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A B S T R A C T

Forest managers demand reliable and cost-efficient methodologies to implement forest resilience concepts
in post-fire decision-making at different spatio-temp oral scales. In this paper, we developed a generalizable
remote sensing-based tool to measure disturbance impact and engineering resilience at short-term in forest
ecosystems affected by wildland fires. The case study was a mixed-severity wildfire that burned several
shrubland (dominated by gorse, broom and heath) and tree forest (dominated by oak and pine) ecosystems.
Specifically, we retrieved fractional vegetation cover (FVC) over a time-series of pre and post-fire Deimos-2
imagery (spatial resolution of 4 m) from a radiative transfer model (RTM) hybrid inversion approach
(Gaussian processes regression algorithm learned from a simulation dataset generated using the PROSAIL-D
model). Pre and post-fire FVC retrieval was validated with field data stratified by dominant ecosystem. High
accuracy (>90%) and low error (<7%) were achieved in the retrieval over the time-series, despite the in-
fluence of background signal of soil and burned legacies. A random point sampling stratified by ecosystem
and burn severity was used to extract validated FVC values for the time-series. A two-way repeated mea-
sures ANOVA was performed to evaluate the effect of burn severity along the time-series on FVC for each
ecosystem. One-way repeated measures ANOVA and Tukey’s pairwise comparison test were applied to de-
termine the earliest point in the time-series for which the FVC does not differ significantly from the pre-fire
FVC. In tree forest ecosystems, the fire impact on FVC was stronger at high burn severity, being similar the
impact on shrub ecosystems at medium and high burn severity. Engineering resilience was conditioned
both by burn severity and species regenerative strategies. In ecosystems dominated by facultative or oblig-
ate seeders, pre-fire FVC was reached later across the time-series, compared to resprouter-dominated
ecosystems. The RTM hybrid inversion tool has proved its reliability for assessing disturbance impact and
ecosystem engineering resilience at short-term in heterogeneous fire-prone landscapes affected by mixed
severity wildfires.

1. Introduction

Wildfires are major disturbances around the world (Chergui et al.,
2019), playing a key role on the biological productivity, structure,
composition and dynamics of many ecosystems (Calvo et al., 2008;
Lozano et al., 2008; Pausas et al., 2008). In the western Mediterranean
Basin, forest ecosystems have shown a great capacity to recover their
structural characteristics to an equivalent pre-disturbance state under
historical fire disturbance regimes (Keeley et al., 2011; Seidl et al.,
2014; Johnstone et al., 2016). However, during the last century, abrupt
shifts in Mediterranean ecosystems’ fire regime (Pausas and Keeley,
2014a; Vilà-Cabrera et al., 2018) have occurred due to land use

changes, associated to rural abandonment (Pausas, 2004; Sagra et al.,
2019), and anthropogenic climate warming, both promoting the devel-
opment of dense and dry fire-prone stands with a high fuel continuity.
Consequently, the number of large high-severity wildfires have in-
creased (Pausas and Fernández-Muñoz, 2012; González-De Vega et al.,
2016; Chergui et al., 2018a; Sagra et al., 2019), resulting in altered bio-
logical legacies (i.e. biological structures that persist past disturbances;
Franklin et al., 2000) that might hinder feedbacks that promote ecosys-
tem resilience and, therefore, ecosystem recovery after fire (Seidl et al.,
2014; Johnstone et al., 2016; Turetsky et al., 2017; Taboada et al.,
2018).
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Fire severity, defined as the loss of aboveground and belowground
organic matter as a consequence of fire (Keeley, 2009), is one of the
most crucial factors that shape ecosystem recovery trajectories in the
early stages of succession (Bastos et al., 2011; González-De Vega et al.,
2016). Ecosystem resilience is usually perceived as an indicator of the
ecosystem response after the occurrence of a disturbance (Müller et al.,
2016). Nevertheless two complementary perspectives on the concept of
resilience have been identified (Newton and Cantarello, 2015; Müller et
al., 2016; Ingrisch and Bahn, 2018): (i) “engineering resilience”, de-
fined as the time required for an ecosystem to return to its pre-
disturbance state (Pimm, 1984); and, (ii) “ecological resilience”, identi-
fied as the magnitude of disturbance that an ecosystem can absorb be-
fore changing its structure and function to an alternate stable state
(Holling, 1973; Gunderson and Holling, 2002). Engineering resilience
can be quantified using well-established metrics or simulation models
to calculate the time required to reach the initial condition of that prop-
erty (Martin et al., 2011; Ingrisch and Bahn, 2018). Besides that, eco-
logical resilience is difficult to model and quantify (Grimm and
Calabrese, 2011), since the concept relies on the existence of more than
one stable state within the ecosystem being assessed (Newton and
Cantarello, 2015), which is a hotly debated topic at present (Scheffer et
al., 2001). In addition, ecological resilience measurements are based on
indirect proxies (i.e. stakeholder assessments or case study comparison)
derived from resilience theoretical aspects (Newton and Cantarello,
2015; Ingrisch and Bahn, 2018), which are largely context-dependent
(Carpenter et al., 2005) and require long-term observations on a time
scale appropriate to the ecosystem dynamics after disturbances
(Scheffer et al., 2015).

Although field work methods are highly reliable for evaluating
ecosystem recovery trajectories (Zhang et al., 2013; Merlin et al., 2015;
González-De Vega et al., 2016), they are labor-intensive and time-
consuming approaches when applied at a large scale (Fernández-
Guisuraga et al., 2020). Hence, the synoptic nature of passive remote
sensing earth observations offers nowadays an efficient way to achieve
this goal (Veraverbeke et al., 2012), despite some constraints in specific
ecosystems, such as multi-layered forests, where the reflectance signal
captured by passive optical sensors is mostly determined by the struc-
tural properties of the top of the canopy (Healey et al., 2020). In such
cases, the remote estimation of variables related to ecosystem vertical
structure, or the horizontal structure of herbs, shrub and tree strata,
might be limited to secondary correlations (Avitabile et al., 2012;
Vogeler and Cohen, 2016). For instance, local texture computed from
reflectance signal may be only sensitive to several canopy traits such as
shadowing or moisture content, which are themselves proxies of sub-
canopy forest structure (Healey et al., 2020). Traditionally, remote
sensing studies on post-fire forest dynamics have been based on vegeta-
tion spectral indices (VIs), such as normalized difference vegetation in-
dex -NDVI- (e.g. Viedma et al., 1997; Yi et al., 2013; Ireland and
Petropoulos, 2015), soil-adjusted vegetation indices -SAVIs- (e.g.
Clemente et al., 2009; Vila and Barbosa, 2010) or Enhanced Vegetation
Index -EVI- (e.g. Jin et al., 2012; Abdul-Malak et al., 2015), among
others. Nevertheless, this approach requires the building of statistical
relationships between local field data and VIs, so the results are site-
specific (Chu et al., 2016) and not generalizable to other sites without a
sound transferability analysis (Fernández-Guisuraga et al., 2019). Pixel
unmixing models (e.g. spectral mixture analysis -SMA- and multiple
endmember spectral mixture analysis -MESMA-) have also been com-
monly used to monitor post-fire recovery dynamics (e.g. Chu et al.,
2016; Fernandez-Manso et al., 2016; Fernández-Guisuraga et al.,
2020). This approach has a direct physical sense and its accuracy de-
pends, to a large extent, on the precise delineation of representative
spectral features (i.e. endmembers) of each post-fire ground compo-
nents (Melville et al., 2019; Fernández-Guisuraga et al., 2020). How-
ever, the acquisition of pure endmembers with high confidence in
burned landscapes with high spatial heterogeneity is a challenging task

if very high spatial resolution remote sensing data are not available
(Meng et al., 2017; Fernández-Guisuraga et al., 2019). An alternative
to the previous methods is the use of physical methods based on the in-
version of radiative transfer models (RTMs), which have received little
attention for monitoring post-fire ecosystem dynamics. RTMs simulate
the physical relationships between vegetation canopy reflectance and
certain biophysical variables (e.g. leaf area index -LAI-, fractional veg-
etation cover -FVC- or leaf chlorophyll content -LCC-, among others)
(Jia et al., 2016). Their inversion using observed optical satellite re-
flectance data can be exploited to retrieve the biophysical variable of
interest to be used as a resilience indicator. Significantly, RTMs do not
need to be parameterized with site-specific field data, which are usually
unavailable at short or medium-term after fire (Darvishzadeh et al.,
2008; Fernández-Guisuraga et al., 2021). In contrast to vegetation in-
dex or pixel unmixing model approaches, field data are only needed for
retrieval validation purposes. Likewise, post-fire vegetation recovery
trajectories could be monitored over large burned areas encompassing
several ecosystems, since the physical relationships of RTMs are not site
or ecosystem-specific (Yebra et al., 2008; Tao et al., 2019). Among the
existing coupled leaf and canopy RTMs, PROSAIL (Jacquemoud et al.,
2009) has been one of the most used methods for simulating vegetation
canopy reflectance and the corresponding biophysical variables, due to
its precision and fast computing time. Given the known ill-posed prob-
lem of RTM inversion (Yebra et al., 2008), indirect model inversion is
usually performed through machine learning regression algorithms
(MLRA; hybrid inversion), such as Neural Networks (Schlerf and
Atzberger, 2006; Jia et al., 2016), randomForest (Wang et al., 2018;
Tao et al., 2019) or Gaussian Processes Regression (Verrelst et al.,
2015), due to their high precision and computational efficiency (Liang
et al., 2015; García-Haro et al., 2018).

In this paper, we propose a reliable and generalizable management
tool to be applied in burned ecosystems with different environmental
characteristics, affected by different levels of burn severity, taking as
case study a burned landscape of the western Mediterranean Basin. In
the study site, ground spatial heterogeneity arises from two different
aspects: the landscape comprises different shrubland and forest ecosys-
tems and vegetation was burned at different severity levels. The ap-
proach is based on the assessment of disturbance impact and ecosystem
engineering resilience at short-term with reference to FVC, retrieved
over a time-series of pre and post-fire Deimos-2 imagery (spatial resolu-
tion of 4 m) using a RTM hybrid inversion approach (GPR algorithm
learned from a simulation dataset generated using the PROSAIL-D
RTM). FVC is defined as the green vegetation fraction of the considered
land surface extension seen from the nadir (Jia et al., 2016; García-
Haro et al., 2018; Fernández-Guisuraga et al., 2021). Dealing with pas-
sive remote sensing data, FVC actually quantifies the spatial extent of
green vegetation at top of the canopy level in single and multi-layered
ecosystems (Vogeler and Cohen, 2016). Thus, the considered resilience
metric refers to the recovery of the green vegetation fraction seen from
the nadir, regardless of the vegetation stratum.

To the best of our knowledge, RTMs have not been covered in the
literature as a tool to assess disturbance impact and ecosystem re-
silience. Indeed, the analysis of how burn severity influences the re-
silience of different fire-prone ecosystems is a priority to improve man-
agement actions (Newton and Cantarello, 2015; González-De Vega et
al., 2016) and determine the burn severity threshold that may exceed
ecosystem resilience (Andrade et al., 2020). Nevertheless, resilience con-
cepts have not been widely applied in forest management (Reyer et al.,
2015), due to a lack of adequate methods to implement them
(Nikinmaa et al., 2020). In this research, we adopted the concept of en-
gineering resilience, based on the time required by the ecosystem to re-
turn to pre-disturbance FVC values, due to the next reasons: (i) We are
interested in the evaluation of ecosystem resilience at short-term (less
than five years) (Meng et al., 2015), which is restricted to the engineer-
ing resilience concept. (ii) FVC is one of the most typical and relevant
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engineering resilience indicators found in the literature (Nikinmaa et
al., 2020), both for pre and post-fire forest management (Scheffer et
al., 2015) and, especially, in the context of new fire disturbance regimes
(Seidl et al., 2016).

2. Material and methods

2.1. Study site. Burn severity estimation

The case study is a mixed-severity wildfire that burned 9940 ha of
shrublands and forests between 21th and 27th August 2017 in the
Sierra de Cabrera mountain range (NW Spain; Fig. 1). The site has a
rough and heterogeneous topography and the altitude ranges between
836 and 1938 m a.s.l. Soils are acidic and originated over siliceous
lithologies (mainly slates in the north and quartzite in the south of the
burned scar) (GEODE, 2019; ITACyL, 2019). Climate is Mediterranean
temperate (García-Llamas et al., 2019), with average values of temper-
ature and precipitation, for a 50-year period, of 9 °C and 850 mm, re-
spectively, and two months of summer drought (Ninyerola et al.,
2005). Wildfires are relatively frequent in the region (8.48
fires × 10 km−2 × 10 years−1) and mainly of anthropic origin (García-
Llamas et al., 2020). The target wildfire affected five types of ecosys-
tems: on the one hand, shrublands dominated by either facultative
seeders, as Genista hystrix Lange (gorse) and Genista florida L. (broom),
or resprouter species as Erica australis L. (heath); on the other, forests
dominated by the resprouter Quercus pyrenaica Willd. (oak) or the ob-
ligate seeder Pinus sylvestris L. (pine). In addition to that heterogeneity

at landscape level, each ecosystem also presents a high spatial hetero-
geneity given local differences in post-fire regeneration patterns and
accumulation of non-photosynthetic material derived from burning at
different severity levels.

Two cloud cover-free Sentinel-2 MSI Level 1C scenes covering the
burned scar were acquired from the Copernicus Open Access Hub () for
both August 13th 2017 at 11:21:21 UTC (pre-fire) and 2nd September
2017 at 11:21:11 UTC (post-fire). The Level 1C product is already or-
thorectified by the image provider. The scenes were corrected for topo-
graphic and atmospheric effects to obtain a surface reflectance product
at 10 m of spatial resolution with the ATCOR algorithm (Richter and
Schläpfer, 2018) included in PCI Geomatica 2018 (PCI Geomatics En-
terprises Inc.). MODIS water vapor product (MOD05) and meteorolog-
ical data from the National Oceanic and Atmospheric Administration
(NOAA) and the State Meteorology Agency of Spain (AEMET) were
used to set the appropriate ATCOR input parameters. For both Sentinel-
2 scenes, aerosol model was set to rural. Sub-arctic summer MODTRAN
atmospheric model (water vapor content of 2.08 g cm−2) was selected
for the pre-fire scene, and a mid-latitude winter model (water vapor
content of 0.85 g cm−2) for the post-fire scene. Visibility value was
fixed to 40 km for both scenes, which constitutes clear weather condi-
tions. Remote sensing-based estimation of burn severity, considered as
the total amount of biomass consumed (Keeley, 2009; Morgan et al.,
2014), was computed through the differenced Normalized Burn Ratio
(dNBR) index (Key, 2006) using surface reflectance data of band 8
(near infrared region) and band 12 (short wave infrared region) from
the pre and post-fire Sentinel-2 processed scenes. The dNBR was se-

Fig. 1. Study site overview within the burned scar of the Sierra de Cabrera wildfire, location of the CBI field plots and estimated burn severity according to the
difference of the Normalized Burn Ratio (dNBR) thresholds.
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lected since it was the spectral index most related to field-based burn
severity measures in the study site (García-Llamas et al., 2020), as well
as determined by internal testing.

In order to validate the dNBR product, we established in the field,
one month after the wildfire, a set of 53 plots of 30x30m that were geo-
referenced with a sub-meter accuracy GPS receiver. The plots were ran-
domly distributed within the burned scar in homogeneous patches to
ensure a uniform plot spectral signal to be registered by a 10 m Sen-
tinel-2 MSI Level 2A pixel (Fernández-Guisuraga et al., 2021). We also
established 19 unburned control plots within the outer burned scar. The
Composite Burn Index (CBI; Key and Benson, 2006) was used to mea-
sure burn severity in each field plot using the modified protocol de-
scribed in Fernández-García et al. (2018). Based on the CBI values,
three field burn severity categories were recognized within the scar: low
(CBI < 1.25), medium (1.25 ≤ CBI ≤ 2.25) and high (CBI > 2.25). Us-
ing the CBI thresholds, we established three dNBR burn severity cate-
gories by means of a linear regression model (Fig. 2): (low:
dNBR < 384; medium: 384 ≤ dNBR ≤ 659; high: dNBR > 659) (Fig.
1). The coefficient of determination was 0.84.

2.2. Remote sensing data and pre-processing

Deimos-2 is a multispectral imaging mission launched on 19th June
2014 and developed by Elecnor Deimos. Deimos-2 optical payload pro-
vides multispectral imagery at 4 m of spatial resolution in four bands
over the visible (VIS) and near infrared (NIR) regions of the spectrum
(Table 1).

Five Deimos-2 scenes were acquired during peak biomass of the
study site in summer months between 2017 and 2020, in pre and post-
fire conditions, to retrieve fractional vegetation cover and evaluate
ecosystem resilience (Table 2). Specific acquisition dates were chosen
on the basis of on-demand Deimos-2 imagery availability with the ab-
sence of cloud cover and as close as possible to the dates of interest.
Deimos-2 scenes were already orthorectified by the image provider. As
with Sentinel-2 imagery, Deimos-2 scenes were atmospherically and
topographically corrected to obtain a surface reflectance product using
the ATCOR algorithm (Richter and Schläpfer, 2018) bundled in PCI Ge-
omatica 2018 (PCI Geomatics Enterprises Inc.). Same ancillary data as
in Sentinel-2 atmospheric correction workflow were used to set the ap-
propriate ATCOR input parameters for processing Deimos-2 imagery.
Aerosol model was set to rural for each scene. Sub-arctic summer MOD-
TRAN atmospheric model (water vapor content of 2.08 g cm−2) was se-
lected for scenes #1, #3 and #4 (Table 2), whereas a mid-latitude win-
ter model (water vapor content of 0.85 g cm−2) was chosen for scenes

#2 and #3 (Table 2). Visibility value was fixed to 40 km for each
scenes.

2.3. FVC retrieval from radiative transfer model (RTM) inversion

The coupled PROSPECT-D leaf optical model (Féret et al., 2017) and
4SAIL (Verhoef et al., 2007) canopy reflectance model, also known as
PROSAIL-D, was used to simulate a training dataset of canopy spectral
reflectance and the corresponding FVC. PROSPECT-D simulates hemi-
spherical reflectance and transmittance of leaves from 400 to 2500 nm
in the optical spectrum (Jacquemoud and Baret, 1990) as a function of
specific physiological and biochemical variables (Féret et al., 2017):
leaf structure parameter (N), leaf dry matter content (Cm), leaf equiva-
lent water thickness (Cw), leaf chlorophyll content (Cab), leaf carotenoid
content (Car), leaf anthocyanin content (Cant), brown pigment fraction
(Cbp). 4SAIL simulates the spectral reflectance of turbid medium plant
canopies (Jacquemoud et al., 2009) using as required variables the leaf
reflectance and transmittance simulated by PROSPECT-D, as well as the
next variables related to canopy structure and viewing and illumination
conditions (Baret et al., 2007; Verhoef et al., 2007; Yebra and Chuvieco,
2009): leaf area index (LAI), average leaf angle (ALA), ratio between
diffuse and direct radiation (skyl), hot spot effect (hspot), soil bright-
ness factor (αsoil), solar zenith angle (θs), observation zenith angle (θo)
and sun-sensor azimuth angle (φ). Fixed values and minimum and max-
imum boundaries for PROSPECT-D and 4SAIL input variables (Table 3)
were derived from satellite scene metadata, literature review, the TRY
database and field knowledge, considering the ecosystem variability of
the study site (Baret et al., 2007; Kattge et al., 2011; Féret et al., 2017;
Campos-Taberner et al., 2018; Wang et al., 2018; Tao et al., 2019). FVC
in a turbid medium was computed using the classical gap fraction cal-
culation (Eq. (1) and (2)) as a function of the simulated LAI and ALA at
nadir observations (Jia et al., 2016; Wang et al., 2018).

(1)
(2)

where P0(θ) is the gap fraction at direction θ, G(θ,θ1) is the orthogonal
projection of a unit leaf area along θ, being θ1 the ALA. The variable λ0
is the leaf dispersion. FVC is computed when θ is equal to 0 (nadir direc-
tion).

A Latin Hypercube Sampling algorithm (McKay et al., 1979) was
implemented to generate 2000 samples within the RTM variable space
defined by the minimum and maximum boundaries of each input vari-
able (Table 3). This approach enables a significant decrease in the num-

Fig. 2. Linear regression model used to compute dNBR thresholds (low-medium : dNBR = 384; medium-high: dNBR = 659) from CBI burn severity
categories (low: CBI < 1.25 ; medium : 1.25 ≤ CBI ≤ 2.25 ; high CBI > 2.25).
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Table 1
Deimos-2 band configuration.
# Band Region Band center (nm) Band width (nm)

1 blue 495.5 59
2 gr een 565.5 67
3 red 668.5 57
4 NIR 831 122

Table 2
Acquisition date of the Deimos-2 scenes used in the present study.
Scene # Acquisition date Date regarding fire

1 19th June 2017 10:14:44 UTC 2 months pre-fire
2 2nd September 2017 11:29:49 UTC 5 days post-fire
3 14th July 2018 10:52:10 UTC 1 year post-fire
4 30th June 2019 11:13:13 UTC 2 year s post-fire
5 7th July 2020 10:58:15 UTC 3 year s post-fire

Table 3
Fixed values and minimum and maximum boundaries of Latin Hypercube
Sampling for PROSPECT-D and 4SAIL input variables.
PROSPECT-D leaf model Symbol Un it Value or range

Leaf structure index N – 1.5–2.5
Leaf chlorophyl l content Cab µg cm−2 20–90
Leaf dry ma tter content Cm g cm−2 0.005–0.015
Leaf equiva lent water thickness Cw g cm−2 0.005–0.015
Leaf caro tenoid content Car µg cm−2 5–40
Leaf anthocyanin content Cant µg cm−2 0–40
Brown pigm ent fraction Cbp – 0–1

4SAIL canopy model Symbol Un it Value or range
Leaf ar ea index LAI m2 m−2 0.1–6
Average leaf angle ALA ° 30–80
Diffuse/direct ra diation skyl – 0.1
Hot spot effect hspot – 0.001–1
Soil br ightness factor αsoil – 0–1
Vegetation cover Vcov – 0–1
Sola r zenith angle θs ° 32.2
Observation zenith angle θo ° 19.1
Sun-sensor azimuth angle φ ° 42.6

ber of simulations required to completely map the variable space with
respect to gridded or randomized sampling (Melendo-Vega et al.,
2018), and typically, more than 500 samples as input to the RTM are
enough to obtain reliable results (Vicent et al., 2018). The sampled sim-
ulations PROSAIL-D were run in forward mode to obtain a training
dataset of simulated reflectance and the corresponding FVC. We added
a relative white Gaussian noise of 2% to the simulated reflectances in
order to account for RTM shortcomings and uncertainties of the atmos-
pheric correction algorithm applied to observed satellite reflectance
data (Jia et al., 2016; García-Haro et al., 2018). The simulations were
spectrally resampled to Deimos-2 band configuration using a Gaussian
model with full width at half maximum (FWHM) spacings (van der
Meer and de Jong, 2001). To obtain realistic simulations in burned
landscapes, the training dataset was finally updated with 20% of spec-
tra representative of bare soil and charred woody debris with respect to
the total model samples (García-Haro et al., 2018). Soil and woody de-
bris spectra were extracted from the first post-fire Deimos-2 imagery.

Gaussian processes regression (GPR; Rasmussen and Williams, 2006)
algorithm was used to model the relationship between the simulated
Deimos-2 top of canopy reflectance and the corresponding FVC in the
training dataset. GPR fits non-parametric and non-linear models de-
scribed by a mean function and a radial basis function kernel (Verrelst
et al., 2012a). Since GPR is based on a Bayesian probabilistic approach
(Sinha et al., 2020), the model offers both the mean FVC prediction and
the associated uncertainty (Verrelst et al., 2012a; Verrelst et al., 2016).
GPR also yields slightly better biophysical parameter predictions than

other machine learning regression algorithms (MLRAs) and is more
computationally efficient (Verrelst et al., 2012b). The calibrated GPR
model was then applied to Deimos-2 observed reflectance to obtain
pixel-based mean FVC predictions and uncertainties (i.e. FVC retrieval).

PROSAIL-D parametrization, model run in forward mode and FVC
retrieval through GPR were performed in ARTMO (Automated Radia-
tive Transfer Models Operator) software (Verrelst et al., 2012c).

2.4. Field survey and retrieval validation

In September 2017 (the month following the fire event), 60 plots of
4 m × 4 m were established in the field within the fire scar to evaluate
the performance of the FVC retrieval for the post-fire time-series. Addi-
tionally, 20 more plots were located in unburned areas next to burned
ones to assess pre-fire FVC retrieval (unburned control plot approach;
Díaz-Delgado et al., 2002). We equally stratified the field plots into
four of the dominant ecosystems of the study site: (i) Genista hystrix
gorseland (iii) Genista florida broomland (iii) Erica australis heathland
and (iv) Quercus pyrenaica oak forest). The burned plots were also
stratified by the three estimated burn severity categories. Pinus
sylvestris plots could not be sampled due to accessibility problems and,
therefore, FVC retrieval was not validated in this ecosystem. Deimos-2
pixel grid was used to ensure the alignment between the field plots and
remote sensing data. The location of the field plots was measured using
a sub-meter accuracy GPS receiver. Control and burned plots were both
surveyed in September 2017, being burned plots also monitored in sum-
mer months of 2018, 2019 and 2020, following the protocol by
Fernández-Guisuraga et al. (2021). We measured FVC in each plot as
the vertical projected area occupied by each ecosystem stratum (i.e.
herbs, shrub and tree layers), by means of a visual estimation method in
steps of 5% (Anderson et al., 2005; Calvo et al., 2008; Delamater et al.,
2012; Liang et al., 2012). The final FVC measure of each field plot was
the average of the values given by four observers, being the standard
deviation of the measures less than 5%. To deal with vertical strata in
tall tree communities, a bottom-up direction was used to estimate the
FVC of the tree canopy layer using a quadrat held by long sticks, being
the FVC of the understory vegetation that can be viewed through
canopy gaps estimated in a top-down direction (Mu et al., 2015; Jia et
al., 2016). The coefficient of determination (R2) and the root-mean-
squared error (RMSE) was computed to measure the performance of the
FVC retrieval on the basis of field data for the entire time-series.

2.5. FVC retrieval benchmarking

Three suitable vegetation indices (VIs) for the Deimos-2 band setup,
and commonly used in the literature for predicting FVC (Vila and
Barbosa, 2010; Ding et al., 2016; Younes et al., 2019), i.e., (i) Enhanced
Vegetation Index (EVI), (ii) Modified Soil Adjusted Vegetation Index
(MSAVI2) and (iii) Normalized Difference Vegetation Index (NDVI)
(Table 4), were chosen for estimation of FVC using GPR, as a bench-
mark method of the FVC retrieval through RTM hybrid inversion. The
performance of trained GPR models from field-measured FVC and VIs
was evaluated by means of 5-fold cross-validation, averaging the R2

and RMSE on each out-of-fold prediction. This benchmark method was
selected because VIs are the most widely used method to evaluate post-

Table 4
Vegetation indices used as benchmark method and formu lation for
Deimos-2 band setup.
Index Formula Referenc e

EVI Gao et al . (2000)
MSAVI2 Qi et al . (1994)

NDVI Rouse et al . (1979)
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fire recovery trajectories in terms of FVC (Fernandez-Manso et al.,
2016; Fernández-Guisuraga et al., 2020).

2.6. Data analysis

A random point sampling (Table 5), stratified by ecosystem and
burn severity, was conducted within the fire scar to calculate the mean
and standard deviation of FVC for each ecosystem and year across the
time-series. We ensured a minimum distance of 100 m between points.

A two-way repeated measures ANOVA (2w-rmANOVA) was per-
formed to evaluate the effect of burn severity along the time-series on
the sampled FVC for each ecosystem. The interaction between burn
severity and time was decomposed using one-way repeated measures
ANOVA (1w-rmANOVA) at each level of burn severity, followed by a
Tukey’s pairwise comparison test to determine the significance of the
differences between each point in the time-series. Following the defini-
tion of engineering resilience, the time required for FVC to reach pre-fire

Table 5
Random stratified point sampling per ecosystem.
ECOSYSTEM Gors e Broom Heath Oa k Pine

Burned ar ea (ha) 888.84 1989.63 1779.30 1338.59 465.57
# Random points 170 380 340 256 89

conditions, in each ecosystem and burn severity level, will be the earli-
est point in the post-fire time-series where FVC values do not differ sig-
nificantly from pre-fire FVC. To facilitate the interpretation of the re-
sults, differences in the disturbance impact (magnitude of change be-
tween pre and immediate post-fire FVC) among burn severity levels in
each ecosystem were assessed by means of a one-way ANOVA (1w-
ANOVA), followed by a Tukey’s pairwise comparison. Statistical sig-
nificance was determined at p < 0.05. All statistical analyses were per-
formed in R (R Core Team, 2019) with “rstatix” package (Kassambara,
2020).

3. Results

FVC retrieval from Deimos-2 imagery based on the GPR algorithm
trained with PROSAIL-D canopy reflectance simulations featured a
high accuracy and a low error across the pre and post-fire time-series
(R2 = 0.91–0.96 and RMSE = 3.41–7.30%) (Fig. 3). No under or over-
estimation effects were observed for the entire range of vegetation
cover measured in the field for each ecosystem, even in immediately
post-fire environmental conditions, as shown in Fig. 3. The physically-
based FVC retrieval scheme clearly outperformed the VIs approach used
for benchmarking purposes. The FVC estimation from VIs provided a
R2 = 0.74–0.85 and a RMSE = 7.07–11.42 as the mean performance
scores of the out-of-fold predictions across the pre and post-fire time se-

Fig. 3. Relationship between field-samp led and retrieved FVC from Deimos-2 imagery for the pre and post-fire time-series. The dotted line represents the re-
gression (1):1 line.
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ries. The three spectral indices featured a similar accuracy and predic-
tion error (Table 6).

The impact of the fire disturbance on FVC was more pronounced
(p < 0.001) under high burn severity in ecosystems dominated by tree
species (i.e. oak and pine). For its part, the impact in shrub ecosystems
(i.e. gorse, broom and heath) did not significantly differ between
medium and high burn severity levels. Even in gorse ecosystem, the dis-
turbance impact showed no significant differences between burn sever-
ity levels (Fig. 4 and Table SM1 of the Supplementary material).

Ecosystem resilience was conditioned by both burn severity and re-
generative strategy (resprouter, seeder or facultative seeder) of the

Table 6
Performance of trained GPR models from field-measured FVC and vegeta-
tion indices.

EVI MSAVI2 NDVI

R2 RMSE R2 RMSE R2 RMSE

2017 (2 months pre-fire) 0.85 8.03 0.82 8.60 0.79 9.23
2017 (5 days post-fire) 0.76 7.85 0.77 7.07 0.74 8.75
2018 (1 year post-fire) 0.80 9.19 0.78 8.90 0.81 8.86
2019 (1 year post-fire) 0.82 10.66 0.83 10.73 0.77 11.15
2020 (1 year post-fire) 0.78 11.31 0.78 10.54 0.74 11.42

dominant species (Fig. 4 and Table SM2 of the Supplementary mater-
ial). In all ecosystems, FVC recovery depended on burn severity, as re-
sulted from the significant interaction (p < 0.001) between severity
and time in the 2w-rmANOVA. Ecosystems dominated by facultative
seeder shrubs (i.e. gorse and broom) reached pre-fire FVC conditions
three years after the disturbance in areas burned at low (p = 0.755)
and medium (p = 0.956) burn severity. Nevertheless, in areas affected
by high burn severity, post-fire and pre-fire FVC differed significantly
(p < 0.001) throughout the time-series and, therefore, resilience has
not been achieved at short-term. Ecosystems dominated by resprouter
species recovered the pre-fire FVC values one year after the disturbance
when burned at low severity (p = 0.151 and p = 0.144 for heat and
oak ecosystems, respectively). However, the resilience of both ecosys-
tems differed at medium and high burn severity. Heath shrub ecosystem
fully recovered pre-fire FVC even at high burn severity (p = 0.993)
three years after fire, while oak tree ecosystem required the same time
to recover in areas burned at medium severity (p = 0.943). In pine
ecosystem, dominated by an obligate seeder, the third year after fire
was the earliest point in the time series in which no significant FVC dif-
ferences (p = 0.641) were observed from pre-fire FVC, corresponding
to areas affected by low burn severity.

Most of the burned area (61% of the total surface occupied by the
four considered ecosystems; Fig. 5) reached the FVC engineering re-

Fig. 4. Mean FVC and its standard deviation through the pre and post-fire time-series in gorse (A), broom (B), heath (C), oak (D) and pine (E) ecosystems.
Column s with red border denote the earliest point in the time-series for which the FVC does not differ significantly at 0.05 level from the pre-fire FVC for a
given burn severity level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Time to recover pre-fire FVC in the ecosystems affected by the fire disturbance. Blank areas within the wildfire perimeter correspond to ground cover
not affected by the wildfire (e.g. rocks, tracks or crop areas).

silience three years after the wildfire. The 29% of the burned area did
not reach pre-fire FVC values under any burn severity scenario during
the analyzed time-series, and only the 10% of the area fully recovered
its FVC one or two years after the fire.

4. Discussion

Monitoring post-fire recovery trends through remote sensing-based
estimates is essential to determine engineering resilience at ecosystem,
landscape and regional spatial scales (Díaz-Delgado et al., 2002;
Fernandez-Manso et al., 2016; Meng et al., 2017; Yang et al., 2017;
Meng et al., 2018; Fernández-Guisuraga et al., 2020), particularly in
the context of changing fire regimes in Mediterranean ecosystems
(González-De Vega et al., 2016; Vilà-Cabrera et al., 2018). The remote
sensing-based tool developed in this study allowed for a reliable assess-
ment of ecosystem resilience at short-term after fire, mainly due to the
next facts: (i) The RTM hybrid inversion method has a good ability to
generalize results, given its physical basis (Atzberger et al., 2015; He et
al., 2020). (ii) The approach does not need the application of transfer-
ability analyses that require high field survey efforts (Vila and Barbosa,
2010; Fernández-Guisuraga et al., 2019). To minimize the reliance on
field data is very relevant, since site-specific field data might not be
available for scientists and land managers with the required quality
and representativeness in extensive burned areas (Atzberger et al.,
2015; Fernández-Guisuraga et al., 2021).

In this study, errors in FVC estimation were below the 10% thresh-
old, which is considered as an acceptable standard (Drusch et al.,
2012), particularly in post-fire immediate situation (five days’ post-
fire), with sparse photosynthetic material and abundant burned vege-

tation legacies exposed to the satellite sensor. The representative char-
acterization of soil and non-photosynthetic material background signal
extracted from Deimos-2 imagery in the training dataset of simulated
canopy reflectance by PROSAIL-D could have improved the GPR model
inversion to retrieve FVC (Verrelst et al., 2007). Also, the PROSPECT
leaf RTM version chosen in this study (PROSPECT-D) simulates leaf re-
flectance and transmittance considering brown pigments and antho-
cyanins (Féret et al., 2017). Therefore, this leaf model could provide an
added value in post-fire resilience studies at short-term, since these pig-
ments are important constituents of leaves in post-fire environments
under plant stress conditions (Gould, 2004). In addition, the evaluation
of resilience to fire at ecosystem level should be based on remote sensing
data at high spatial resolution, such as those used in this study. Other-
wise, the fine-grained arrangement of vegetation legacies would not be
captured in heterogeneous landscapes and the ecosystem regeneration
resilience would be underestimated (Walker et al., 2019). This short-
coming could be partly solved by pixel unmixing modeling techniques
that allow for obtaining fraction images of burned landscapes, which
have also been widely used in the evaluation of post-fire recovery tra-
jectories (e.g. Smith et al., 2007; Chu et al., 2016; Fernandez-Manso et
al., 2016; Fernández-Guisuraga et al., 2020), even at the species level
(Kibler et al., 2019). However, this approach requires the collection of
an extensive spectral library (i.e. multiple endmembers for each ground
component) to account for endmember variability caused by spa-
tiotemporal changes in biophysical conditions of the different land
cover types (Roberts et al., 1998; Somers et al., 2009), which is a chal-
lenge in extensive burned landscapes comprising several ecosystems. In
addition, non-linear mixing caused by multiple scattering in sparse
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canopies violates the assumptions of the most used unmixing models,
such as SMA or MESMA (Somers et al., 2009).

The performance of the RTM hybrid inversion method
(R2 = 0.91–0.96 and RMSE = 3.41–7.30%) was clearly superior to VIs
approach (R2 = 0.74–0.85 and RMSE = 7.07–11.42) for estimating
FVC. Although VIs are correlated with certain biophysical properties of
the canopy, these indices are not intrinsic physical quantities (Carlson
and Ripley, 1997; Vila and Barbosa, 2010). Also, in burned areas with a
great amount of non-photosynthetic material and soil background ex-
posed to the remote sensors, VIs exhibit a larger error in the estimation
of biophysical variables compared with physical-based approaches
(Vila and Barbosa, 2010; Ding et al., 2017). Finally, canopy reflectance
is not only governed by the vegetation amount estimated by VIs, but
also by foliar chemistry and leaf angle distribution (Veraverbeke et al.,
2012), used as input parameters in physical-based models. Hence, dis-
tinct ecosystem canopies in heterogeneous landscapes may yield differ-
ent VIs values while exhibiting an identical FVC (Veraverbeke et al.,
2012).

Remarkably, the results obtained by the RTM hybrid inversion
method agreed with those achieved in previous studies based exclu-
sively on in-situ field surveys, which proves the potential of the pro-
posed remote sensing-based tool for assessing disturbance impact and
ecosystem resilience at short-term. We found that, in tree forest ecosys-
tems (i.e. oak and pine ecosystems), the fire impact on FVC was
stronger at high burn severity, while in shrub ecosystems (i.e. gorse,
broom and heath ecosystems) the impact was similar at medium and
high burn severity, as found by Minor et al. (2017) in southeastern Ari-
zona. Shrubs aboveground biomass is especially vulnerable to fire ef-
fects because of their low growth-form (Schwilk et al., 2013). In fact,
even medium burn severity levels can significantly affect the shrub
canopy and stems, as well as cambial tissues and roots due to convec-
tive heat (Pratt et al., 2014; Minor et al., 2017). Nevertheless, differen-
tiation in medium and high burn severity impacts will presumably oc-
cur on the properties of other ecosystem compartments such as the soil.
Despite the lack of significant differences in the disturbance impact on
FVC across shrubland ecosystems affected by medium and high sever-
ity, engineering resilience was lower under high burn severity scenarios.
Indeed, both the bud-forming tissues of resprouter species and the
canopy or soil seed bank of seeders could be soundly affected by severe
fires, reducing the resprouting vigor and seed recruitment, respectively
(Pausas et al., 2003; Moreira et al., 2012; Maia et al., 2016; Strydom et
al., 2020).

The faster recovery time that we have identified for resprouters-
dominated ecosystems, in comparison with facultative or obligate
seeders-dominated ecosystems, also agreed with previous research. Sur-
viving tissues of resprouter species allow for a quick recovery of plant
aboveground biomass (Pausas and Keeley, 2014b) and recolonization
of the space occupied before the fire (Calvo et al., 2003; Vivian and
Cary, 2012). This behavior confers to resprouters higher resilience than
facultative or obligate seeders (Valdecantos et al., 2009; Chergui et al.,
2018b). In fact, Vallejo and Alloza (1998) conclude that improved di-
versity and resilience could be achieved in post-fire landscapes through
the promotion of shrub and tree resprouter formations. In a fire-prone
burned landscape of the western Mediterranean Basin, Fernández-
Guisuraga et al. (2020) found that areas dominated by resprouter
shrubs and herbaceous species almost reached pre-fire vegetation cover
four years after fire, whereas conifer stands dominated by obligate
seeders, showed much lower post-fire recovery rates. The findings of
Storey et al. (2016) and Kibler et al. (2019) in chamise chaparral shrub-
lands in California, are also in agreement with the results of the present
study regarding the recovery rates of resprouters and facultative or ob-
ligate seeders. Chergui et al. (2018b) also evidenced that several struc-
ture parameters of oak stands, dominated by resprouter species, were
more resilient than those of conifer stands under a similar fire regime in
a north-western Africa region with Mediterranean climatic conditions.

Likewise, burn severity hindered resilience to fire in all the ecosys-
tems analyzed in this study, thus affecting both resprouting and seeding
capacity (Vallejo et al., 2012; González-De Vega et al., 2016). This ef-
fect was more pronounced in ecosystems dominated by facultative or
obligate seeders, where pre-fire FVC was reached later across the time-
series compared to resprouter-dominated ecosystems, as the burn sever-
ity increased. In this sense, several research evidenced similar trait-
dependent recovery patterns related to burn severity in Mediterranean
ecosystems. Fernandez-Manso et al. (2016) found that only vegetation
affected by low burn severity featured high resilience at short-term in a
conifer stand of the western Mediterranean Basin. Heath et al. (2016)
determined that increased burn severity delayed four years the short-
term recovery to pre-fire spectral properties in several dry sclerophyll
forests and shrubby woodlands dominated by resprouting vegetation in
New South Wales, Australia. In contrast, several communities domi-
nated by seeder species in the same region took much longer to recovery
towards pre-wildfire conditions. In this sense, Díaz-Delgado et al.
(2003) evidenced that burn severity had a more negative effect on the
recovery time of shrub and forest stands dominated by seeders than of
resprouters in a burned landscape of the western Mediterranean Basin.

Despite the advantages of using an engineering resilience indicator
retrieved from optical satellite reflectance data, a primary limitation of
this approach lies in the impossibility of determining ecosystem species
composition and vertical structure parameters to identify the recovery
trends of specific vegetation types within the ecosystem (Meng et al.,
2015). In this sense, airborne multispectral LiDAR or data fusion of
multispectral imagery with single-wavelength LiDAR (e.g. Kane et al.,
2014; McCarley et al., 2017) could provide valuable information re-
garding post-fire recovery trajectories at species or growth form levels
throughout the vertical vegetation profile in multi-layered canopies.
However, in extensive burned areas, the high cost of LiDAR data collec-
tion (Hummel et al., 2011) restricts its use for evaluating forest re-
silience to fire. In addition, spectral unmixing techniques (e.g. MESMA)
or object-based image classification of optical satellite imagery, may
provide a reliable estimation of post-fire recovery trajectories consider-
ing species composition in ecosystems with single vegetation strata, or
in multi-layered ecosystems at stand level (Mitri and Fiorucci, 2012;
Kibler et al., 2019). Nevertheless, compositional attributes in multi-
layered canopies cannot be directly retrieved with passive optical data
on those strata that would normally be occluded by the top of canopy
layer (Morsdorf et al., 2010; Vogeler and Cohen, 2016).

Regardless of the limitations of the FVC retrieval through a RTM
hybrid inversion approach for evaluating resilience to fire, this tech-
nique may provide at short-term the operational needs to identify areas
where intervention is necessary for assisting vegetation recovery and
controlling soil erosion processes or nutrient losses. This approach
should be further evaluated in the medium and long-term post-fire
monitoring of forest resilience in order to examine whether the remote
sensing-based observed patterns are still consistent with field observa-
tions.

5. Conclusions

The proposed remote sensing tool, based on the hybrid inversion of
radiative transfer models (RTMs) to retrieve fractional vegetation
cover (FVC) at high spatial resolution, has proved its reliability and ap-
plicability to monitor ecosystem engineering resilience in heterogeneous
burned landscapes affected by mixed severity wildfires. The approach
is computationally efficient to evaluate forest resilience in fire-prone
landscapes at short-term and large spatial extent, minimizing the re-
liance on field data. In fact, the FVC retrieval over the entire pre and
post-fire time-series was highly accurate despite the influence of the
background signal of soil and burned legacies. The obtained results
agree with previous field-based research in the sense that burn severity
hinder ecosystem resilience, being detected quicker recovery to pre-fire
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FVC state in ecosystems dominated by resprouters than facultative or
obligate seeders at the lowest burn severity scenarios.
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