at high severity, being the ecosystems dominated by heath,
Scots pine and Pyrenean oak species the most affected by high burn
severity (81%, 80% and 53% of the ecosystem surface, respectively).
Broom ecosystem was predominantly burned at medium burn severity
(surface of 50%), while gorse ecosystem was burned mainly at low
severity (surface of 63%) (Table 2).

Based on classification accuracy and overfitting corrected R? of
multivariate models for each group of burn severity predictors (Table
3), vegetation structure properties derived from LiDAR data were the
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most important drivers of burn severity in Pyrenean oak and Scots pine
forest ecosystems (accuracy and R? higher than 68% and 0.52, respec-
tively). By contrast, the contribution of LiDAR metrics for explaining
burn severity in shrub ecosystems was limited. bLSA was the strongest
predictor of burn severity in gorse (accuracy = 77% and R? = 0.70)
and broom (accuracy = 68% and R? = 0.58) shrub ecosystems. Vege-
tation patch size was also a relevant controlling factor of burn severity
in such ecosystems (accuracy higher than 61% and R? = 0.43). Topog-
raphy characteristics featured accuracies higher than 60% in forest
ecosystems and 40-50% in shrub ecosystems.

The global burn severity model (i.e. including all categories of burn
severity drivers) for each ecosystem registered overall classification ac-
curacies ranging from 71% to 82% (Table 4). In gorse shrub ecosystems,
areas with low shortwave and visible bLSA registered high probabilities
of being burned at high severity (. 6A). Vegetation patch size played a
minor role in the global model (Table 5) due to the overwhelming effect
of bLSA metrics. Similar patterns were observed in broom shrub ecosys-
tems, but, in addition, a high canopy volume was strongly related to
stands severely affected by fire (Table 5 and . 6C). Heath shrub ecosys-
tems characterized by low rumple values were highly prone to high
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5. Visualization of the confusion matrix by means of a chord diagram (A) and pre-fire ecosystem classification map computed from the pre-fire Sentinel-2
MSI Level 2 A scene at 10 m of spatial resolution using a maximum likelihood (ML) algorithm (B).
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Table 2
Area (in hectares) affected by each burn severity category defined by dif-
ference of the Normalized Burn Ratio (ANBR) thresholds.

BURN ECOSYSTEM AFFECTED AREA (ha)
SEVERITY
Gorse Heath Broom  Oak Pine Total
Low 562.32 53.19 314.37 308.43 30.24 2621.79
(dNBR < 384) (63%) (3%) (16%) (23%) (6%) (27%)
Medium (ANBR  309.96 292.86  993.87 314.64 63.45 3409.65
384-659) (35%) (16%) (50%) (24%) (14%) (36%)
High 16.56 1433.25 681.39 715.50 371.88 3526.11

(dNBR > 659) (2%) (81%) (34%) (53%) (80%) (37%)
Total burned 888.84 1779.30 1989.63 1338.59 465.57
area

Table 3
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burn severity, particularly those located in steep and southwest facing
slopes (Table 5 and . 6B). Severe fire effects in Pyrenean oak ecosystems
were also closely associated with high canopy volumes (. 6D), showing
this variable by far the most important contribution in the global model
(Table 5). In Scots pine ecosystems, 25th percentile return height LIDAR
metric was the most relevant property of the stand structure for ex-
plaining burn severity (Table 5), this metric being inversely related with
the probability of high burn severity outcome (. 6E).

4. Discussion

The results of this study give light to the relevance of pre-fire fuel
structure parameters and topography as drivers of high burn severity
across different types of ecosystems. This understanding is crucial for
decision-making strategies regarding where and how to implement pre-
fire management actions aimed to reduce the most adverse ecological
effects of severe wildfires (Estes et al., 2017), which are ecosystem-
dependent (Stephens et al., 2013).

Univariate, multivariate and global burn severity model performance (overfitting corrected R? and overall classification accuracy -Acc-) for each occurring
ecosystem within the perimeter of the Sierra de la Cabrera wildfire. Topography and vegetation structure categories comprise only uncorrelated burn

severity predictors.

GORSE HEATH BROOM OAK PINE

R2 Acc R2 Acc R2 Acc R? Acc R? Acc

Topography Slope

transformed aspect

heat load index

integrated moisture index

topographic multivariate model

patch size

Liang total shortwave bLSA (canopy cover)

Liang total visible bLSA (canopy cover)

albedo multivariate model

rumple index (3D vegetation hetero geneity)
canopy volume

SD of vegetation height (canopy roughness)

CV of return heights (canopy vertical complexity)
25th percentile return height (canopy base height)
95th percentile return height (canopy mean height
LiDAR multivariate model

GLOBAL MODEL

Vegetation structure

0.21 0.42 0.09 0.44 0.15 0.34 0.18 0.41 0.29 0.56
0.05 0.29 0.06 0.27 0.03 0.34 0.11 0.37 0.12 0.31
0.18 0.46 0.15 0.34 0.08 0.32 0.24 0.49 0.30 0.54
0.05 0.22 0.15 0.18 0.07 0.23 0.08 0.16 0.07 0.18
0.33 0.48 0.24 0.51 0.29 0.43 0.39 0.61 0.40 0.66
0.43 0.67 0.18 0.50 0.43 0.61 0.06 0.34 0.11 0.45
0.39 0.57 0.23 0.43 0.20 0.53 0.14 0.38 0.29 0.39
0.61 0.67 0.20 0.41 0.52 0.56 0.07 0.39 0.36 0.42
0.70 0.77 0.19 0.43 0.58 0.68 0.18 0.40 0.35 0.49
0.07 0.30 0.25 0.43 0.10 0.42 0.35 0.63 0.35 0.51
0.28 0.49 0.27 0.47 035 0.51 0.25 0.54 0.11 0.43
0.11  0.39 0.24 0.42 0.07 0.41 0.14 0.49 0.18 0.37
0.13 0.38 0.04 0.37 0.03 0.30 0.20 0.50 0.28 0.43
0.04 0.27 0.16 0.38 0.07 0.40 0.16 0.38 0.48 0.63
0.12 0.39 0.28 0.41 0.08 0.37 0.20 0.50 0.31 0.54
0.28 0.49 0.33 0.52 0.32 0.51 0.52 0.68 0.59 0.71
0.70 0.80 0.63 0.71 0.67 0.77 0.66 0.79 0.80 0.82

Table 4
Global burn severity model for each ecosystem present within the perimeter of the Sierra de la Cabrera wildfire.

ECOSYSTEM GORSE HEATH BROOM OAK PINE

ACCURACY 0.80 0.71 0.79 0.79 0.82

CO EFFICIENTS value p-value value p-value value p-value value p-value value p-value

Topography Slope 0.0951 <0.01 0.1852 <0.001 0.0696 <0.05 0.1041 <0.001 - -
transformed as pect 1.1271 <0.05 - - - - 3.3960 <0.001 6.5457 <0.001
heat load index 11.5564 <0.001 12.2503 <0.001 - - 24.0315 <0.001 44.1286 <0.001
integrated moisture index - - - - - - - - - -

Vegetation patch size -0.0581 <0.01 0.0188 <0.001 0.0477 <0.01 - - 0.0562 <0.001

structure

Liang total shortwave bLSA (canopy cover) -181.07 <0.001 - - -66.123 <0.001 - - - -
Liang total visible bLSA (canopy cover) -318.80 <0.001 -75.37 <0.001 -222.46 <0.001 - - - -
rumple index (3D vegetation heterogeneity) - - -6.5802 <0.001 - - -0.2703 <0.05 -0.8033 <0.01
canopy volume 0.0151 <0.001 0.0131 <0.001 0.0290 <0.001 0.0241 <0.001 - -
SD of vegetation height (canopy roughness) - - - - - - - - - -
CV of return heights (canopy vertical - - - - - - - - - -
complexity)
25th percentile return height (canopy base - - - - - - - - -0.7923 <0.05
height)
95th percentile return height (canopy mean - - - - - - - - - -
height)

INTERCEPTS
low|medium 9.4500 <0.001 6.3124 <0.001 5.6512 <0.001 20.6142 <0.001 18.2139 <0.001

medium |high

13.1308 <0.001 9.1374

<0.001 8.9659 <0.001 23.2188 <0.001 22.4609 <0.001




J.M. Ferndndez-Guisuraga et al. Journal of Envir 1 M xx (o) 112462

15

B (probabality)
[-2-]
=

0010001209304 05018 QD3 004 005 008 007 008 00D O
Botal shorhwnee albedo sl @
B = rgn o e [ —
08 4
[ L
Eﬂ?'————--.--.—-—-.-— -_—_'_‘_‘"'—-- \\-_
z § SHES, - il 4B - Ewbdim G, = Mt
a8
® 059
S | —
§ hiE - e il - o =
08
ﬁﬁ,-'-'---._h_-_-_-__- ‘-\-__\-_-
02 4
S W 15 20 XN ¥ B 060 065 070 OTS 08B0 OBS 090 10 15 20 25 io A5
g (7] Funy! luncd ki ¥ -
i A L
o 051
& 024
08
[
= nz_m —'—‘.-_--"‘-—h
i A = o b = ow
08
o5 \
[
002 003 004 005 008 007 250 300 350 400 450 500
wilibie Al wetinon wolurrs: {drml
D S = gh
a8 4
05
?ﬂ?-
T T —
DA
0s 1
= ﬂz-—-—--_--"--____
§ T
[
0s
02 1
T T ™ L3
300 ] A0 450
VegRLabon volume (aml)
E | Fast <o
08 4
S
;nz-
gﬂl-
x 059
ik ‘:"2'__...--""'"-_-"""--.___
§ PO
08 4
05
ﬂ?‘r L T T
0 1 2 3
25 percenie returm Pesght (m)

Fig. 6. Predicted probabilities of classification into high, medium and low burn severity classes for burn severity predictors with the highest relative impor-
tance in the global model for gorse (A), heath (B), broom (C), oak (D) and pine (E) ecosystems. Relative importance threshold for each ecosystem was estab-
lished on the basis on predictors with 20% more importance than the next most contributing variable (Table 5), or if this condition was not met, all predic-
tors with more than 20% relative importance were shown.
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Table 5
Importance of the predictors on the global model measured by the Wald
x? statistic.

GORSE HEATH BROOM OAK PINE

1.72 36.57 7.78
transformed aspect 1.35 - - 9.26  28.99
heat load index 2.97 24.58 - 20.06 35.29
integrated moisture - - - - -
index
patch size

Topography Slope 18.27 -

Vegetation 6.06 9.32 2.67 - 12.91
structure

Liang total 30.60 - 5.10 - -
shortwave bLSA
(canopy cover)
Liang total visible
bLSA (canopy cover)
rumple index (3D -
vegetation
hetero geneity)
canopy volume 12,50 17.79
SD of vegetation - -
height (canopy
roughness)
CV of return heights - - - - -
(canopy vertical
complexity)
25th percentile - - - -
return height
(canopy base height)
95th percentile - - - - -
return height
(canopy mean

height)

55.24 17.86 50.57 - -

20.90 - 19.81

46.82 42.00 -

55.80

4.1. Multi-ecosystem evaluation of high burn severity drivers

Large extensions of ecosystems dominated by Pinus sylvestris, Erica
australis and Quercus pyrenaica were burned at high severity. In fact,
pine forests are highly prone to the occurrence of stand-replacing
crown fires, as evidenced by others authors (e.g. Broncano and Retana,
2004; Garcia-Llamas et al., 2019a), Scots pine forests dominated by Pi-
nus sylvestris being one of the most susceptible European pine ecosys-
tems to crown damage (Crecente-Campo et al., 2009). The high suscep-
tibility of Erica australis heathlands to severe fires can be explained by:
(1) a high surface area to volume ratio of live fuel (Paula and Ojeda,
2006); (2) a high amount of dead fuel (Vega, 2007); and (3) the even-
aged characteristics and homogeneous structure of Erica australis
stands (Keeley, 2002). Similarly to other studies (e.g. Fernandes et al.,
2010; Fernandes, 2013), the surface affected by high burn severity in
oak ecosystems was substantially lower than in pine ecosystems. This
finding could be associated with the higher amount of live and dead
fuel moisture content, the lesser flammable litter (Fernandes et al.,
2010) and the higher site humidity (Quintano et al., 2019) as compared
to conifer forests. Despite this, the prevailing young oak stands that
hold high fuel load at a low height as a consequence of the high fire fre-
quency of the landscape (Gonzalez and Pukkala, 2007; Catry et al.,
2010), were still prone to high burn severity. Under relatively extreme
fire weather conditions, similar burn severity patterns could be ex-
pected in related Mediterranean ecosystems as emphasized by Oliveras
et al. (2009) and Fernandes et al. (2016).

Previous research in this area (Garcia-Llamas et al., 2020) demon-
strated the significant effect of pre-fire vegetation structure parameters
and topography on burn severity. In the present paper, the importance
of those drivers was found to be strongly ecosystem-specific. Burn
severity in Pyrenean oak and Scots pine forests was mainly driven by
fuel arrangement parameters that were computed from LiDAR returns.
Several studies have used LiDAR data to assess fire effects on forest
vegetation (e.g. Wulder et al., 2009; Kane et al., 2013; Fernandez-
Manso et al., 2019). However, little research (Garcia-Llamas et al.,
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2019a, 2020) have found significant relationships, as those attained in
this study, between low pulse density LiDAR metrics and burn severity
in fire-prone ecosystems. In addition, this is the first research that has
demonstrated the potential of a three-dimensional canopy volume
model computed from LiDAR data for pre-fire management decision-
making. In young Pyrenean oak stands, closed canopies with high aer-
ial fuel continuity promoted an extreme fire behavior as evidenced by
the high contribution of the canopy volume metric in the modeling ap-
proach, which largely overwhelmed the contribution of other canopy
metrics. In this sense, Perchemlides et al. (2008) also evidenced that oak
stands in western United States with high live and dead canopy fuel
densities were more prone to stand-replacing crown fires. By contrast,
differences in the fuel arrangement between Scots pine and Pyrenean
oak stands, such as lower stand density in the study site and a more
stratified canopy architecture of the former, enabled high burn severity
to be better predicted by the vertical distribution of the fuel load
(Mitsopoulos and Dimitrakopoulos, 2007; Ferndndez-Alonso et al.,
2017). Indeed, low 25th percentile return heights in Scots pine ecosys-
tems, directly related to crown base height (Kelly et al., 2018), en-
hanced vertical connectivity with understory fuels, and were strongly
associated with an increased probability of high burn severity. Al-
though Pinus sylvestris features an efficient self-pruning mechanism of
dead branches below the living crown (Mékinen and Colin, 1999), the
branches could remain attached to the stem base for a long period of
time, especially in old and dense stands (Mékinen and Song, 2002),
serving as ladder fuel with high susceptibility to crowning. Garcia-
Llamas et al. (2020) also identified a significant relationship between
25th percentile metric and burn severity (relative importance of 24%
compared to 56% in this study, using different modeling approaches) in
a pine ecosystem dominated by Pinus halepensis Mill. Conversely, a lack
of burn severity predictability of this metric was observed in conifer
stands of Sierra Nevada, United States (Kane et al., 2015b). The au-
thors attributed it to the large scale of variability of burn severity pat-
terns in the site as compared to the size of the used LiDAR grid (30 m).
Nevertheless, the much finer scale (10 m) used in the present study was
suitable for the assessment of burn severity drivers at ecosystem level.
For the case of heathland ecosystems dominated by Erica australis, hor-
izontal and vertical fuel continuity, measured by rumple LiDAR index,
increased the likelihood of high burn severity as demonstrated in previ-
ous field-based studies (Bradstock et al., 2002; Plucinski, 2003). Indeed,
homogeneous mature heath stands tend to accumulate fine dead fuel in
the lowest stratum as a consequence of lower light availability
(Quintano et al., 2019), which is associated with an increased likeli-
hood of high burn severity (Baeza et al., 2006).

On their hand, bLSA products gained special relevance as a measure
of pre-fire vegetation structure controlling high burn severity in gorse
and broom shrublands, which are characterized by a sparsely vegeta-
tion cover. Although bLSA metrics have not been used before in burn
severity assessment, several studies have evaluated the relationship be-
tween ecosystem structure and albedo. In this sense, strong relation-
ships between vegetation cover and bLSA are expected in patchy vege-
tated areas due to the larger spectral changes associated to variations
in vegetation cover as compared to more densely vegetated areas (Tian
et al., 2014). Also, increased aboveground biomass and vegetation
cover values are often related with declines in both total shortwave and
visible bLSA (Lukes et al., 2013; Kuusinen et al., 2016), what is charac-
terizing gorse and broom areas prone to high burn severity.

In accordance with the results obtained by Garcia-Llamas et al.
(2019a), topographic effects were outperformed by vegetation struc-
ture metrics, except in heath ecosystems dominated by Erica australis.
In this case, steep and southwest facing slopes could be directly related
to high burn severity occurrence, since this terrain configuration pro-
motes both the presence of drier fuels (Alexander et al., 2006; Dillon et
al., 2011) and the preheating of fuels located uphill (Maingi and Henry,
2007). However, these results should be interpreted with caution, since
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burning conditions related to weather properties and fire propagation
variables may exert dominant control over burn severity in relation to
topography (Viedma et al., 2015; Garcia-Llamas et al., 2020), particu-
larly under extreme climatic conditions (Turner and Romme, 1994).

Despite the promising findings reported in this research regarding
novel LiDAR and bLSA metrics in the field of fire behavior prediction,
some limitations should be highlighted: (1) the use of LiDAR data with
a higher pulse density could have improved the accuracy of metrics in
ecosystems dominated by low height vegetation (Jakubowski et al.,
2013); (2) only properties that could be controlled through manage-
ment strategies were evaluated, such as pre-fire vegetation structure or
topography to prioritize actions (Parks et al., 2018), despite fire
weather variables are key drivers of fire severity and may shift the ef-
fect of other drivers (Dillon et al., 2011; Viedma et al., 2015; Estes et al.,
2017). Several studies have successfully related weather and fire propa-
gation variables with burn severity (e.g. Viedma et al., 2015; 2020;
Garcia-Llamas et al., 2019a) using a single automated weather station
or coarse satellite data. However, many weather predictors operate at
macro-scale (Costa et al., 2011) and, therefore, they do not match the
ecosystem spatial scale of the study site. Besides, high spatial resolution
weather data are not usually available at the high spatial resolution re-
quired for studies at ecosystem level (Fang et al., 2018). Downscaling
coarse weather data, such as that provided by MODIS or Meteosat,
would not provide enough variability at the scale of the analysis to rep-
resent the actual meteorological conditions within each ecosystem
(Fang et al., 2018; Mitsopoulos et al., 2019). By contrast, even coarse
weather data becomes mandatory in the burn severity assessment at
synoptic spatial scales because of the increased fire weather variability
across large ecoregions (Park et al., 2018).

4.2. Fuel management implications

The proposed LiDAR and bLSA data fusion approach could assist
forest managers to implement fire-smart forest strategies aimed at re-
ducing the risk of severe fire events and enhancing ecosystem resilience
(Corona et al., 2015). The results of this study provided evidence on the
need of reducing the fuel load and modifying the fuel arrangement,
particularly in the most prone ecosystems to high burn severity. In Scots
pine ecosystems, the use of 25th percentile return height LIiDAR metric
would be advisable to identify stands where it is necessary to break up
fuel vertical continuity, and reduce the risk of active crown fire initia-
tion (Agee et al., 2000). Hence, one of the most effective measures to
minimize the probability of severe fires in these ecosystems is associated
with the increase of the canopy base height by pruning (Scott et al.,
2007; Corona et al., 2015) and low thinning (Agee and Skinner, 2005;
Crecente-Campo et al., 2009). Low thinning will contribute to reduce
the density of ladder fuels and break fuel continuity (Garcia-Llamas et
al., 2020). Alternatively, stand thinning could improve the Scots pine
self-pruning mechanism of dead branches at the canopy base due to an
increased incidence of wind and solar radiation (Makinen and Colin,
1999). The implementation of 25th percentile return height LiDAR met-
ric could be generalizable to other Mediterranean conifer forests of Eu-
rope and North America where base height and continuity of the forest
canopy play a key role in active crown fire incidence (Agee and
Skinner, 2005; Safford et al., 2012; Garcia-Llamas et al., 2020). Like-
wise, low stand thinning, together with low to moderate intensity pre-
scribed fires, could be suitable treatments in Mediterranean young
Pyrenean oak stands for reducing the canopy horizontal continuity and
the accumulation of surface fuels (Brose et al., 2013), since high canopy
density was the main driver of high burn severity. This strategy will
preserve the oak trees in the stand with the largest diameter, which are
the most fire-resistant because of the thicker bark and tall crown (Agee
and Skinner, 2005; Fernandes et al., 2010; Corona et al., 2015). In gen-
eral, thinning treatments in conifer and broadleaf ecosystems should
maintain enough canopy closure to limit understory fuel development
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(Viedma et al., 2020). In heath ecosystems dominated by Erica aus-
tralis, as in other Mediterranean ecosystems such as chaparral and gorse
shrublands, prescribed fire could be one of the most effective pre-fire
management actions to reduce fuel load (Ascoli and Bovio, 2010;
Fernandes, 2015) and increase landscape heterogeneity by creating
stand age mosaics (Keeley, 2002). Based on the results of this work, the
development of a diverse heathland structure is essential for reducing
the risk of stand replacing fires (Harper et al., 2018). In fact, this treat-
ment should be effective in areas with little vegetation three-
dimensional heterogeneity identified by low LiDAR rumple index val-
ues, particularly on warmer aspects with low fuel moisture content.
Prescribed fire might be also a target action on the breakdown of fuel
horizontal continuity in gorse and broom ecosystems with a high
canopy cover (Fernandes, 2015; Lasanta et al., 2018).

5. Conclusions

In the heterogeneous landscapes of the western Mediterranean
Basin, burn severity relies largely on forest fuel composition, structure
and connectedness. The present study is pioneer in evaluating the po-
tential of airborne LiDAR and bLSA data fusion for estimating pre-fire
vegetation features related to high wildfire damage across different
fire-prone ecosystems. The results of this study indicate that severe
ecosystem damage is mainly driven by vegetation structure rather than
topography or patch size, with different roles of pre-fire fuel structure
parameters across the target ecosystems. In forest ecosystems, LiDAR
metrics overwhelm the contribution of bLSA to explain burn severity
spatial patterns. Specifically, closed canopies with high horizontal fuel
continuity promote high burn severities in young Pyrenean oak stands.
In Scots pine ecosystems, burn severity can be accurately predicted by
the vertical distribution of fuel load, being low canopy base height
strongly associated with increased burn severity. LiDAR data also gain
special relevance in heath shrub ecosystems, where a high horizontal
and vertical fuel connectedness increase the likelihood of severe fire ef-
fects. Conversely, bLSA products outperform LiDAR metrics to estimate
fuel structure and predict burn severity patterns in shrub ecosystems
characterized by sparse vegetation cover, such as those dominated by
gorse and broom species. In these ecosystems, high aboveground bio-
mass estimated through bLSA is strongly related with high burn sever-
ity. Presumably, LiDAR data with a higher pulse density could have im-
proved the contribution of vertical structure metrics in ecosystems
dominated by low-growing vegetation. Furthermore, emergent tech-
nologies, such as airborne multispectral LiDAR sensors, should be inves-
tigated further for the assessment of burn severity fuel drivers. Future
research should also consider fire weather and fire propagation at
ecosystem level, as they may exert dominant control over burn severity
in relation to topography under extreme climatic conditions. The re-
sults of this study evidenced that LiDAR and bLSA data fusion is an es-
pecially valuable remote sensing tool for the identification of priority
areas in fire-prone landscapes where implement pre-fire fuel manage-
ment strategies aimed to reduce the most adverse ecological effects of
severe wildfires. Silviculture actions should be oriented to promote a
limited horizontal and vertical fuel continuity considering vegetation
characteristics. The proposed methodology might be extrapolated to
other Mediterranean ecosystems with similar structure and function in
order to reduce uncertainties related to wildfire management.
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