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Abstract
A microbial electrolysis cell integrated in an anaerobic digestion system (MEC-AD) is an efficient configuration to produce 
methane from an exhausted vine shoot fermentation broth (EVS). The cell worked in a single-chamber two-electrode con-
figuration at an applied potential of 1 V with a feeding ratio of 30/70 (30% EVS to 70% synthetic medium). In addition, an 
identical cell operated in an open circuit was used as a control reactor. Experimental results showed similar behavior in terms 
of carbon removal (70–76%), while the specific averaged methane production from cycle 7 was more stable and higher in 
the connected cell  (MECAD) compared with the unpolarized one  (OCAD) accounting for 403.7 ± 33.6 L  CH4·kg  VS−1 and 
121.3 ± 49.7 L  CH4·kg  VS−1, respectively. In addition, electrochemical impedance spectroscopy revealed that the electrical 
capacitance of the bioanode in  MECAD was twice the capacitance shown by  OCAD. The bacterial community in both cells 
was similar but a clear adaptation of Methanosarcina Archaea was exhibited in  MECAD, which could explain the increased 
yields in  CH4 production. In summary, the results reported here confirm the advantages of integrating MEC-AD for the 
treatment of real organic liquid waste instead of traditional AD treatment.

Keywords Anaerobic digestion · Electrochemical impedance spectroscopy · Methane enhancement · Microbial electrolysis 
cell · Vine shoot treatment

1 Introduction

Anaerobic digestion (AD) is a process in which microorgan-
isms degrade high contents of organic matter from differ-
ent types of waste (e.g., sewage sludge, food waste, animal 
manure, industrial and agricultural residues) by produc-
ing biogas via anaerobic metabolism [1–4]. The complex-
ity of some raw materials requiring pre-treatment, and the 

microbial processes involved, limits the metabolic develop-
ment between species, leading to long hydraulic retention 
times (HRT), low efficiency in the bioconversion of organic 
waste to methane, and constant monitoring of parameters 
such as pH, temperature, feed flow rate, and inhibitors [5–7].

Microbial electrolysis cells (MEC) are a type of bioel-
ectrochemical system capable of degrading organic mat-
ter and, depending on the cell configuration, producing 
hydrogen  (H2) and/or methane  (CH4) with the aid of a small 
energy input [8, 9]. Previous research by several authors 
has shown that the integration of a MEC-AD system can 
improve the overall performance of the system by showing 
(i) an increase in methane production yields; (ii) improved 
process stabilization; (iii) high organic matter removal; and 
(iv) conversion of hydrogen ions and volatile fatty acids into 
methane [10–19]. For instance, Moreno et al. [10] reported 
an improvement in the degradation of the organic matter 
contained in domestic wastewater by a MEC and an increase 
in the methane production rate versus a conventional AD. 
Hassanein et al. [12] improved productivity from 10.9 L 
 CH4 by AD to 23.6 L  CH4 via MEC in addition to increasing 
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the chemical oxygen demand (COD) removal by applying 
a cell potential of 1 V. Finally, Zhao et al. [14] observed 
an increase in methane production from 23.8 to 45.6% in 
the MEC-AD reactor compared to the traditional one using 
acetate as a substrate. It has also been observed that the 
influence of using different types of wastes/compounds 
as substrates in MEC-AD systems could lead to a higher 
methane production yield compared against traditional AD 
[11, 16, 17, 19]. For example, Xu et al. [11] used brewery 
wastewater as a substrate increasing the methane yield by 
30%, Prajapati and Singh [16] operated with unprocessed 
agriculture waste and achieved a twofold higher methane 
yield at 40 mV, Choi and Lee [19] treated food waste show-
ing a maximum methane yield 1.2 times higher, and Wang 
et al. [17] used activated sludge waste exhibiting an increase 
in methane productivity between 9.5 and 7.8 times higher.

On the other hand, the production of bio-ethanol and 
bio-butanol from different sources is an important source 
of alternative fuels used for transport. In this way, vine 
shoot, which is a woody material generated during prun-
ing activities in vineyards, represents the most important 
winery by-product in terms of volume. In the last few years, 
vine shoots have been used for butanol production via bac-
terial fermentation [20]. One of the existing methods to 
recover butanol from fermentation broths is gas stripping 
[21], through which a condensate fraction rich in butanol is 
separated from the broth. However, the remaining exhausted 
broth is left unused, constituting a liquid waste stream which 
should be correctly managed before its disposal.

Therefore, the objective of this study was to compare 
the treatment efficiency of MEC-AD and conventional AD 
for a real organic residue (exhausted vine shoot fermenta-
tion broth) from the final stream of a gas stripping process. 
More precisely, the investigation will focus on determin-
ing the effect of the electrodes and the applied voltage 
(1  V) to improve treatment performance (i.e., organic 
matter removal) and energy production  (CH4). We also 
try to explain, by means of electrochemical impedance 

spectroscopy, cyclic voltammetry, and microbiology analy-
ses, the different behavior between the polarized and unpo-
larized electrodes.

2  Material and methods

2.1  MEC reactor setup

Two cells with a single-chamber configuration and a work-
ing volume of 0.5 L were used for the effluent treatment. 
The cells were equipped with connections for gas outlets and 
liquid inlets and outlets and contained the electrolytic mod-
ule (anode + cathode) immersed in the feed material. The 
anode (working electrode) consisted of a carbon-felt piece 
(7 cm × 3 cm × 0.5 cm), and the cathode (counter electrode) 
was a stainless-steel piece (7 cm × 3 cm), both connected 
with titanium wire. The explanatory scheme was shown in 
Fig. 1. The first cell was operated as a  MECAD in a two-
electrode configuration with an applied voltage of 1 V, using 
a Biologic multichannel potentiostat (software EC lab vs. 
11.31). The second cell  (OCAD) was operated in open circuit 
mode, keeping the same configuration as the previous one in 
order to know the endogenous production of the substrate. 
The cells were operated in batch mode at a constant tem-
perature of 25 ± 2 °C, and agitation speed of 300 rpm was 
fixed to enable mixing and facilitate mass transfer inside 
the chambers (magnetic stirrer plate IKA-WERKE RO 15, 
Germany).

2.2  Influents and growth media

The inoculum used in the present study was obtained from 
river sludge, and the used substrate is an exhausted vine 
shoot fermentation broth (EVS) [20]. The characterization 
of the influents is shown in Table 1. The EVS presents a high 
organic load evidenced by the total organic carbon (TOC) 
and a chemical oxygen demand (COD) around 17 ± 0.6 g·L−1 

Fig. 1  Schematic representation 
of the laboratory set-up 1 V
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and 49 ± 1 g·L−1, respectively. This indicates that the EVS 
could be treated using anaerobic digestion/bioelectrochemi-
cal systems. The inoculation phase was carried out using 
20% river sludge effluent, 30% EVS, and 50% synthetic 
medium (SM), and then the headspaces were flushed with 
 N2 gas for 30 min. The synthetic medium used contained the 
following: 1.07 g  K2HPO4, 0.53 g  KH2PO4, 0.15 g  NH4Cl, 
0.02 g  CaCl2, 0.02 g  MgSO4, 0.5 g NaCl, 0.1 g  NaHCO3 
(pH 7.1), 1 mL of mineral solution, and 10 mL of vitamin 
solution per liter [22]. All solutions were filter sterilized and 
stored at 4 °C to prevent microbial growth. Distilled water 
was used for solution preparation, and the chemicals and 
reagents used were of analytical grade. In the origin, the sub-
strate was subjected to gas stripping in order to recover and 
concentrate acetone, butanol, and ethanol in the condensate 
fraction [23]. The other fraction—containing the rest of the 
aqueous vine-shoot hydrolysate, nutrient leftovers, and cell 
debris—was named EVS, and it was assessed as a substrate 
in the AD-MEC experiments.

During the experimental phase of our study, the reactors 
were fed in batch (7 days duration) for 10 cycles. To prevent 
the occurrence of an organic shock due to the relatively high 
COD content of the EVS (Table 1), the feeding consisted 
of a mixture of 30/70 (v/v) EVS and SM. In addition, to 
ensure anaerobic conditions during the feed (start of every 
cycle), the cells were bubbled with nitrogen for 15 min. The 
amount of nitrogen present in the headspace at the start of 
each cycle remains inside the reactor and is deducted from 
the gas recovered at the end of the cycle.

2.3  Analytical and bioelectrochemical 
measurements

The analytical characterizations were performed at the end 
of each cycle. Gas composition was measured using a gas 
chromatograph (GC) (CTC Analytics model HXT Pal) 
equipped with a thermal conductivity detector (TCD) deter-
mining the gas composition in terms of  H2, carbon dioxide 

 (CO2), oxygen  (O2), nitrogen  (N2), and  CH4. Volatile fatty 
acids (VFAs) were analyzed using a GC (Bruker 450-GC) 
with a flame ionization detector (FID). Total organic carbon 
(TOC), total inorganic carbon (IC), and total nitrogen (TN) 
were measured in an analyzer (multi N/C 3100, Analytik 
Jena). Dissolved oxygen (Hach, HQ40d—two-channel digit 
multimeter), redox (pH-Meter, pH 91; Wissenschaftlich 
Technische Werkstätten, WTW), and pH (pH-Meter BASIC 
20 + , Crison) measurements were performed following 
standard methodologies.

Bioelectrochemical characterizations were also carried 
out at the beginning and end of the experiment to quali-
tatively distinguish between the biotic and abiotic perfor-
mances of the system in a three-electrode configuration 
using an Ag/AgCl (3 M) electrode as a reference. Cyclic 
voltammetries (CV) from 0.2 to − 0.6 V were performed 
imposing a linear scanning potential rate of 5 mV·s−1, and 
electrochemical impedance spectroscopy (EIS) was carried 
out in a frequency range of  105–10−2 Hz. The EIS data were 
fitted to an equivalent electrical circuit with the help of the 
EC-lab® software version 11.31. The electrical circuit that 
best matched the characteristics of the Nyquist diagram for 
each electrode was selected.

2.4  Extraction of DNA and microbial community 
structure determination

Approximately 5  cm2 of surface area (one tenth of the elec-
trode), which is around 300 mg of sample, was extracted 
from the electrode-biofilms, and, for the bulk, about 50 mL 
of sample was taken and centrifuged to extract about 300 mg 
of sediment in  MECAD and  OCAD cells. Those samples were 
used to characterize the microbial communities that had 
developed in the bioanodes and the bulk at the end of the 
experiment (cycle 10). Microbial communities were ana-
lyzed and followed along the experimental time by high 
throughput sequencing of massive 16S rRNA gene librar-
ies. Total Bacteria and Archaea were analyzed. Genomic 
DNA was extracted with a DNeasy PowerSoil kit (Qiagen) 
according to manufacturer’s instructions. All polymerase 
chain reaction (PCR) were carried out in a Mastercycler 
(Eppendorf, Hamburg, Germany), and PCR samples were 
checked for size of the product on a 1% agarose gel and 
quantified by NanoDrop 1000 (Thermo Scientific). The 
entire DNA extract was used for high-throughput sequenc-
ing of 16S rRNA gene-based massive libraries with 16S 
rRNA gene-based primers for Bacteria 27Fmod-519R and 
for Archaea 349F-806R. The Novogene Company (Cam-
bridge, UK) carried out Illumina sequencing using a HiSeq 
2500 PE250 platform.

The obtained DNA reads were compiled in FASTq files 
for further bioinformatics processing carried out using 
QIIME software version 1.7.0 [24]. Sequence analyses 

Table 1  Characterization of inoculum and EVS used as influent in 
this study

Parameter Units Inoculum Substrate

pH - 7.1 ± 0.1 7.2 ± 0.1
Conductivity mS·cm−1 - 18.2 ± 0.1
Redox mV - 71.0 ± 1.0
Total solids (TS) g·kg−1 30.8 ± 0.9 55.5 ± 0.2
Volatile solids (VS) g·kg−1 18.2 ± 0.5 25.3 ± 0.2
TOC g·L−1 2.9 ± 0.2 17.2 ± 0.6
COD g·L−1 2.2 ± 0.1 49.0 ± 1.0
Acetic g·L−1 - 5.4 ± 0.1
Butyric g·L−1 - 4.1 ± 0.1
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were performed by Uparse software (version 7.0.1001) 
using all of the effective tags. Sequences with ≥ 97% sim-
ilarity were assigned to the same operative taxonomic 
units (OTUs). Representative sequences for each OTU 
was screened for further annotation. For each representa-
tive sequence, Mothur software was performed against 
the SSUrRNA database of the SILVA Database [25] for 
species annotation at each taxonomic rank (Threshold: 
0.8–1).

The quantitative analysis of all samples was analyzed 
by means of quantitative-PCR reaction (qPCR) using 
PowerUp SYBR Green Master Mix (Applied Biosys-
tems) in a StepOnePlus Real-Time PCR System (Applied 
Biosystems). The qPCR amplification was performed 
for the 16S rRNA gene in order to quantify the entire 
eubacteria community and for the mcrA gene to quantify 
the total methanogen community. The primer set 314F 
qPCR (5′-CCT ACG GGA GGC AGCAG-3) and 518R 
qPCR (5′-ATT ACC GCG GCT GCTGG-3′) at an anneal-
ing temperature of 60 °C for 30 s was used for Bacteria 
and Archaea 349F (5′-GYGCASCAGKCGMGAAW-3′) 
and Arc 806R (5′-GGA CTA CVSGGG TAT CTAAT-3′) for 
Archaea quantification.

3  Results and discussion

3.1  Carbon removal and gas recovery of the cells

Current density, which is indicative of the activity of elec-
trogenic bacteria, in the cell operated with an applied volt-
age  MECAD started to increase right after inoculation. After 
three consecutive cycles, the current profiles began to be 
repeatable (supplementary information; Fig. S1). At that 
point,  MECAD and  OCAD started to be fed in batch mode 
(7 days duration) with the diluted exhausted vine shoot fer-
mentation broth (DEVS).

TOC removal showed a similar trend in both cells, 
increasing steadily as the cycles go by, which reveals an 
adaptation process of the microbial communities. Results 
also indicate that TOC removal in  OCAD tends to stabilize 
at about 60%, while in  MECAD, there seems to be a slight 
growing trend achieving removal rates of about 75%. This 
is coherent with the evolution of the concentration of VFAs 
(acetic and butyric acids) at the end of the cycles, where 
 MECAD manages to remove all the acetic and butyric acids, 
while a significant amount of VFAs remains in  OCAD at the 
end of the cycle (Fig. 2).

The differences in performance between  MECAD and 
 OCAD became more prominent when considering gas 

Fig. 2  VFA evolution in 
terms of acetic, propionic, and 
butyric acid concentration and 
carbon removal percentage for a 
 MECAD and b  OCAD cells
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production and composition (Fig. 3). Indeed, methane 
concentration in the off-gas and the specific methane 
production were consistently higher in  MECAD from the 
beginning. From cycle 3 onwards, the averaged meth-
ane composition was 60% ± 4% in  OCAD (comparable to 
the typical values found in anaerobic digestion with this 
type of substrates [26]) and 71% ± 6% in  MECAD. Simi-
lar results can be found in the literature with a methane 
content in the gas phase typically between 55 and 65% 
[27]. In addition, while specific methane production in 
 MECAD grew steadily and tended to stabilize at around 
403.7 ± 33.6 L  CH4·kg  VS−1 from cycle 7 onwards, it 
became more erratic and much lower in  OCAD, averag-
ing 121.3 ± 49.7 L  CH4·kg  VS−1 but dropping to 83.7 L 
 CH4·kg  VS−1 in cycle 10.

In summary, the main advantage of a  MECAD system 
with an applied voltage of 1 V is its higher carbon trans-
formation capacity and better VFA utilization, resulting 
in an increased methane production rate (approximately 
61% more biogas and 69% more  CH4 compared to a nor-
mal digestion), which agrees with previously reported 
results [13, 14, 28].

3.2  Bioelectrochemical characterizations

EIS and CV analyses were done at the end of cycle 10 to gain 
insight in the properties of the anodic biofilms of  MECAD 
and  OCAD (an abiotic carbon felt electrode was also used 
as a control). The  OCAD shows an incipient electrochemi-
cal activity on the oxidative region of the voltammogram, 
which indicates that even in the absence of an applied volt-
age during cultivation, an electroactive biofilm develops on 
the surface of the anode (Fig. 4a). Aside from that, there is 
little difference between  OCAD and the abiotic electrode. 
In contrast, the voltammogram of  MECAD shows two well-
developed catalytic waves (oxidative and reductive waves 
at the edges of the  MECAD), which is indicative of a fully 
electroactive biofilm. Moreover, its width is significantly 
larger than  OCAD, which indicates the existence of a larger 
capacitance and/or pseudo-capacitance in the  MECAD as 
seen below, in accordance with the results of other authors 
[29, 30].

The cells were subjected to EIS analysis to better under-
stand their electrochemical performance. It is common to 
analyze EIS data by fitting them to a mathematical model of 
an electrical equivalent circuit (EEC), whose overall electri-
cal impedance describes the electrochemical processes of the 

Fig. 3  MECAD and  OCAD cells 
evolution along cycles in terms 
of a biogas composition and b 
specific biomethane production 
(BM)
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system evaluated [31]. In this study, the EEC that best fits 
the Nyquist data in Fig. 4c was selected with aid of the EC 
lab software version 11.31. For the abiotic electrode (Fig. 4c, 
left), the EEC that best fits the data consists of (i)  RS, an 
ohmic resistance component that comprises the sum of the 
electrode resistance, the electrolyte solution resistance, and 
the contact resistance between the electrode and the current 
collector; (ii)  RCT, an electrochemical charge transfer resist-
ance, related to charge transfer reactions; (iii)  C1, a capacitor 
that accounts for the capacitance of the electric double layer 
(charge accumulation at the interface of the electrode and 
the solution); and (iv)  Wd, a Warburg’s diffusion element 
related to the diffusion of reacting species in the vicinity of 
the electrode. For the two bioanodes  (MECAD and  OCAD), 
the EEC that best fits the Nyquist data differs significantly 
(Fig. 4c, right). In addition to the elements described for 
the abiotic electrode, it includes (i)  RBIO, which according 
to [32] models both the charge transfer resistance between 
the electrode and the biofilm and the transport resistance 
of electrons in the biofilm; and (ii)  C2, an extra capacitance 
that represents the biofilm capacitance. The EIS data fitting 
results for the three anodes (Abiotic,  OCAD and  MECAD) are 
shown in Table 2.

The  RCT, given by the diameter of the semicircle in the 
Nyquist plot, is more than 11 times lower in the  MECAD 
electrode compared to the abiotic electrode, indicating that 
charge transfer is greatly enhanced by the presence of an 
electroactive biofilm. This same parameter for the  OCAD 

electrode is also relatively low (although more than twice 
higher than in  MECAD), which suggests that an incipient 
electroactive biofilm was developing on this electrode too, 
in spite of not being polarized. It seems that the biofilm 
also plays a significant role in facilitating electrical con-
ductivity similar to behavior observed by other authors 
[33].  RBIO was about 2.5 times lower in  MECAD which 
indicates that the polarization of the electrode during its 
cultivation has a positive effect on the electrical conductiv-
ity of the anodic  biofilm.

The electrical capacitance (C1 and C2) was signifi-
cantly higher in  MECAD, indicating that the capacitance 
that arises due to electrostatic charge accumulation and/or 
the pseudocapacitance, which emerges from fast surface 
redox reactions, is caused by electroactive microorgan-
isms [34]. This result is coherent with higher capacitance 
already observed in the CV analyses (Fig. 4a).

Fig. 4  a Cyclic voltammetry 
and b electrochemical imped-
ance spectroscopy using a 
Nyquist plot for the abiotic, 
 MECAD, and  OCAD electrodes. c 
Electrical circuit used to fit EIS 
data for abiotic,  MECAD, and 
 OCAD electrodes

Table 2  EIS fitting data for abiotic,  OCAD, and  MECAD electrodes in 
cycle 10

Parameter Abiotic OCAD MECAD

RS 9.7 Ω 3.3 Ω 2.8 Ω
RCT 75.3 Ω 16.3 Ω 6.7 Ω
RBIO - 11.4 Ω 4.7 Ω
C1 14.0 µF 11.7 µF 32.0 µF
C2 - 1.4 µF 6.0 µF
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3.3  Microbiological characterization 
of the electrodes and bulks of MECs

Figure 5 shows the quantifications (qPCR) of Bacteria 
and Archaea populations on the biofilms and bulks of the 
 MECAD and  OCAD cells in terms of the gene copy numbers. 
Both cells were dominated by a diverse group of Bacteria 
and to a lesser extent by Archaea.  MECAD has the highest 
microbiological activity centered on the electrode with 31% 
and 77% more Bacteria and Archaea than the bulk, respec-
tively. This could be attributed to the fact that an applied 
voltage accelerated the transference of electrons between 
species, which further improved the microbial growth on 
the electrode surface [35, 36]. In contrast, the unconnected 
cell has the highest biomass growth in the bulk with 62% 
more Bacteria with respect to the electrode. Knowing that 
both cells remove the same amount of carbon but do not 
produce the same amount of methane, it could be assumed 
that the organic matter in the  OCAD cell is being transformed 
into biomass that remains in the bulk. The above statement 
could be confirmed by the carbon balance of each cell (sup-
plementary information; Fig. S2b), which shows the amount 
of organic carbon converted into biomass during each cycle. 
Higher organic carbon was observed for  OCAD in the last 
three cycle (57–65%) compared to  MECAD, which explains 
the greater amount of gene copy number found in  OCAD 
electrode.

The microbial community structure at genus level, in 
terms of Bacteria and Archaea, for electrodes and bulks 
of the cells under stable conditions were characterized by 
high throughput 16S rDNA amplicon sequencing gene. 
Concentrations of microorganisms less than 1% were cat-
egorized as “others.” No significant differences in micro-
bial diversity in terms of Bacteria were observed between 
samples (Fig. 6a), while in terms of Archaea, a clear differ-
ence in communities was observed (Fig. 6b) between the 
cell working under an applied potential  (MECAD) and the 

one operated in an open circuit  (OCAD). These facts dem-
onstrate that an applied voltage can promote the functional 
enrichment of microorganisms on the electrode and bulk, 
which improves process stability and methane production 
[31].

Firmicutes, Bacteroidetes, Proteobacteria, and Spiro-
chaetes were the main families that dominated the four sam-
ples with and without an applied voltage (supplementary 
information; Fig. S3). The Trichococcus genus was the most 
abundant bacteria present in all samples (11–22%) being 
able to produce VFAs, such as acetate and lactate [37]. In 
addition, the Macellibacteroides and Bacteroides genus 
were also found and are the main VFA-producing bacteria 
present in the fermentative processes that use proteins or 
amino acids as substrates [38]. The Bacteroides genus is an 
exoelectrogenic bacteria mainly involved in the degradation 
of complex compounds to produce acetate commonly found 
in electrochemical systems [39, 40] and propionic acid [41]. 
Another possible exoelectrogenic fermenting bacteria in the 
system is the genus Sphaerochaeta, which is a hydrogen 
producer [42]. However, it can be considered that methane 
is also being produced by the acetoclastic pathway in which 
fermentative products (VFAs) carried out by bacteria are 
taken as substrate.

Figure 6b shows the dominant methanogens in  MECAD 
and  OCAD cells for the electrodes and bulks.  MECAD oper-
ated with an applied voltage was dominated by Methano-
sarcina (70–88%) and to a lesser extent by the Methano-
corpusculum genus. Methanosarcina can degrade various 
types of substrates, including propionate [43], acetate,  H2, 
and  CO2 to be used in methanogenesis, resulting in high 
biogas production [42, 44]. Methanosarcina could be dis-
placing Methanocorpusculum in the  MECAD reactor due to 
its versatility, taking advantage of both VFAs and hydrogen 
for methane production. It also has been found by Saif et al. 
[44] that Methanosarcina, together with Bacteria Sphare-
rochaeta, are involved in methane production. This sum-
marizes that the connected cell has greater versatility in 
having microorganisms that carry out methanogenesis by 
both hydrogenotrophic and acetoclastic routes. Thus, it can 
be hypothesized that the high relative abundance of Metha-
nosarcina in  MECAD would explain the increased methane 
production in the reactor if it is assumed that hydrogen is 
being produced on the cathode.

Nevertheless, the unpolarized cell  (OCAD) had a relatively 
high abundance of Methanocorpusculum (45–59%) and a 
lower proportion of Methanosarcina (21–26%). Methano-
corpusculum is a strictly hydrogenotrophic methanogen 
capable of producing methane from  CO2 in the presence 
of  H2 as an electron donor [45]. This same type of metha-
nogenic Archaea is characteristic of systems treated by 
anaerobic digestion [46]. The above implies that the main 
methane production route used by the open-circuit cell 

Fig. 5  Total gene copy number in  MECAD and  OCAD electrodes and 
bulks in terms of Bacteria and Archaea
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is hydrogenotrophic and explains the greater difficulty in 
degrading acetate in  OCAD.

4  Conclusion

This work tries to assess the capability of MEC to valor-
ize organic wastes generated from vine shoots and promote 
the enhancement of biogas production with respect to an 
open-circuit cell. The cell polarized at 1 V  (MECAD) pre-
sent a similar percentage of carbon removal compared with 
the unpolarized cell  (OCAD). Regarding the utilization of 
the carbon removed,  MECAD was found to have a greater 
capacity to transform carbon into a product of greater benefit 
 (CH4) and, in addition, achieves better biogas quality from 
the start-up of the study. Working with an applied voltage 
may result in cells with higher electrochemical activity and 
conductivity and lower resistance to charge transfer, which 
may lead to better interactions between the microorganisms 
and the electrode. Moreover, CV and EIS analysis showed a 
higher capacitance for  MECAD due to the presence of elec-
troactive microorganisms.

Bacterial microbial communities in both electrodes and 
cell bulks were very similar. However, there were notable 
differences in the methanogenic communities in the cells. 
 OCAD was relatively dominated by the genus Methanocor-
pusculum, so the methanogenic pathway was strictly pro-
moted by hydrogenotrophic microorganisms, which could 
have influenced the low biogas production. Moreover, 
 MECAD was dominated mostly by the genus Methanosar-
cina so the methanogenic process was promoted by the ace-
toclastic and hydrogenotrophic pathway, which could lead 
to better carbon utilization and high biogas production. It is 
possible to highlight the potential of microbial electrolysis 
cells compared to conventional anaerobic digestion in which 
the treatment and utilization of an exhausted vine shoot fer-
mentation broth is improved.
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tary material available at https:// doi. org/ 10. 1007/ s13399- 022- 02890-7.
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