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The large environmental and socioeconomic impacts of wildfires in Southern Europe require the development of effi-
cient generalizable tools for fire danger analysis and proactive environmental management. With this premise, we
aimed to study the influence of different environmental variables on burn severity, as well as to develop accurate
and generalizable models to predict burn severity. To address these objectives, we selected 23 wildfires (131,490
ha) across Southern Europe. Using satellite imagery and geospatial data available at the planetary scale, we spatialized
burn severity as well as 20 pre-burn environmental variables, which were grouped into climatic, topographic, fuel
load-type, fuel load-moisture and fuel continuity predictors. We sampled all variables and divided the data into
three independent datasets: a training dataset, used to perform univariant regression models, random forest (RF)
models by groups of variables, and RFmodels including all predictors (full and parsimoniousmodels); a second dataset
to analyze interpolation capacity within the training wildfires; and a third dataset to study extrapolation capacity to
independent wildfires. Results showed that all environmental variables determined burn severity, which increased to-
wards the mildest climatic conditions, sloping terrain, high fuel loads, and coniferous vegetation. In general, the
highest predictive and generalization capacities were found for fuel load proxies obtained though multispectral imag-
ery, both in the individual analysis and by groups of variables. The full and parsimonious models outperformed all, the
individual models, models by groups, and formerly developed predictive models of burn severity, as they were able to
explain up to 95%, 59% and 25% of variance when applied to the training, interpolation and extrapolation datasets
respectively. Our study is a benchmark for progress in the prediction of fire danger, provides operational tools for
the identification of areas at risk, and sets the basis for the design of pre-burn management actions.
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1. Introduction
Southern Europe is prone tofire for millennia because of its seasonal cli-
mate, characterized by mild winters that promote fuel accumulation, and
dry hot summers propitious for fire ignition and spread. Accordingly, fire
is considered an integral part of ecosystem dynamics, as well as an evolu-
tionary force in this region (Keeley et al., 2011). However, there are reasons
to considerfire as a hazardwith negative connotations, and sometimes a di-
saster becausefire can cause losses of human lives, health and human assets
(Ribeiro et al., 2020). Also, the large ecological impacts caused by forest
fires on vegetation (Fernández-García et al., 2019a, 2020), soil (Pausas
et al., 2008; Fernández-García et al., 2019b, 2021), water (Hallema et al.,
2018) and fauna (Doherty et al., 2015) can be adverse, particularly in
Southern Europe, which is a biodiversity hotspot (Myers et al., 2000)
with a high potential erosion risk (Van der Knijff et al., 2000). Moreover,
these impacts might be aggravated with the emergence of extreme events,
such as the wildfires that occurred in Portugal in 2017, in Greece in 2018
or in Spain in 2012 and 2021, which led to unusual fatalities up to date
in Europe (Ribeiro et al., 2020). This new scenario has been attributed to
fuel accumulation and landscape homogenization driven by rural depopu-
lation, and to climate change (Pausas et al., 2008; Moreira et al., 2011;
Fernández-García et al., 2020). Thus, nowadays the analysis of fire risk re-
lated variables is a hot research topic crucial for fire prevention and the de-
sign of management strategies (Moreira et al., 2020).

Wildfire danger analysis is usually done on the basis of fire weather in-
dices obtained daily from weather variables at a synoptic level (Jolly et al.,
2015; Abatzoglou et al., 2019). These indices, such as the Canadian Fire
Weather Index, US Burning Index, or the McArthur Forest Fire Danger
Index are mainly related to the ignitability and fire spread rate (Jolly
et al., 2015). However, in the current context of change, many experts ad-
vocate management aimed at reducing fire damage (or severity), rather
than ignition probability or area burned (Moreira et al., 2011; Stephens
et al., 2013), becausefire-suppression leads to an eventual confluence of ex-
tremefireweather and landscape-scale hazard (Moreira et al., 2020). In this
sense, fire research has neglected to develop models that reliably predict
landscape-scale susceptibility to severe wildfires. Burn severity, which is in-
herently linked to variables indicative of the fire harmful power and inten-
sity, can be defined as fire damage on biomass and it is assessed in the field
though visual indicators such as char height, degree of vegetation consump-
tion, tree mortality, remaining diameter of branches, litter consumption or
ash depth, among others (Keeley, 2009; Key and Benson, 2006). However,
the use of field indicators is not functional for the assessment of large areas,
and several remote sensingmethods have been used to quantify burn sever-
ity, including spectral indices (Chu and Guo, 2014; Fernández-García et al.,
2018) spectral unmixing analysis (Quintano et al., 2017) or radiative trans-
fer models (Chuvieco et al., 2006; De Santis et al., 2009). Among them, the
dNBR spectral index (difference of the Normalized Burn Ratio; López-
García and Caselles, 1991), which is based on the sensitivity of near infra-
red and shortwave infrared reflectance to environmental changes caused
by fire (Key and Benson, 2006), is considered the reference metric in
Europe, as there, (i) it has shown similar or better relationships with field
severity data than other commonly used indices (Gómez-Sánchez et al.,
2017; Fernández-García et al., 2018), (ii) it is more consistent among sen-
sors than relativized versions of dNBR such as the RdNBR (Alonso-
González and Fernández-García, 2021), and (iii) it is systematically used
by the European Forest Fire Information System for post-fire damage assess-
ments (EFFIS) (https://effis.jrc.ec.europa.eu/about-effis) and by the
European Emergency Management Service (EMS) (https://emergency.
copernicus.eu/).

Identifying the environmental variables that determine burn severity at
the landscape scale is essential for the design of management actions aimed
at reducing wildfire associated danger (García-Llamas et al., 2019a, 2019b;
Moreira et al., 2020), as well as to develop predictivemodelswhich serve to
identify target areas for pre-fire management and areas where exposure for
firefighters during afiremight be unsafe (Connor et al., 2017). In this sense,
previous research has differentiated top-down (climate) and bottom-up
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(topography, fuel load, fuel type, fuel moisture and fuel continuity) drivers
of burn severity (Birch et al., 2015; Loehman, 2020). Climate exerts a con-
trol of fire regimes through its effects on productivity (and hence fuel load),
fuel characteristics (composition, moisture and structure) and fire weather
(Walker et al., 2020). Topography determines fire behavior directly, as
steep slopes increase propagation rates and flame residence time in upslope
fires (Dupuy et al., 2011), but also indirectly, as it conditions mesoscale and
microscale climate, airflows (Coen et al., 2013), heat load from solar radia-
tion, andwater balances (Kane et al., 2015; Fang et al., 2018). Fuel load and
characteristics are probably the primary and major drivers of burn severity
(Kalabodikis and Palaiologou, 2019; Walker et al., 2020), flammable vege-
tation types, high fuel loads and high fuel continuities favouring severe
fires. Moreover, fuel moisture, which is closely linked to fire weather, gen-
erally decreaseswildfire intensity as it increases the energy required for fuel
preheating (Lee et al., 2018), and then, during combustion, part of the en-
ergy is spent in the heating and evaporation of water (Dillon et al., 2011).

Despite the great relevance of burn severity in fire danger analysis and
pre-fire management, most predictivemodels have been elaborated in indi-
vidual fire events (e.g. Kane et al., 2015; Fang et al., 2018; García-Llamas
et al., 2019a, 2019b; Mitsopoulos et al., 2019). Therefore, inconsistent re-
sults have been found between studies, suggesting large site-dependency,
and generalization analyses have been bypassed. To address the challenge
of elaborating generalizable models applicable at broad scales, the use of
global data sources to spatialize both burn severity and its environmental
drivers is mandatory. In this way, the multispectral satellite imagery pro-
vided by Sentinel-2 since 2015 is an outstanding source to quantify severity
at the landscape level because of its spatial (10m to 60m), temporal (revisit
of 5 days combining 2A and 2B) and spectral resolution (13 bands) (García-
Llamas et al., 2019c). Sentinel-2 imagery can also be used to compute spec-
tral indices related to fuel characteristics such as greenness and moisture,
and to obtain fuel biophysical properties from radiative transfer models
(Pasqualotto et al., 2019; Han et al., 2021). These products also allow to
perform second-order textures indicative of fuel continuity (Fernández-
Guisuraga et al., 2019). Likewise, the C-band synthetic aperture radar on
board Sentinel-1, launched in 2013, periodically retrieves (every 12 days
at 5 × 20 m spatial resolution in interferometric wide swath mode) infor-
mation on surface roughness and dielectric constants, which substantially
vary with fuel characteristics and soil moisture (Meyer, 2019; ESA, 2021).
This sensor might complement multispectral data not only due to its differ-
ent sensitivity, but also because of the penetration capacity of C-band pulses
in vegetation canopy and soil (Meyer, 2019). In addition, global geospatial
products of terrain elevation (SRTM, 2000), climate (Fick and Hijmans,
2017) and land cover (Buchhorn et al., 2020) allow the spatialization of
several topographic, climatic and fuel drivers at moderate spatial resolu-
tions worldwide.

The main objective of this study is to analyze the capacity of different
environmental variables to predict wildfire severity at the landscape scale
across Southern Europe using global data sources. Specifically, we aim to
(i) explore the relationship and predictive capacity of individual environ-
mental variables with burn severity, (ii) analyze the relevance of different
groups of variables (climatic, topographic, fuel load-type, fuel load- mois-
ture, and fuel continuity) in predicting burn severity, and (iii) to elaborate
comprehensive predictive models of burn severity functional over large
spatial scales and to analyze for the first time the generalization capacity
of predictive models of burn severity.

2. Methods

2.1. Study sites

We selected 23 wildfires that occurred between 2017 and 2020 in
Southern Europe: 4 wildfires were located in Portugal, 11 in Spain, 2 in
France, 2 in Italy and 4 in Greece (Fig. 1). Burned areas were delimited ac-
cording to the fire perimeters from the EMS (https://emergency.
copernicus.eu/). In the cases where fire perimeters were not available in
the EMS, we delineated them over immediate post-fire Sentinel-2 scenes

https://effis.jrc.ec.europa.eu/about-effis
https://emergency.copernicus.eu/
https://emergency.copernicus.eu/
https://emergency.copernicus.eu/
https://emergency.copernicus.eu/


Fig. 1. Map showing the location of the 23 wildfires used in the present study across Southern Europe.
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visualized as false colour composites (RGB 547) at a scale of 1:10,000. The
selected wildfires reached a total burned area of 131,490 ha, which cap-
tures diverse burn severity situations, as well as different topographic, cli-
matic and fuel conditions.

Among the 4 wildfires in Portugal, the wildfire of Predógão Grandewas
the largest (Table 1). This mega-event started on Jun 2017, burning an area
of 45,655 ha, mainly occupied by eucalyptus, pines and mixed forests. In
the same region, the wildfire of Vila de Rei burned 9646 ha in July 2019,
principally affecting heathlands and coniferous forests. The wildfire of
Sertã initiated in July 2020 (5554 ha), burned transitional woodland-
shrub ecosystems and heathlands among other land-covers. Two months
Table 1
Characteristics of the 23 wildfires used in the present study. Annual precipitation andme
2017).

Study site Country Fire alarm date Annual pre

Predógão Grande Portugal 17 July 2017 1079
Vila de Rei Portugal 20 July 2019 877
Sertã Portugal 25 July 2020 1111
Oliveira de Frades Portugal 7 Sep. 2020 1332
Ponte Caldelas Spain 16 Oct. 2017 1763
Carballeda de Avia Spain 17 Oct. 2017 1610
Cualedro Spain 13 Sep. 2020 1445
Medeiros Spain 30 July 2020 1627
Monterrey Spain 24 July 2020 1647
Villardevos Spain 3 Aug. 2017 1516
Cabrera Spain 21 Aug.2017 1102
Aliste Spain 15 Aug. 2020 808
Malpartida de Plasencia Spain 3 Aug. 2020 601
Cabezuela del Valle Spain 28 Aug. 2020 904
Zalamea la Real Spain 27 Aug. 2020 546
Martigues France 4 Aug. 2020 630
Fos sur Mer France 4 Aug. 2020 641
Cascina Italy 24 Sep. 2018 1093
Altofonte Italy 30 Aug. 2020 572
Drosopigi Greece 22 Aug. 2020 651
Galataki Greece 25 July 2020 597
Kineta Greece 23 July 2018 593
Mati Greece 23 July 2018 433
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later, the fire in Oliveira de Frades burned a mosaicked area of 2109 ha
composed of coniferous and broadleaved forests, as well as of herbaceous
vegetation and crops.

In Spain, the 11 wildfires were selected from North to South, retrieving
different climatic conditions (Table 1). In the northwestern part, the wild-
fire of Ponte Caldelas which started in October 2017, burned 9440 ha of
a patchy landscape with broadleaf and mixed forests, heathlands, and spa-
tially complex cultivated areas. In the same month, the wildfire of
Carballeda de Avia affected 5955 ha, in this case dominated by heathlands,
sparse vegetation and cultivated patches. The wildfires of Cualedro (1334
ha), Medeiros (1517 ha) and Monterrey (740 ha) in summer 2020, mostly
an annual temperature were averaged for the period 1970–2000 (Fick and Hijmans,

cipitation (mm) Men annual temperature (°C) Elevation range (m)

14.3 111–1003
15.4 144–514
13.6 379–1081
13.6 26–765
13.0 21–729
12.27 234–987
11.2 682–933
12.3 512–756
12.3 405–766
11.9 455–922
8.5 849–1958

11.8 693–1600
15.0 342–636
10.4 630–1808
16.8 94–472
14.9 5–143
15.0 6–62
13.3 7–680
13.5 498–1141
16.2 31–772
15.5 28–789
14.8 7–1326
17.4 13–335
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burned heathlands and natural vegetation amidst cultivated areas. The
Villardevos wildfire in August 2017 burned 1292 ha of heathlands, transi-
tional woodland-shrubs, as well as mixed and coniferous forest. In the Ibe-
rian Northern Plateau, the Cabrera wildfire affected 9939 ha in August
2017, mainly occupied by shrubs, herbaceous vegetation and deciduous
forest; and the Aliste wildfire in August 2020 burned sclerophyllous vegeta-
tion and agricultural areas interspersed with natural vegetation. In the cen-
tral region, the Malpartida de Plasencia (470 ha) and Cabezuela del Valle
(3958 ha) wildfires, which started in August 2020, were selected. Both
study sites are dominated by shlerophyllous and herbaceous vegetation.
The southernmost wildfire in the Iberian Peninsula was Zalamea la Real
in August 2020 that reached 14,500 ha mainly affecting transitional
woodland-shrubs, pines and eucalyptus.

In France, two wildfires in the Bouches-du-Rhône department were se-
lected. The Martigues wildfire (1040 ha) started in August 2020, and af-
fected coniferous and schlerophyllous vegetation as well as cultivated
areas, whereas the Fos sur Mer wildfire (84 ha), initiated the same day,
burned coniferous vegetation.

In Italy we selected the wildfire that occurred in September 2018 in
Cascina (1132 ha), Tuscany, in an area occupied by coniferous forests, tran-
sitional woodland-shrubs and olive groves; and we selected a second wild-
fire in Altofonte (808 ha), in August 2020 in Sicily, in an area dominated by
coniferous forests.

In Greece we selected two wildfires in the Peloponnese from summer
2020 and two wildfires in Attica from July 2018. In the Peloponesse, the
Drosopigi wildfire reached an extent of 2260 ha, burning sclerophyllous
vegetation, transitional woodland-shrub, and pastures, whereas the
Galataki wildfire (3977 ha) damaged principally coniferous forests and
olive groves. In Attica, the Kineta wildfire (6770 ha) combusted coniferous
forests and transitional woodland-shrubs, whereas the Mati wildfire (1541
ha) damaged discontinuous urban areas, coniferous forests and sparse veg-
etation.

The information of the vegetation communities affected in eachwildfire
was obtained from the Corine Land Cover project (CLC, 2012, 2018).

2.2. Data sources and processing

In this study we used Sentinel-1 and Sentinel-2 satellite data, global cli-
matic data from the Worldclim version 2.1 database at 30 s (Fick and
Hijmans, 2017), the SRTM 1 s (30 m) Global digital elevation model
(SRTM, 2000) downloaded from the EarthExplorer of United States Geolog-
ical Survey (https://earthexplorer.usgs.gov/), and the Copernicus Global
Land Cover product from the year 2015 at 100 m spatial resolution
(Buchhorn et al., 2020), downloaded from the Copernicus Global Land Ser-
vice (https://land.copernicus.eu/).

Sentinel-1 Interferometric Wide (IW) swath mode Ground Range De-
tected (GRD) high resolution Synthetic Aperture Radar (SAR) products at
dual polarization (VV + VH) were acquired for all study sites, selecting
the closest date prior to the wildfires (Table A1). Sentinel-1 products
were downloaded from the Copernicus Open Access Hub and then proc-
essed in SNAP according to the proposal by Meyer (2019). The procedure
consisted of applying precise orbit files, thermal noise removal to reduce
noise effects mainly in the inter-sub-swath texture, a removal of GRD-
border noise considering a border margin of 500 pixels, and then applying
a calibration to convert digital pixel values to radiometrically calibrated
SAR backscatter. Our calibrated products were beta0 VV and VH backscat-
ter bands, which were subsequently multilocked to 20 m square pixels.
Then, we reduced speckle effects by applying a refined Leefilter, andwe ap-
plied a terrainflattening correction using the SRTMdigital elevationmodel.
Finally, we implemented a range doppler terrain correction using the SRTM
digital elevation model, obtaining gamma0 radar backscatter products. Fi-
nally, we converted the unitless gamma0 backscatter values to dB units
using a logarithmic transformation.

Pre- and post-burn Sentinel-2 level 1C images were selected for each
study wildfire (Table A1). The closest images to the date of the fire event,
and free of clouds, were selected by visually checking the scenes in the
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Sentinel Hub EO Browser (https://apps.sentinel-hub.com/eo-browser/),
and downloaded from the Copernicus Open Access Hub (https://scihub.
copernicus.eu/). Then, we used the Sen2Cor 280 processor with the
SRTM digital elevation model to obtain topographically and atmospheri-
cally corrected Sentinel-2 level 2A images. The 10 m resolution bands of
Sentinel-2 level 2A images were downsampled to 20 m spatial resolution
aggregating the pixels to the mean value. Moreover, in the cases where
more than one Sentinel-2 scene was necessary to capture the entire study
wildfire, we mosaicked the contemporary scenes using the SNAP mosaick-
ing tool.

2.3. Burn severity

We assessed burn severity using pre- and post-fire Sentinel-2 processed
images through the dNBR index (López-García and Caselles, 1991), which
is commonly used by public organisms and programs of the European
Union and United States of America (Fernández-García et al., 2021), and
its performance has been largely validated with field data or through pho-
tointerpretation in Southern Europe (e.g. Veraverbeke et al., 2010;
Fernández-García et al., 2018), including several of our study sites
(García-Llamas et al., 2019b; Fernández-Manso et al., 2020).

The calculation of dNBR comprises two steps, first the Normalized Burn
Ratio (NBR) is calculated for the pre- and post-fire according to the Eq. (1),
and second, the pre- and post-burn values are differenced according to
Eq. (2). NBR values are usually multiplied by 1000 (see Eq. (1)), and conse-
quently dNBR values range between −2000 and 2000. dNBR values in-
crease proportionally to burn severity, usually up to 1200 in the most
severely burned areas, whereas unburned or slightly burned areas show
dNBR values close to 0.

NBR ¼ ρ8a−ρ12ð Þ
ρ8aþ ρ12ð Þ � 1000 (1)

Where NBR is the Normalized Burn Ratio, and ρ8a and ρ12 are the reflec-
tance values of bands 8a (near infrared) and 12 (shortwave infrared) from
Sentinel-2 level 2A images.

dNBR ¼ preNBR−postNBR (2)

where dNBR is the difference of the Normalized Burn Ratio, and preNBR
and postNBR are the Normalized Burn Ratio indices calculated for the
pre-burn and post-burn scenes, respectively.

2.4. Environmental predictors

We generated a set of 20 environmental variables to predict burn sever-
ity across Southern Europe, which were classified intofive groups: climatic,
topographic, fuel load-type, fuel load-moisture and fuel continuity vari-
ables (Table 2).

Five climatic variables averaged for the period 1970–2000were directly
acquired from theWorldclim database (Fick and Hijmans, 2017): mean an-
nual temperature (MAT), annual precipitation (AP), precipitation seasonal-
ity (PS) calculated through the coefficient of variation of the meanmonthly
temperatures, mean temperature of the driest quarter (MTDQ), and the pre-
cipitation of the driest quarter (PDQ).Moreover, we computed temperature
seasonality as the coefficient of variation of the mean monthly tempera-
tures, using the temperature seasonality product (standard deviation) and
MAT from the Worldclim database.

We used four topographic variables geo-processed in ArcMap 10.7
(ESRI, 2019) from the SRTM1 s Global digital elevationmodel: slope, topo-
graphic position index (TPI), topographic convergence index (TCI), and
heat load (HL). TPI, TCI and HL were computed using the topography
tools 10.3 toolbox (Dilts, 2015). The TPI was calculated according to
Jenness (2006), comparing the elevation of each pixel to the mean eleva-
tion of its 24 neighbor pixels (25 m kernel). This algorithm results in nega-
tive values in ridge areas or mountain tops, and positive values in valleys or

https://earthexplorer.usgs.gov/
https://land.copernicus.eu/
https://apps.sentinel-hub.com/eo-browser/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/


Table 2
Environmental variables and groups used as predictors of burn severity. The table also shows the abbreviations, units and data sources for each variable, and processing ap-
plied after data acquisition.

Group Environmental variable Abbreviation Units Data source Processing

Climatic Mean annual temperature MAT °C Worldclim No
Annual precipitation AP mm Worldclim No
Temperature seasonality TS – Worldclim Yes
Precipitation seasonality PS – Worldclim No
Mean temperature of driest quarter MTDQ °C Worldclim No
Precipitation of driest quarter PDQ mm Worldclim No

Topographic Slope Slope ° SRTM Yes
Topographic position index TPI – SRTM Yes
Topographic convergence index TCI – SRTM Yes
Heat load HL MJ cm−2 year−1 SRTM Yes

Fuel load-type Copernicus global land cover class GLC class – GLC 2015 No
Pre-burn fraction of absorbed photosynthetically active radiation FAPAR – Sentinel-2 Yes
Pre-burn leaf area index LAI m2 m−2 Sentinel-2 Yes
Pre-burn fraction of vegetation cover FCOV – Sentinel-2 Yes

Fuel load-moisture Pre-burn normalized difference water index NDWI – Sentinel-2 Yes
Pre-burn moisture stress index MSI – Sentinel-2 Yes
Pre-burn canopy water content CWC g m−2 Sentinel-2 Yes
Pre-burn C-band synthetic aperture radar cross ratio CR – Sentinel-1 Yes

Fuel continuity Pre-burn global land cover patch size Patch size ha GLC 2015 Yes
Homogeneity of pre-burn FCOV FCOV homogeneity – Sentinel-2 Yes
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cliff bases. The TCI, also known as the topographic wetness index, is a
hydrological-based topographic index that describes the tendency of an
area to retain or evacuate water under stable conditions, values increasing
from 0 proportionally to the topographic water retention proneness. It was
computed considering the contributing areas determined according to the
model proposed by Tarboton (1997), and the slope of the digital elevation
model. Finally, the HL was calculated according to the proposal of McCune
and Keon (2002), using slope, aspect, and latitude to estimate the potential
annual direct incident radiation, which usually ranges between 0 and
1.1 MJ * cm−2 yr−1 in southern European latitudes.

The four predictors applied as proxies of fuel load-type included a cate-
gorical variable (pre-burn land cover classification) and three continuous
biophysical variables (the pre-burn fraction of absorbed photosynthetically
active radiation, FAPAR; the pre-burn leaf area index, LAI; and the pre-burn
fraction of vegetation cover, FCOV). In relation to thefirst, we used the land
cover classification from the Copernicus Global Land Cover (GLC class) of
the year 2015, which differentiates 22 land cover classes, 13 of them
being frequent in terrestrial ecosystems of Southern Europe. Moreover,
the three biophysical variables (FAPAR, LAI and FCOV) were computed
from pre-processed Sentinel-2 images (see Section 2.2) using the biophysi-
cal processor embedded in SNAP. This processor retrieves the biophysical
parameters by applying an artificial neural network pre-trained with a da-
tabase (lookup-table) generated using a radiative transfer model (RTM)
based on PROSAIL (Weiss and Baret, 2016). Moreover, the biophysical pro-
cessor presumes to be applicable to any type of vegetation with reasonable
performances, as the RTM is configured to accurately simulate the canopy
reflectance as observed within Sentinel-2 bands and geometry over most
vegetation types and conditions across the globe (Xie et al., 2019).

Four variables directly related to fuel load-moisture, and indirectly to
fire weather, were studied, including two spectral indices (pre-burn nor-
malized difference water index, NDWI; and pre-burn moisture stress
index, MSI), one biophysical variable (pre-burn canopy water content,
CWC) and the pre-burn C-band synthetic aperture radar cross ratio (CR).
The NDWI (Eq. (3)) and MSI (ratio between band 11 and band 8) were cal-
culated from Sentinel-2 pre-processed images (see Section 2.2). NDWI and
MSI indices are closely related to living vegetation moisture and dead fuel
moisture respectively (Babu et al., 2015), also being linked to fuel load,
the lowest values indicating high living fuel loads and water contents,
and the highest values indicating low living fuel load and dry conditions.
Likewise, the CWC was computed from pre-processed Sentinel-2 images,
using the biophysical processor in SNAP. The CR was obtained from
Sentinel-1 IW GRD dual polarization (VV + VH) pre-processed images, as
the ratio between VH backscatter and VV backscatter. Radar backscatter
5

depends on terrain structure, surface roughness and dielectric constant of
the materials on the ground, which is principally influenced by vegetation
and water content (Vreugdenhil et al., 2018; ESA, 2021).

NDWI ¼ ρ3−ρ8ð Þ
ρ3þ ρ8ð Þ (3)

where NDWI is the Normalized Difference Water Index, and ρ3 and ρ8 are
the reflectance values of bands 3 (green) and 8 (near infrared) from
Sentinel-2 pre-processed images.

Fuel continuity was measured using two different approaches: pre-burn
global land cover patch size (patch size) and homogeneity of pre-burn
FCOV (FCOV homogeneity). Patch sizes were calculated from the Coperni-
cus Global Land Cover product of the year 2015 considering all classes, as
the hectares occupied by each patch. On the contrary, FCOV homogeneity
was calculated from the FCOV biophysical variable using the ENVI 5.3 pro-
gram (Exelis Visual Information Solutions, 2015). FCOV homogeneity is a
second-order texture that was computed using a 64-level co-occurrencema-
trix. The analysis was performed using a kernel of 5 × 5 pixels, moving in
four directions (0°, 45°, 90° and 135°). Then, the values obtained for the
four directions were averaged to obtain a directionally invariant FCOV ho-
mogeneity (Fernández-Guisuraga et al., 2019), with values ranging from 0
(completely heterogeneous) to 1 (completely homogeneous).

2.5. Data extraction and analysis

Data of burn severity and all environmental predictors was systemati-
cally extracted using one sampling point per hectare, with a distance be-
tween points fixed to 100 m (5 Sentinel-2 pixels), which is appropriate to
avoid spatial autocorrelation in burn severitymeasured from Sentinel-2 im-
agery (Fernández-Guisuraga et al., 2021). Then, points were inspected to
remove those with anomalous values for some of the studied variables
(mostly points with dNBR values lower than −100, which usually
corresponded to small, unburned patches within the fire perimeter). The
final dataset was configured by the information extracted from 130,378
sampling points, which showed a Moran's I value for the response variable
(dNBR) of 0.018, corroborating the lack of significant spatial autocorrela-
tion patterns (Moran's I < 0.1; Diniz-Filho et al., 2012).

To train predictivemodels of burn severity, as well as formodel interpo-
lation andmodel extrapolation analysis, we randomly divided our data into
three different datasets: (i) The training dataset, whichwas configuredwith
80%of the data from thewildfires of PredógãoGrande, Vila de Rei, Oliveira
de Frades, Ponte Caldelas, Cualedro, Medeiros, Monterrey, Villardevos,
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Cabrera, Aliste, Malpartida de Plasencia, Cabezuela del Valle, Zalamea la
Real, Martigues, Cascina, Altofonte, Drosopigi, Kineta and Mati (n =
90,501). (ii) The dataset for model interpolation analysis, which was con-
figured with the remaining 20% of data from these wildfires (n =
22,624). (iii) The dataset for model extrapolation analysis, which was
conformed with the data extracted from the Sertã, Carballeda de Avia,
Fos sur Mer and Galataki wildfires (n = 17,253).

We studied the relationship between individual environmental vari-
ables (predictors; Table 2) and burn severity (response variable) through
univariant models using the lm function. For the continuous environmental
variables, we performed models with linear, quadratic and cubic predictor
terms using the training dataset, and we selected the model with the lowest
Akaike information criterion (AIC) value, as long as it also met the require-
ment of having the lowest AICwhen applied to the datasets for model inter-
polation and extrapolation analysis. These criteria allowed non-overfitted
and generalizable relationships between each environmental variable and
burn severity to be obtained.

We analyzed the relevance of different groups of variables (Table 2) in
predicting burn severity through five different random forest (RF) models.
The predictors of each random forest model were all the variables of each
group.

In order to obtain themost effective and efficientmodels to predict burn
severity across southern Europe, we elaborated a full RF model and a parsi-
monious RFmodel, respectively. The full model included all environmental
predictors used in the present study (Table 2). On the contrary, the parsimo-
nious model was obtained by reducing the full model following two steps.
Firstly, we assessed collinearity among predictors with the Pearson's corre-
lation coefficient (cor.test function, for pairs of continuous variables), or
with the coefficient of determination (R2) of univariant models (lm func-
tion, for pairs of the categorical variable and each continuous variable).
In the case of correlation (Pearson's R > |0.7| or R2 > 0.49) we retained
from each pair of predictors, the most related to burn severity according
to the goodness-of-fit of the linear models explained in the previous para-
graphs. Secondly, we performed a recursive feature elimination with the
rfe function, using 10-fold cross-validation and 5 repeats to improve the
performance of feature selection, partitioning the dataset into 80% (train-
ing) and 20% of data (validation). The importance of the retained predic-
tors in the parsimonious model was assessed by the percentage increase
inmean square error (%IncMSE) when this variable is randomly permuted,
using the importance function.

All RF models were implemented with the randomForest function using
the training dataset. The ntree parameter ntree (number of trees grown)
was fixed to 1000, which guarantees the quality and stability of results ac-
cording tomean out-of-bag error curves, and is both a large and a computa-
tionally feasible value for our datasets (Probst and Boulesteix, 2018); and
mtry (number of predictors sampled for spliting at each node) was fixed
to one third of the number of predictors, the default option that was consis-
tent with the results of 10-fold cross validations performed with the func-
tions trainControl and train.

The trained models (univariant regressions and RF models) were ap-
plied to the three datasets for internal validation, model interpolation and
model extrapolation analysis. Model fitting and predictive capacity was
assessed with the normalized root-mean square error (nRMSE), which
was calculated in percentage by dividing the RMSE measured in dNBR
units per the dNBR range (dNBRmax- dNBRmin) of our entire dataset, and
multiplying the result per 100. The proportion of variance explained by
the models (R2) was also shown.

All statistical analyses were performed in R (R Core Team, 2021),
using randomForest (Liaw and Wiener, 2002) and caret (Kuhn, 2008)
packages.
Fig. 2.Density scatterplots showing the relationships between burn severity and the diffe
best fitted model (linear, quadratic or cubic) selected according to model performance
two-dimensional kernel density estimations using the geom_pointdensity function (Kreme
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3. Results

3.1. Individual environmental variables: relationship with burn severity and pre-
dictive capacity

The univariant models showed that all the studied environmental vari-
ableswere significantly related to burn severity (P< 0.01; Table A2). Focus-
ing on continuous environmental variables (Fig. 2), most models were
better fitted when using cubic predictors (PDQ, Slope, HL, FAPAR, LAI,
FCOV, NDWI and MSI models) or quadratic predictors (MAT, AP, TS, PS,
TCI, CR and Patch size models models), whereas only four variables were
better fitted using linear predictors (MTDQ, TPI, CWC and FCOV homoge-
neity) according to AIC (Table A2).

In general, nRMSE values of the models ranged from 14.65 to 17.80
(and R2 values from 0.33 to 0.00), revealing large differences depending
on the environmental predictor (Fig. 2; Fig. 3). The environmental variable
that showed the strongest relationship with burn severity was the pre-burn
NDWI index (using a cubic predictor), with an nRMSE value of 14.65 (R2=
0.33). The cubic relationship (Fig. 2) showed that neither the lowest (high
fuel load and water content) nor the highest (low fuel load and water con-
tent) NDWI values were associated to the highest severities, and an inverse
relationship with burn severity was found at the intermediate NDWI range
(i.e., at intermediate fuel load and water content). The model based on
NDWI also showed the highest predictive capacity when applied to inde-
pendent points within the training wildfires (interpolation) (nRMSE =
14.69; R2 = 0.32), as well as when extrapolating model predictions to dif-
ferent wildfires (nRMSE = 15.71; R2 = 0.23) (Table 3).

The predictors that showed the strongest relationships with burn sever-
ity after NDWI, were the vegetation biophysical variables FAPAR, LAI and
FCOV (cubic predictors) (Fig. 2). These variables were positively related
to burn severity at low and intermediate values (i.e., low and intermediate
vegetated areas), with nRMSE values ranging from 15.07 to 15.27 (R2 =
0.27 to 0.29). The models performed with these variables differed in their
predictive capacity when applied to independent data (Table 3), the
FAPAR model showing the highest extrapolation capacity (nRMSE =
16.10; R2 = 0.19).

Following a decreasing order, the fuel load-moisture variables MSI and
CWC (cubic and linear predictors) reached the next strongest relationship
with burn severity, with nRMSE values of 15.75 and 16.35, respectively
(R2 = 0.22 and 016) (Fig. 2). MSI decreased with burn severity except at
high MSI values (i.e., except at higher water stress and less water content).
On the contrary, CWC increased with burn severity. The model based on
MSI showed a higher interpolation (nRMSE = 15.74; R2 = 0.22) and ex-
trapolation (nRMSE = 16.85; R2 = 0.12) capacity than the model based
on CWC (Table 3).

The AP (quadratic predictor) and PDQ (cubic predictor) were the cli-
matic variables that showed the strongest relationship with burn severity
(nRMSE = 16.72 and 16.88; R2 = 0.12 and 0.10 respectively) (Fig. 2),
being low annual precipitations and low precipitations in the driest quarter
(<50 mm) associated to low severity situations. The interpolation of model
predictions showed similar results, but the predictive capacity decreased
when applied to independent wildfires (nRMSE ≥17.26; R2 ≤ 0.08)
(Table 3).

The relationship between the studied categorical environmental vari-
able (land cover class) and burn severity (Fig. 3; nRMSE = 17.03; R2 =
0.09) showed that closedmonotype forests and dense shrublands (GLC clas-
ses 111, 126 and 114) are prone to higher severities than open or mixed
ones. Additionally, results demonstrate that cultivated and managed vege-
tation, areas with water bodies or built up, and open deciduous broadleaf
forests are associated with the lowest severities. The interpolation of the
rent environmental variables (see Table 2 for further details). Red lines represent the
analysis, interpolation and extrapolation capacity. Density was calculated based on
r and Anders, 2019).
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Fig. 3. Boxplot showing the relationship between burn severity and the different
pre-burn land cover classes. The plot shows each class using its corresponding
Copernicus GLC class colour and code (numbers in the horizontal axis). 40:
cultivated and managed vegetation; 90: herbaceous wetland; 80: areas with
predominance of permanent water bodies; 50: predominantly built up; 124: open
deciduous broadleaf forest; 20: shrubs; 30: herbaceous vegetation; 115: closed
mixed forest; 126: open unknown forest, usually including sparse shrublands in
our study sites; 121: open evergreen needle leaf forest; 114: closed deciduous
broadleaf forest; 116: closed unknown forest, usually including dense shrublands
in our study sites; 111: closed evergreen needle leaf forest.
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model based on GLC class did not decrease the predictive accuracy (nRMSE
= 17.02; R2 = 0.09), whereas the extrapolation capacity was lower
(nRMSE = 18.21; R2 = 0.03) (Table 3).

The rest of the environmental predictors (MAT, TS, PS, MTDQ, Slope,
TPI, TCI, HL, CR, Patch size and FCOV homogeneity) showed weaker rela-
tionships with burn severity (nRMSE >17.00 and R2 < 0.00) (Fig. 2), and
their model interpolation and extrapolation capacity was also lower
(Table 3).

3.2. Predictive capacity of different groups of environmental variables

In general, the RFmodels performed by groups of variables (climatic, to-
pographic, fuel load-type, fuel load-moisture, and fuel continuity) showed a
better fit to the training data (Table 4) than the univariant models per-
formed with each environmental variable (Fig. 2). In this sense, the
nRMSE between observed and predicted values ranged from 8.78 to
13.71 (R2 values from 0.81 to 0.41). However, the predictive error of all
RF models increased when interpolating them, with nRMSE values ranging
from 14.14 to 17.43 (R2 values from 0.05 to 0.37); and evenmore when ex-
trapolating them, with nRMSE values from 16.16 to 20.52 (R2 values from
0.00 to 0.22) (Table 4). In this sense, extrapolations based on NDWI (cubic
predictor) were more accurate than all the RF models by groups of vari-
ables.

Ranking the predictive capacity by groups (Table 4), we found that the
fuel load-moisture variables were the most accurate when predicting burn
severity in all datasets (training, interpolation and extrapolation) in terms
of nRMSE (8.78 to 16.16), followed by fuel load-type (12.07 to 16.17)
and topographic variables (11.28 to 17.89). Fuel continuity and climatic
variables showed a lower predictive capacity in all datasets than the forego-
ing.

3.3. Predictive capacity combining all environmental variables

The full RFmodel showed the highest predictive capacity among all the
models in the present study, as shown by the performancemetrics obtained
when applied to the training (nRMSE = 4.78; R2 = 0.95), interpolation
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(nRMSE = 11.51; R2 = 0.59), and extrapolation datasets (nRMSE =
16.02; R2 = 0.25) (Fig. 4).

The collinearity analysis to obtain the parsimonious RF model (Fig. A1)
showed thatmost climatic variables were correlated among them, aswell as
most fuel load-type and fuel load-moisture variables. The result of the re-
moval of collinear variables and the recursive feature eliminationwas a par-
simonious model with 7 predictors, being the most important the NDWI
(Fig. 5). Topographical (TPI, Slope), climatic (PDQ and TS), fuel continuity
(patch size) and fuel load-type (GLC class) also contributed to enhancing
model predictions.

The predictive capacity of the parsimonious RFmodelwas similar to the
full RF model (Fig. 6), and its predictive capacity also decreased from the
training (nRMSE = 5.85; R2 = 0.92) to the interpolation (nRMSE =
12.01; R2 = 0.55) and validation datasets (nRMSE = 15.95; R2 = 0.24).

4. Discussion

4.1. Relationships between environmental variables and burn severity

Our results confirm that all the studied climatic, topographic, and fuel-
related variables were significantly related to burn severity. However, the
individual analysis of each predictor revealed that the strongest relation-
ships with burn severity were found for fuel load variables, which is in ac-
cordance to previous work (e.g., Birch et al., 2015; García-Llamas et al.,
2019a; Walker et al., 2020). Among fuel load-related variables, those com-
puted from Sentinel-2 (FAPAR, LAI, FCOV, NDWI, MSI, CWC) were highly
correlated among them (Fig. A1), which can be a consequence of the gover-
nance of the amount of living biomass over the remaining fuel biophysical
properties. In this sense and focusing on the NDWI as the best related vari-
able to burn severity, we found a clear pattern of increasing severity to-
wards high fuel amounts at intermediate fuel load and moisture
conditions. This behavior has been reported in other regions (e.g., Walker
et al., 2020; Kraaij et al., 2018), corroborating that fuel amount is a primary
driver of burn severity during the fire season in the ecosystems of southern
Europe (García-Llamas et al., 2019a, 2019b). However, the cubic relation-
ship between NDWI and burn severity also reveals that both NDWI ex-
tremes, represented by very high living biomass-moisture, and very low
living biomass-moisture led to low severity values, because flammability
limitations and fuel-load limitations respectively. This indicates that key
biophysical factors (fuel load and moisture) must coincide for wildfires
not only to occur (Krawchuk and Moritz, 2011) but also to be severe, pro-
viding evidence of the varying constraints hypothesis in the context of
burn severity. In the sameway, burn severity variedwith land cover classes,
maximum severities being reached in closed coniferous forests and
shrublands. This can be attributed not only to fuel load and moisture dy-
namics, but also to the structure and flammability of Mediterranean pines
and shrubs, which facilitates severe crown fires more than in other vegeta-
tion types (Keeley et al., 2011; Kalabodikis and Palaiologou, 2019). The CR
radar metric, which was selected as complementary proxy of fuel load and
moisture, significantly decreased as the other fuel load and moisture prox-
ies increased (Fig. A1). The capacity of CR to indicate fuel load and mois-
ture is a consequence of the preference of VV and VH polarizations for
different scattering types (rough surface scattering, double bounce scatter-
ing and volumetric scattering), which varywith vegetation structure and di-
electric properties (Meyer, 2019; Saatchi, 2019). However, the CR
relationship with burn severity was weaker than those metrics obtained
from Sentinel-2, probably because of the elevated radar noise at spatial
scales comparable to Sentinel-2 (Meyer, 2019), and to the effect of soil
roughness, which also causes depolarization, roughed soils potentially giv-
ing similar backscatter than vegetated areas (Vreugdenhil et al., 2018).

The relationships between burn severity and all climatic variables sug-
gest that the sites with the mildest climates (i.e., high annual rainfall, low
summer aridity, intermediate annual temperature, cool summers and low
seasonality) are those with the highest severity. This agreedwith the results
obtained by Parks et al. (2016) inWesternUS, which suggested that climate
effects on burn severity are mediated by climate influence on ecosystem



Table 3
Results of internal validation (fitting of model predictions to the training data), interpolation (fitting of model predictions to independent data within the training wildfires)
and extrapolation (fitting ofmodel predictions to data from independentwildfires) of the univariantmodels performedwith each environmental variable. The performance of
linear, quadratic and cubic predictor terms was analyzed for the continuous predictors (See Table 2 for predictors description).

Predictor Statistic Internal validation Model interpolation Model extrapolation

Linear Quad Cubic Linear Quad Cubic Linear Quad Cubic

Climatic
MAT R2 0.03 0.07 0.09 0.03 0.07 0.09 0.07 0.07 0.04

nRMSE 17.61 17.21 17.03 17.59 17.19 17.01 17.66 17.20 17.51
AP R2 0.07 0.12 0.12 0.07 0.12 0.12 0.07 0.08 0.08

nRMSE 17.22 16.72 16.72 17.20 16.74 16.73 17.26 17.37 17.38
TS R2 0.04 0.04 0.05 0.04 0.04 0.05 0.06 0.07 0.05

nRMSE 17.49 17.47 17.39 17.47 17.46 17.38 17.95 17.95 17.88
PS R2 0.02 0.03 0.06 0.02 0.03 0.06 0.03 0.04 0.04

nRMSE 17.65 17.57 17.30 17.62 17.55 17.28 17.88 17.74 17.74
MTDQ R2 0.05 0.09 0.09 0.05 0.09 0.09 0.07 0.07 0.06

nRMSE 17.34 16.99 16.98 17.32 16.98 16.97 17.44 17.57 17.66
PDQ R2 0.04 0.09 0.10 0.04 0.09 0.10 0.05 0.04 0.06

nRMSE 17.49 17.02 16.88 17.46 17.03 16.87 17.55 17.65 17.48
Topographic

Slope R2 0.02 0.02 0.02 0.02 0.03 0.03 0.01 0.02 0.02
nRMSE 17.69 17.62 17.62 17.66 17.59 17.58 18.05 17.92 17.92

TPI R2 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01
nRMSE 17.80 17.79 17.79 17.75 17.75 17.75 18.13 18.15 18.10

TCI R2 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
nRMSE 17.79 17.79 17.79 17.76 17.75 17.75 18.11 18.10 18.10

HL R2 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01
nRMSE 17.81 17.78 17.78 17.78 17.75 17.75 18.11 18.11 18.10

Fuel load-type
GLC class R2 0.09 – – 0.09 – – 0.03 – –

nRMSE 17.03 – – 17.02 – – 18.21 – –
FAPAR R2 0.23 0.27 0.28 0.22 0.27 0.27 0.13 0.17 0.19

nRMSE 15.70 15.22 15.18 15.71 15.22 15.19 16.78 16.24 16.10
LAI R2 0.22 0.27 0.29 0.21 0.26 0.28 0.09 0.13 0.14

nRMSE 15.79 15.20 15.07 15.79 15.28 15.09 17.40 17.04 16.90
FCOV R2 0.24 0.27 0.27 0.23 0.26 0.26 0.08 0.11 0.11

nRMSE 15.58 15.27 15.27 15.62 15.28 15.27 17.44 17.16 17.15
Fuel load-moisture

NDWI R2 0.27 0.3 0.33 0.27 0.30 0.32 0.19 0.21 0.23
nRMSE 15.23 14.92 14.65 15.27 14.95 14.69 16.17 15.86 15.71

MSI R2 0.21 0.21 0.22 0.21 0.21 0.22 0.11 0.11 0.12
nRMSE 15.83 15.83 15.75 15.83 15.83 15.74 16.89 16.88 16.85

CWC R2 0.16 0.20 0.21 0.15 0.20 0.21 0.05 0.05 0.05
nRMSE 16.35 15.93 15.87 16.38 15.94 15.87 17.73 17.73 17.71

CR R2 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
nRMSE 17.62 17.59 17.58 17.58 17.56 17.55 17.92 17.90 17.90

Fuel continuity
Patch size R2 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00

nRMSE 17.68 17.65 17.65 17.65 17.62 17.63 18.09 18.09 18.11
FCOV homog R2 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00

nRMSE 17.76 17.70 17.70 17.73 17.69 17.69 18.44 18.38 18.39

Table 4
Results of internal validation (fitting of model predictions to the training data), in-
terpolation (fitting of model predictions to independent data within the training
wildfires) and extrapolation (fitting of model predictions to data from independent
wildfires) of the Random Forest models performed with each group of environmen-
tal variables (climatic: MAT, AP, TS, PS, MTDQ, PDQ; topographic: Slope, TPI, TCI,
HL; fuel load-type: GLC class, FAPAR, LAI, FCOV; fuel load-moisture: NDWI, MSI,
CWC, CR; and fuel continuity: Patch size and FCOV homogeneity).

Group Statistic Internal
validation

Model
interpolation

Model
extrapolation

Climatic R2 0.41 0.37 0.05
nRMSE 13.71 14.14 20.52

Topographic R2 0.77 0.05 0.03
nRMSE 11.28 17.43 17.89

Fuel load-type R2 0.57 0.32 0.22
nRMSE 12.07 14.74 16.17

Fuel load-moisture R2 0.81 0.33 0.20
nRMSE 8.78 14.63 16.16

Fuel continuity R2 0.53 0.14 0.00
nRMSE 13.01 16.61 20.25
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productivity, and thereby on fuel accumulation. In addition, we found that
the driest and most seasonal sites exhibited the lowest severities, which
could be interpreted as opposite to the assumptions that relate climate
warming to increases in wildfire severity, due to enhancing fuel aridity
and lengthening of the fire season (Stephens et al., 2013; Abatzoglou
et al., 2019; Keeley et al., 2019; Moreira et al., 2020). However, previous
work has demonstrated that the effects of climate warming on fire behavior
must be analyzed from a broader perspective, as over the long term climate
might drive not only fuel conditions but also fuel amount (Rogers et al.,
2020), fire frequency, the efficacy of suppression efforts, and even cause
the replacement of ecosystems by others with different associated severities
(Rogers et al., 2011). In this context,McKenzie and Littell (2017) found that
increases in burned area with climate warming are expected mainly in eco-
systems with intermediate water-balance deficits, which are those in the
middle of the flammability-limited to fuel-limited fire regime gradient.

Individually, topographic variables were weakly related to burn sever-
ity, mainly affected by slope, which showed that burn severity increases
with steepness between 0 and 15°. These results agreed with Fang et al.
(2019), who identified slope as the most important topographic variable
driving burn severity. Slope may increase wildfire severity by regulating
vegetation composition and amount, facilitating drainage, influencing



Fig. 4. Scatterplots showing the results of internal validation (fitting ofmodel predictions to the training data), interpolation (fitting ofmodel predictions to independent data
within the training wildfires) and extrapolation (fitting of model predictions to data from independent wildfires) of the full random forest model.
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solar exposure, wildfire spread, and, in upslope fires, facilitating preheating
on the adjacent fuels which increases wildfire severity (Lentile et al., 2009;
Kane et al., 2015; Fang et al., 2019; García-Llamas et al., 2019a).

It is known that continuous large amounts of fuel can lead to high sever-
ity fires (Collins et al., 2007; Stephens et al., 2013; Moreira et al., 2020).
However, our results did not show strong relationships between fuel conti-
nuity and burn severity. This indicates the necessity of combining continu-
ity variables with other fuel properties, such as fuel load, to obtain a
meaningful predictor of burn severity, as equal values of fuel homogeneity
(patch size or FCOV homogeneity) can be obtained in bare areas and in
densely vegetated zones if spatial variability is the same.

4.2. Performance of predictive models of burn severity

Some of the developed machine-learning models showed a high predic-
tive capacity (root mean square errors <12% and 59% of variance ex-
plained) when applied to independent data. This represents a substantial
improvement over models developed to predict continuous severity data
so far, which have been able to explain up to 43% of severity variance
when applied to independent data within the same wildfires (Birch et al.,
2015; García-Llamas et al., 2019a, 2019b). Nonetheless, the predictive
Fig. 5. Relative importance, measured as percentage increase in mean square error
(%IncMSE), of each feature from the parsimonious random forest model when
predicting burn severity. NDWI: Pre-burn NDWI index, TPI: Topographic Position
Index, PDQ: Precipitation of Driest Quarter, TS: Temperature Seasonality, GLC
Class: Copernicus Global Land Cover class.
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capacity of models largely varied depending on the set of predictors and
the dataset on which the predictions were applied.

Models performed using groups of variables outperformed the predic-
tive capacity of most individual variables, and both were largely surpassed
by the comprehensive models combining the studied groups of predictors
(full and parsimonious). This is in accordance with previous results found
in the Iberian Peninsula (García-Llamas et al., 2019a) and in Western
United States (Birch et al., 2015), and reflects two aspects, firstly the differ-
ent contribution of the studied variables to explain the burn severity vari-
ance and to enhance predictive capacity; and secondly, the convenience
of considering the complex interactions between variables, whichwasman-
ifested by the importance acquired in the comprehensive models by vari-
ables that, individually, were poorly effective in predicting burn severity.
This was the case of most climatic, topographic and fuel homogeneity var-
iables, as their effects on burn severity vary depending on fuel characteris-
tics (Rogers et al., 2011, 2020). Comparing the full and parsimonious
models both showed similar performance, as found by García-Llamas
et al. (2019a). Moreover, the retention of climate (PDQ, TS), topographic
(TPI, Slope), fuel load-type (GLC class), fuel load-moisture (NDWI) and
fuel continuity (Patch size) variables in the parsimonious RF model reveals
that all types of variables are somehow important in predicting burn sever-
ity.

Our study is the first to analyze the potential generalization of burn se-
verity predictive models, demonstrating that interpolations, and particu-
larly extrapolations with high predictive capacity remain a challenge. In
terms of model extrapolation, the NDWI, the full and the parsimonious RF
models showed similar predictive capacities, suggesting that both NDWI
and the parsimonious RF model are the less time-consuming and the most
operational alternatives for decision-making. The loss of predictive capacity
of models when applied to other study sites is the expected pattern
(Sequeira et al., 2018), and can be a consequence of uncertainties related
to satellite imagery dates and pre-processing (Fernández-Guisuraga et al.,
2020), or of insufficient retrieval in the training data of all the potential
conditions influencing the response variable (Werkowska et al., 2016;
Sequeira et al., 2018). In this sense, and to advance in the prediction of
burn severity, we suggest for future work (i) to consider the influence of
fire suppression actions on fire severity, not considered in this study be-
cause the lack of available spatial data; (II) To use a higher amount of
data from diverse burned areas and capturing evenmore heterogeneous sit-
uations, as each burned patch is characterized by particular combinations
of environmental conditions that should be considered in model training;
(III) To include dynamic variables related to fire-weather at the synoptic
scale (Jolly et al., 2015; Abatzoglou et al., 2019), as extreme weather con-
ditions may overwhelm the influence of landscape-scale variables



Fig. 6. Scatterplots showing the results of internal validation (fitting ofmodel predictions to the training data), interpolation (fitting ofmodel predictions to independent data
within the training wildfires) and extrapolation (fitting of model predictions to data from independent wildfires) of the parsimonious random forest model.
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(Prichard et al., 2020); (IV) To engage dynamic heat transfer models at
the local scale, as they have shown to drive fire spread and intensity
(Morandini and Silvani, 2010); and (V) to consider the vertical fuel
structure that significantly determine burn severity (Fang et al., 2018;
Fernández-Guisuraga et al., 2021) would be useful to enhance predic-
tions and may contribute to increasing the generalization capacity of
burn severity predictive models. The characterization of fuel vertical
structure has been largely addressed at the local and regional scale
using LiDAR data (Matasci et al., 2018; Fernández-Guisuraga et al.,
2021) because global data sources did not formerly exist. However,
the recently launched GEDI instrument opens the opportunity to incor-
porate lidar data in future predictive models of burn severity in south-
ern Europe as it is anticipated that 4% of the Earth's land surface will
be sampled (51.6°N and 51.6°S latitudes) over a nominal two-year mis-
sion (Potapov et al., 2021).

4.3. Management implications

The results of the present study providemanagers with predictive sever-
ity models based on landscape-scale variables that outperform former state-
of-art models (Birch et al., 2015; García-Llamas et al., 2019a, 2019b),
which in addition have the potential of being applicable worldwide
because of the use of global data sources. The application of these models
is key to identifying areas where fire danger is critical in terms of burn
severity, and provide insights on how climate change might affect
burn severity.

Our study also contributes to the design of the pre-fire management
strategies to mitigate burn severity, demonstrating that manageable fuel-
related variables are primary drivers of burn severity, and specifically fuel
load, which is closely linked to vegetation cover, leaf area, photosynthetic
activity andmoisture. Moreover, we identified dense coniferous and shrubs
as the most prone land cover classes to severe fires, probably because of
their proneness to burn most of the plant aerial biomass (Keeley et al.,
2011). In accordance, management aimed at reducing high severity danger
should pursue a reduction in fuel accumulation (Moreira et al., 2011),
mainly in density of coniferous forest and shrublands, and crown fire like-
lihood, with actions such as thinning, clearing, pruning, or even the combi-
nation of thinning with prescribed burning (Kalies and Yocom Kent, 2016).
Previouswork (Agee and Skinner, 2005) also indicates that the reduction of
surface fuels, the retention of large trees of fire-resistant species are effec-
tive actions for reducing the risk of severe fire. A periodical assessment is
advisable after these silvicultural treatments, as open forests may facilitate
the development of a dense shrubby understory (Fernandes and Rigolot,
2007).
11
5. Conclusions

This study contributes to advancements in the fire ecology and environ-
mental management disciplines by providing models applicable anywhere
in the world thanks to the use of global data sources, and with a greater ca-
pacity to predict continuous burn severity values than those developed to
date.

Moreover, we conclude that burn severity is closely related to variables
from multispectral data related to fuel load, such as the NDWI index, al-
though climatic, topographic and fuel continuity variables are also impor-
tant to enhance predictive models.

Moreover, this study, which is pioneer in analyzing the generalization
capacity of predictive models of burn severity, reveals that model extrapo-
lation to independent regions causes a drop in the model performance,
which might be addressed using a larger amount of training data in order
to capture all potential fire conditions and environmental situations, and
by the consideration of further predictors that affect fire behavior and se-
verity.

Finally, on the basis of our results we identified target areas formanage-
ment as those with high fuel load, particularly closed coniferous forests and
shrublands. In these areas, management actions aimed at reducing suscep-
tibility to severe fires should be designed to reduce fuel load, density of
trees and shrubs and proneness to crown fires.
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