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A B S T R A C T   

The evaluation at detailed spatial scale of soil status after severe fires may provide useful information on the 
recovery of burned forest ecosystems. Here, we aimed to assess the potential of combining multispectral imagery 
at different spectral and spatial resolutions to estimate soil indicators of burn severity. The study was conducted 
in a burned area located at the northwest of the Iberian Peninsula (Spain). One month after fire, we measured soil 
burn severity in the field using an adapted protocol of the Composite Burn Index (CBI). Then, we performed soil 
sampling to analyze three soil properties potentially indicatives of fire-induced changes: mean weight diameter 
(MWD), soil moisture content (SMC) and soil organic carbon (SOC). Additionally, we collected post-fire imagery 
from the Sentinel-2A MSI satellite sensor (10–20 m of spatial resolution), as well as from a Parrot Sequoia camera 
on board an unmanned aerial vehicle (UAV; 0.50 m of spatial resolution). A Gram-Schmidt (GS) image sharp
ening technique was used to increase the spatial resolution of Sentinel-2 bands and to fuse these data with UAV 
information. The performance of soil parameters as indicators of soil burn severity was determined trough a 
machine learning decision tree, and the relationship between soil indicators and reflectance values (UAV, 
Sentinel-2 and fused UAV-Sentinel-2 images) was analyzed by means of support vector machine (SVM) regression 
models. All the considered soil parameters decreased their value with burn severity, but soil moisture content, 
and, to a lesser extent, soil organic carbon discriminated at best among soil burn severity classes (accuracy =
91.18 %; Kappa = 0.82). The performance of reflectance values derived from the fused UAV-Sentinel-2 image to 
monitor the effects of wildfire on soil characteristics was outstanding, particularly for the case of soil organic 
carbon content (R2 

= 0.52; RPD = 1.47). This study highlights the advantages of combining satellite and UAV 
images to produce spatially and spectrally enhanced images, which may be relevant for estimating main impacts 
on soil properties in burned forest areas where emergency actions need to be applied.   

1. Introduction 

In recent years, the estimation of fire impact on ecosystems has 
become a challenge for forest managers in the Mediterranean Basin 
(Quintano et al., 2015), mainly because of the current increase in the 
extent and intensity of wildfires (Moreira et al., 2011). This fire regime 
shift, which has been attributed to fuel accumulation and continuity, as 
well as to increased drought events (Pausas and Fernández-Muñoz, 
2012), may aggravate the ecological consequences of fire. In this sense, 
severe fires induce significant alterations in the structure and 

composition of vegetation and soil in forest ecosystems (Keeley, 2009), 
negatively affecting their capacity to provide ecosystem services (Calvo 
et al., 2015) and, particularly, their carbon storage function (Van Der 
Werf et al., 2010). Moreover, fire severity determines post-fire re
sponses, severe fires deriving in poor plant regeneration, increased 
surface runoff, soil loss and flooding (Pausas et al., 2008; Pereira et al., 
2018). In this context, it is particularly relevant to assess the ecological 
consequences of fire on forest soils in the short-term (Fernández-García 
et al., 2019a) in order to establish management and restoration post-fire 
actions in highly vulnerable areas. Soil burn severity is a commonly-used 
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term to describe fire-induced changes in organic and mineral soil layers 
(Neary et al., 2005; Lentile et al., 2006), including physical and chemical 
properties (i.e., organic matter content, aggregate stability, water 
repellence, moisture or pH) and microbiological or biochemical prop
erties (i.e., microbial biomass, microbial activity or soil enzymatic ac
tivities; Vega et al., 2013; Fernández-García et al., 2019a). The 
consequences of fire severity on soil properties have been evidenced in 
many studies, describing minimal effects at low severity, with even 
positive effects on some soil properties (Alcañiz et al., 2018), such as an 
appreciable value profit of soil organic carbon (Marcos et al., 2009) 
caused by the incomplete combustion of the litter layer. A similar effect 
has been found for mean weight diameter of soil aggregates (Marcos 
et al., 2018). At low burn severity, fire does not produce noticeable 
changes on the aggregate size classes. However, as a result of the in
crease in organic matter with cementing action at low temperatures 
(Mataix-Solera et al., 2002), a slight increase in the coarse fraction ag
gregates (>1–2 mm) has been found (Mataix-Solera et al., 2011). 
Conversely, pronounced effects are associated with high soil burn 
severity levels, with a significant decrease of mean aggregate size 
(Marcos et al., 2009; Marcos et al., 2018). The high temperature reached 
at the first five centimetres of soil lead to important quantitative and 
qualitative transformations of the organic matter, whereas water ab
sorption and retention, porosity and infiltration capacity are consider
ably reduced (Mataix-Solera et al., 2011). In-depth knowledge on soil 
attributes useful as indicators of fire-induced ecological changes remains 
a challenge for post-fire land management and restoration actions. 

Although there is no unique approach to measure burn severity 
(Keeley, 2009), the scientific community usually employs the Composite 
Burn Index (CBI) for a ground-based assessment of the magnitude of 
ecosystem changes caused by fire (Key and Benson, 2006; Keeley, 2009). 
Based on visually estimated metrics, the CBI procedure assesses the 
impact of fire on vegetation (vegetation burn severity) and soil (soil burn 
severity), either jointly or separately, depending on the ecosystem 
compartments wanted to be considered (Key and Benson, 2006; Keeley, 
2009). Nevertheless, since large wildfires often produce mixed severity 
land mosaics (Vega et al., 2013), traditional sampling methods alone are 
no longer considered suitable to explore soil damage at large-scale due 
to cost-effectiveness and lack of spatial exhaustiveness (Morgan et al., 
2001). This is especially noticeable when the spatial patterns of burn 
severity are highly variable (Johnstone and Chapin, 2006). Remote 
sensing techniques, including satellite and aerial imagery, provide new 
tools for retrieving information on fire impacts across large areas in a 
variety of scales quickly and at a low economic cost (Lentile et al., 2006). 
Based on the energy-matter interaction principles, spectral data across 
the visible, near infrared and shortwave infrared (VIS, NIR and SWIR, 
respectively) regions are able to provide qualitative and quantitative 
information on soil status. The combination of data from different 
spectral regions further allow the estimation of a wide array of spectral 
indices, such as the Normalized Burn Ratio (NBR), that is sensitive to the 
vegetation influence on some topsoil properties, such as soil organic 
carbon (SOC) content (Castaldi et al., 2019a). Great advances have been 
made in the characterization of soil properties from multispectral data, 
but no single sensor type or data analysis method has already been re
ported as the best for monitoring a particular soil property (Ge et al., 
2011). For example, a few studies have detailed the potential of 
Sentinel-2 (spatial resolution of 20 m) and Landsat-8 (spatial resolution 
of 30 m) satellite imagery for predicting and mapping soil properties 
(Castaldi et al., 2016; Gholizadeh et al., 2018; Žížala et al., 2019). 
Indeed, Sentinel-2 imagery was used with promising results for SOC 
estimation in croplands at a regional scale, where the spatial resolution 
and spectral characteristics of this sensor were adequate to describe the 
soil spatial variability (Castaldi et al., 2019b; Vaudour et al., 2019). 
Notwithstanding, this medium spatial resolution could be insufficient to 
explain the high spatial variability that characterizes soil properties 
across burned forest ecosystems. Therefore, there is a gap in the devel
opment of tools that provide accurate spatial information of fire effects 

on physical and biochemical soil parameters at fine spatial scale in forest 
ecosystems. 

In this sense, unmanned aerial vehicles (UAV) provide very high 
spatial resolution imagery (higher than 1 m), at relatively low cost 
(Aldana-Jague et al., 2016), which may be used to evaluate the impact of 
fire on soil properties in heterogeneous burned areas, particularly where 
high spatial accuracy is required (Fernández-Guisuraga et al., 2018). 
Nonetheless, research concerning soil property estimation with UAVs is 
limited due to the insufficient spectral resolution of the available mul
tispectral sensors (Zhang and Kovacs, 2012). In general, UAV multi
spectral sensors only collect data across visible (VIS) and near-infrared 
(NIR) regions (Aldana-Jague et al., 2016), which is a handicap consid
ering that the most fundamental spectral signatures of soil components 
appear in the mid-infrared (MIR) and thermal- infrared wave ranges 
(Soriano-Disla et al., 2017). Moreover, most UAV remote sensing ad
vances have been made under fairly controlled conditions in homoge
neous environments, such as croplands (Crucil et al., 2019). 
Nevertheless, to our knowledge, there are no studies applying this 
technology to the evaluation of changes in soil properties at fine spatial 
scale after significant disturbances, such as a forest fires. 

Among the approaches that may serve to resolve limited UAV spec
tral resolution, image sharpening techniques to fuse remote sensing 
images are a potential alternative (Laben and Brower, 2000; Ehlers, 
2004). The image sharpening technique is based on the combination of 
spectral characteristics of images with different spatial resolution to 
generate spatially improved images (Yilmaz and Gungor, 2016). This 
fusion technique uses a fine band from the highest spatial resolution 
image as a reference, which is combined with the spectral bands of the 
image at lower spatial resolution, generating a new multiband image 
that preserves the highest spatial and spectral resolution. On this sub
ject, recent advances in the fusion methods have been developed, 
employing satellite (Landsat 8 OLI MS, Sentinel-2A MSI, WorldView-2) 
and UAV images data in agricultural applications (Jenerowicz and 
Woroszkiewicz, 2016; Yilmaz and Gungor, 2016; Zhao et al., 2019). 
However, there use of this technique in burned areas with successful 
results remains as a challenge. 

Based on the research gaps found in the literature, the main purpose 
of this study is to assess the potential of fusing multispectral images with 
different spectral and spatial resolutions to estimate soil properties 
sensitive to fire-induced changes. To this end, we determined post-fire 
effects on soil by burn severity, and assessed whether soil moisture 
content (SMC), soil organic carbon (SOC) and aggregate stability 
measured as mean weight diameter (MWD) can perform as useful in
dicators of soil burn severity. Next, we analyzed the ability of multi
spectral images with different spectral and spatial resolutions (UAV, 
Sentinel-2 and fused UAV-Sentinel-2) to predict the soil properties 
more suitable to discriminate soil burn severity. According to other 
authors who consider that the spatial resolution has a lower effect than 
the spectral resolution on the prediction of soil properties (Žížala et al., 
2019), we expect that images with low-spectral and high-spatial reso
lution (UAV data) would have less predictive capacity than those with 
higher spectral and lower spatial resolution (Sentinel-2 data). Moreover, 
we hypothesized that the fusion of images with different spatial and 
spectral resolutions (UAV and Sentinel-2 data) would improve the pre
dictive capacity of soil properties, compared with UAV or Sentinel-2 
individual images. Finally, we examined which spectral bands were 
the most important predictors of fire impact on soil properties. 

2. Materials and methods 

The experimental design defined for this study is summarized in the 
methodological flowchart shown in Fig. 1. 

2.1. Study site description 

The study site is located within the perimeter of a stand-replacing fire 
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that occurred on 22nd August 2019 and burned 82.47 ha of a complex 
landscape mosaic. The study was conducted on an east-facing hillside of 
Villapadierna (Cantabrian mountain range, NW Spain; Fig. 2A), where 
the dominant vegetation types are: (i) extensive mature forest stands of 
Quercus pyrenaica Willd. with a dense shrubby understory of heaths of 
Erica australis L. and Erica arborea L. and gorse of Halimium alyssoides 
Lam., and (ii) pine forest plantations of Pinus sylvestris L. and Pinus 
pinaster Ait. The area affected by the fire presents a smooth orography, 
with elevation ranging from 922 to 1027 m.a.s.l. and slopes from 6 to 27 
%. Soils are classified as Dystric, Gleyic and Humic Cambisols (ITACYL, 
2020), according to the World Reference Base for Soil Resources (WRB) 
system (Jones et al. 2005). The dominant lithological material is 
composed by silts, sands and clays, with conglomerate layers in the 
lowest areas (GEODE, 2019; Beltrán-Marcos et al., 2021). The soil parent 
material is characterized by slight or moderate weathering, and by the 
absence of appreciable quantities of illuviated clay and organic matter, 
mainly in the lowest zones. Soil texture is sandy-loam. Climate is Med
iterranean with an annual average precipitation of 761 mm, a mean 
annual temperature of 10.7 ◦C and 2–3 months of summer drought 
(Ninyerola et al., 2005). 

2.2. Field data and soil sampling 

One month after the wildfire, we estimated in the field soil burn 
severity using 34 plots of 50 cm × 50 cm. Field plots were randomly 
distributed within homogeneous 2 m × 2 m soil burn patches situated in 
areas without tree canopy to avoid interference in the UAV and Sentinel- 
2 imagery acquisition (Fig. 2A). A minimum distance between plots of 
25 m was ensured. All plots were located in a study framework of 16 ha 
that was representative of all scenarios of burn severity occurred within 
the fire perimeter. The study framework presented a fairly uniform 
topography with an average slope of 10.41 %±3.02 % over a Humic 
Cambisol - Gleyic Cambisol soil association (ITACYL, 2020). The plots 
were georeferenced by means of a sub-meter accuracy GNSS receiver in 
postprocessing mode. 

In each plot, we estimated visually soil burn severity using a Com
posite Burn Soil Index protocol (CBSI) proposed by Beltrán-Marcos et al. 
(2021) (Table 1). The CBSI is an adaptation of the substrate stratum of 
the original and widely used Composite Burn Index (CBI; Key and 
Benson, 2006). Soil burn severity was classified (Parks et al., 2014) as 
unburned (0), low-moderate severity (0.1–2.24) and high severity 
(2.25–3), according to the values estimated visually for the rating factors 
indicated in Table 1. Several studies (e.g., Miller and Thode, 2007; 
Quintano et al., 2015) proposed to differentiate the high severity level 
from the rest of the burn severity classes to accurately discern burn 
severity in remote sensing-based approaches (Fig. 3). 

To analyze the relationships between soil burn severity and soil 
properties, we collected one soil sample from each 50 cm × 50 cm plot, 
made of a mix of four random subsamples. Each subsample corre
sponded to the volume of a core of 5 cm diameter × 3 cm depth and was 
collected after removing litter, woody and fine debris from the surface. 
Half of the sample was air-dried immediately after sampling and stored 
at 20 ◦C until laboratory analysis. The rest of the sample was transported 
to the laboratory for analysis in cooler insulated containers and stored at 
− 18 ◦C until laboratory analysis. There was no precipitation or external 
interference within seven days before field sampling to ensure the ob
jectivity and reliability of the data. 

2.3. Soil analysis procedures 

In each soil sample, the following biophysical properties were 
analyzed: mean weight diameter (MWD), soil moisture content (SMC) 
and soil organic carbon (SOC). MWD was determined by dry screening 
of soil aggregates (Kemper and Rosenau, 1986). Dry soil samples were 
sieved during two minutes through 2, 1, 0.25, 0.1- and 0.05-mm sieves 
in an electromechanical shaker. The percentage of aggregates was 
calculated for each fraction through the ratio between the amount of 
aggregate retained on each sieve and the total amount of sample 
analyzed. These results allowed to calculate the mean weight diameter 
(MWD) using the following equation (Eq. (1)): 

Fig. 1. Research methodology flowchart used in this study (UAV: unmanned aerial vehicle; CBSI: Composite Burn Soil Index; GS: Gram–Schmidt transformation; 
SOC: soil organic carbon; MWD: mean weight diameter; SMC: soil moisture content; OA: overall accuracy; UA: userś accuracy; PA: producerś accuracy; SVM: support 
vector machine; RMSE: root-mean-square error). 
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MWD =
∑n

i=1
XiWi (1)  

where Xi is the mean diameter of the size classes (mm) and Wi is the 
weight of each soil fraction (%). 

SMC was determined gravimetrically after drying a known amount of 
fresh subsample soil to a constant weight at 105 ◦C over 24-h and results 
were expressed as the water percentage in dry soil. SOC was analyzed by 
grinding the soils to 0.15-mm particle size employing a pestle and 
mortar and applying Walkley–Black dichromate digestion (Nelson and 
Sommers, 1982). 

2.4. Remotely sensed data and processing 

Multispectral data from Sentinel-2 MSI, Parrot Sequoia camera on 
board a UAV platform and fused UAV-Sentinel-2 datasets (Fig. 2B) were 
used to predict biophysical soil properties after fire. The main technical 
specifications of the multispectral sensors and acquisition dates are 
summarized in Table 2. Acquisition times of multispectral imagery were 
selected as close as possible to the field sampling period to minimize the 
effect of unwanted changes in the soil surface conditions. No significant 
precipitation was recorded between both field work and remote sensed 
data acquisition dates. 

2.4.1 Sentinel-2 dataset 

Fig. 2. A) Location of the study area in the NW of the Iberian Peninsula (Spain) and the spatial distribution of field plots in the study framework of 16 ha established 
within the fire perimeter. B) UAV, Sentinel-2 and fused UAV-Sentinel-2 orthomosaics in the NIR band (wavelength range 785–900 nm). 

Table 1 
Composite Burn Soil Index (CBSI) factors and scores used to obtain field values of soil burn severity (based on Key and Benson, 2006).  

Strata Rating Factors Soil burn severity scale 

Unburned Low Moderate High  
0 0.5 1 1.5 2 2.5 3 

Litter/light fuel consumed None <10 % 10–20 % 20–40 % 40–80 % 80–98 % 98 % 
Medium/heavy fuel consumed None  20 % consumed  40 % consumed  >60 % consumed 
Ash colour None Blackened litter, no changes in 

soil 
Charred remains, recognizable 
litter 

Grey and white ash, grey soil White ash, reddened soil 

Char depth None <1 cm 1–3 cm >3 cm  
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A cloud-free Sentinel-2A Level 1C image covering the study frame
work was downloaded from the European Space Agency’s (ESA) 
Copernicus Open Access Hub platform (). This scene was topographi
cally and atmospherically corrected to obtain a Sentinel-2 Level 2A 
product (ESA, 2018). The Sen2Cor algorithm implemented in Sentinel 
Application Platform (SNAP) 7.0 version and a digital terrain model 
(DTM) with a grid of 25 m (https://centrodedescargas.cnig.es/) were 
used for this purpose. Sentinel-2 provides spectral data over the visible 
(VIS), near infrared (NIR) and shortwave infrared (SWIR) regions. Each 

Sentinel-2 image is composed by 13 spectral bands with different spatial 
resolutions: three bands at 60 m, six bands at 20 m and four bands at 10 
m (Table 2). The 60 m bands (B1, B9 and B10) are primarily used to 
perform atmospheric and radiometric corrections (cirrus detection and 
estimation of water vapor content) (ESA, 2021). Moreover, scattering of 
radiation by the gases and aerosols significantly influences the reflec
tance in these bands (Jia et al., 2016), causing inappropriate surface 
reflectance measures (Rivera et al., 2013). Consequently, they were 
discarded for further analysis. 

Fig. 3. Scenarios of soil burn severity considered in this study. CBSI: Composite Burn Soil Index.  

Table 2 
Main technical characteristics of the multispectral sensors considered in this study. MSI: Multispectral instrument; UAV: unmanned aerial vehicle; NIR: Near-infrared; 
FWHM: Full width at half maximum; GSD: Ground sampling distance.  

Sensors Mission Sensor type Spectral 
bands 

Used spectral 
bands 

Central wavelength 
(nm) 

FWHM 
(nm) 

GSD (spatial 
resolution) 

Acquisition 
date 

Sentinel-2A (ESA, 
2021) 

Spaceborne Pushbroom scanner 13 BLUE (B2) 492 66 10 m 29–09-2019 
GREEN (B3) 560 36 10 m 
RED (B4) 665 31 10 m 
RED-EDGE-1 
(B5) 

704 15 20 m 

RED-EDGE-2 
(B6) 

741 15 20 m 

RED-EDGE-3 
(B7) 

783 20 20 m 

NIR (B8) 833 106 10 m 
NIR narrow 
(B8A) 

865 21 20 m 

SWIR-1 (B11) 1614 91 20 m 
SWIR-2 (B12) 2202 175 20 m  

Parrot Sequoia UAV 4 × 1.2 Mpix Global shutter 
frame sensors 

4 GREEN (B1) 550 40 5.6 cm 25–09-2019 
RED (B2) 660 40 
RED-EDGE 
(B3) 

735 10 

NIR (B4) 790 40  
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2.4.2 UAV multispectral dataset 

An FV8 octocopter developed by ATyges (ATyges Ingeniería, Málaga, 
Spain, Fig. 4), equipped with a Parrot Sequoia sensor, was also used for 
multispectral imagery acquisition covering the sampling framework. 
Through a global shutter with four monochrome sensors and a resolu
tion of 1.2 megapixels, the Parrot Sequoia camera allows to acquire 
images along four discrete bands in the visible (green, red and red-edge) 
and near-infrared (NIR) spectral regions (Table 2). On 25th September 
2019, between 11:00 and 13:00 UTC, we carried out six UAV flights at a 
height of 50 m above ground level to capture multispectral imagery in 
optimal atmospheric conditions in terms of lighting and wind. Radio
metric calibration for each flight was performed using a target calibra
tion in order to obtain absolute reflectance values. The Parrot Sequoia 
camera works in combination with an incident light sensor that provides 
an image-level correction factor for adjusting illumination conditions 
during image acquisition. The camera trigger interval and the waypoint 
route planned allowed the collection of 5060 georeferenced multispec
tral images with an 80 % front and 80 % side overlap, with an average 
ground sample distance (GSD) of approximately 5.6 cm. 

The photogrammetric processing of the imagery was carried out 
using AgiSoft PhotoScan Professional 1.2.6 (AgiSoft LLC, St. Petersburg, 
Russia). This software integrates computer vision techniques and 
photogrammetry algorithms based on the works of Puliti et al. (2015) 
and Ruzgiene et al. (2015) to obtain high-accuracy orthoimages. 
Moreover, it includes the Sequoia camera model to extract automatically 
relevant information about camera, calibration panels and sun sensors 
directly from EXIF files, where all image metadata is stored. The 
application of structure-from-motion (SfM) algorithms enabled the 
computation of dense 3D point clouds to generate a digital elevation 
model (DEM) and a multispectral orthomosaic with four radiometric 
bands. The orthomosaic was georeferenced using 16 ground control 
points (GCP) to obtain a root-mean-square error in X, Y (RMSExy) < 3 
cm and 3 cm in Z. Finally, the multispectral orthomosaic was resampled 
to 0.50 m of spatial resolution using the bilinear interpolation technique. 
Reflectance values were extracted for each field plot by averaging the 
values of a grid of 20 points systematically distributed within each 50 
cm × 50 cm plot, with a spacing distance between points fixed at 10 cm. 

2.4.3 Data fusion 

Sentinel-2 images were sharpened using ENVI 5.3 software (Exelis 
Visual Information Solutions) following a Component Substitution (CS) 
approach, which substitutes a high-resolution image by the selected 
band after spectral transformation (Vivone et al., 2015), and a Gram- 
Schmidt (GS) transformation algorithm (Laben and Brower, 2000). 
The GS algorithm transforms a multidimensional image by applying an 
orthogonal transformation, which produce a new set of orthogonal and 
linear independent bands (Laben and Brower, 2000). It is one of the most 

widely used methods of image fusion (Maurer, 2013), since: (i) it is 
capable of sharpening more than three spectral bands; (ii) it preserves 
the quality of the multispectral information well, attenuating spectral 
distortions (Zhang and Mishra, 2012); and, (iii) it is faster and less 
computationally complex than other similar methods (Jenerowicz and 
Woroszkiewicz, 2016; Zhao et al., 2019; Jones et al., 2020). First, it 
generates a simulated low-resolution panchromatic band that must fall 
in the spectral range of the high spatial resolution or fine band (Laben 
and Brower, 2000), through a weighted linear combination of multi
spectral low spatial resolution bands. Second, GS orthogonalization is 
performed on all bands, setting the simulated panchromatic band as the 
first band. Third, an inverse Gram-Schmidt transformation is applied to 
produce the spatially enhanced image (Laben and Brower, 2000; Ehlers 
et al., 2010). 

The band selection scheme has proven to be the most reliable and 
straightforward approach for spatial information enhancement through 
CS (Kaplan, 2018), and ensuring that the simulated band and the 
reference fine band are within the same spectral range is essential for a 
better preservation of the spectral characteristics (Laben and Brower, 
2000). To sharpen the six bands of Sentinel-2 at 20 m to 10 m spatial 
resolution, the near-infrared band (B8) from the higher spatial resolu
tion image was used as fine band. This band was the closest spectral 
candidate during image sharpening and had significant spectral sensi
tivity with SWIR bands, as demonstrated in other studies (Vaiopoulos 
and Karantzalos, 2016). The near-infrared narrow band (B8A) was used 
as the simulated first band of the low-resolution multispectral data input 
of the GS transformation owing to their spectral correspondence with B8 
(Kaplan, 2018). For the case of the fusion between 20 m Sentinel-2 and 
0.50 m UAV bands, the fine band was the near-infrared band (B4) of the 
UAV high spatial resolution image, according to a spectral proximity 
range criterion (Laben and Brower, 2000; Vaiopoulos and Karantzalos, 
2016). In the same way, the UAV red band (B2) was used as the fine band 
to sharpen the 10 m Sentinel-2 bands up to 0.50 m. The Sentinel-2 red- 
edge 3 band (B7) at 20 m and the Sentinel-2 red band (B4) at 10 m were 
employed as simulated lower resolution panchromatic bands and per
formed as the first band in separated GS transformations. The selection 
of Sentinel-2 NIR band (B8) at 10 m was discarded for presenting a 
dissimilar spectral response with respect to the UAV bands. Previous 
studies have demonstrated the effectiveness of the GS algorithm in 
compensating for large spatial resolution differences, e.g. between 
multispectral images acquired by UAVs and satellite platforms (Jener
owicz and Woroszkiewicz, 2016; Zhao et al., 2019). 

The quality measurement of the fused image was evaluated using the 
ERGAS (Erreur Relative Globale Adimensionalle de Synthèse) index 
proposed by Wald et al. (1997). This index describes the overall error of 
a fused image according to the independence of the spectral bands under 
consideration and independence of the spatial resolutions. The smaller 
ERGAS value, the higher the spectral quality of the fusion (Alparone 
et al., 2007). Fig. 5 displays a general overview of the image fusion 

Fig. 4. ATyges FV8 octocopter used in this study to collect UAV multispectral imagery. The red frame indicates the position of the multispectral Parrot Sequoia 
camera. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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methodology. Finally, the fused UAV-Sentinel-2 dataset, as well as the 
UAV and Sentinel-2 datasets were used to predict post-fire soil proper
ties in the field plots. We also computed two spectral indices (the 
normalized difference vegetation index -NDVI- and the normalized dif
ference water index -NDWI-) widely used in the literature for their high 
sensitivity to soil burn severity (Beltrán-Marcos et al., 2021), and based 
on the availability of common bands in the three datasets, to predict the 
spatial variation of the CBSI in the study site. 

2.5. Statistical analyses 

A decision tree (DT) classifier was used to determine which soil 
properties (SOC, MWD and SMC) were more related to soil burn severity 
in the full soil sample dataset. This hierarchical machine learning 
technique allowed to model the relationship among the response vari
able (soil burn severity) and explanatory variables (soil properties) 
without any assumption about the distribution of data (Tehrany et al., 
2013). DT was calibrated using 10-fold cross-validation resampling 
technique, which has proven to yield reliable results without require
ment of an independent dataset to evaluate the model accuracy (Sher
rod, 2008). DT was constructed by repeatedly dividing the dataset into 
homogeneous classes based on the response variable (Collins et al., 
2007). DT produces a collection of nodes based on the most character
istic soil properties values where entropy was used to measure the un
certainty of each decision. This process is repeated until either a 
minimum subset size is reached, holding the most information about the 
categorical dependent variable (soil burn severity). This tool allows to 
handle non-linear or discontinuous relationships between variables, 
offering advantages over traditional classification algorithms (De’ath 
and Fabricius, 2000) and showing easily interpretable data outputs. In 
addition, we used an optimal complexity parameter (cp) to achieve the 
highest performance in DT classifier (Breiman et al., 2017). DT model 
outputs were assessed through their overall accuracy (OA), producer’s 
accuracy, user’s accuracy and Kappa coefficient. 

We implemented a Support Vector Machine (SVM) algorithm to 

predict SOC, SMC and MWD from Sentinel-2, UAV and fused UAV- 
Sentinel-2 datasets. Due to the limited number of soil samples avail
able, a leave-one-out cross-validation (LOOCV) procedure was used to 
test the prediction capacity of the SVM models for the entire dataset and 
avoid over-fitting (Lu et al., 2013). This method uses n − 1 samples to 
calibrate the model, leaving the excluded sample for validation pur
poses. This process was iteratively repeated for all n samples. SVM is one 
of the most widely applied machine learning methods to estimate soil 
parameters (e.g. Aldana-Jague et al., 2016; Žížala et al., 2019). It min
imizes overfitting and produces reliable results with small datasets (e.g. 
< 100 samples) (Genuer et al., 2010; Stevens et al., 2012; Debaene et al., 
2014; Kisi and Parmar, 2016). It uses a linear model based on statistical 
learning to resolve non-linear discrimination in classification, regres
sion, mapping or other tasks in a high-dimensional feature space defined 
by a kernel function (Vapnik, 1995). In this study, we chose the radial 
basis kernel function, as it has been successfully used in other studies of 
fire ecology based on remote sensing data (Dragozi et al., 2014). SVM- 
models were optimized using a grid search method which determines 
the best parameters in each prediction. Cost (C) and kernel function (g) 
parameters were also tuned through LOOCV to maximize model accu
racy. The SVM algorithm was also used to model the relationship be
tween CBSI field-measured and CBSI-estimated values by NDVI and 
NDWI spectral indices in each multispectral dataset. 

The coefficient of determination (R2) was used to evaluate model 
accuracy, whereas the root-mean-square-error (RMSE) was quantified as 
a measure of predictive performance. Moreover, predictive performance 
was also assessed using the ratio of predicted deviation (RPD) and the 
ratio of performance to interquartile range (RPIQ). Both statistics 
properly describe the range of variation of the data and are considered 
reliable for describing the model performance that follow a non-normal 
distribution (Shi et al., 2020). In order to detect the spectral regions with 
higher predictive capacity of soil properties, we provided the relative 
importance of the spectral bands used to SVM calibration. We applied a 
global sensitivity analysis (GSA), which explores the effects of each 
combination of input variables on the assigned output response (Cheng 

Fig. 5. The process of Gram-Schmidt (GS) transformation to produce spatially enhanced images from UAV and Sentinel-2 products.  
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et al., 2017). A Kruskal-Wallis test, with a significance of 5 %, was 
applied to evaluate differences among spectral bands. All statistical 
analyses were conducted in R software (R Core Team, 2019) using the 
packages “tree” (Ripley, 2019), “MASS” (Venables and Ripley, 2002), 
“rpart” (Ripley et al., 2022), “caret” (Kuhn, 2008), “rminer” (Cortez, 
2020) and “e1071” (Meyer et al., 2015). 

3. Results 

3.1. Effects of burn severity on soil properties 

Soil biophysical properties varied widely across the study site, with 
particular relevance for SMC (coefficient of variation -CV- = 77.31 %). 
The value of all soil parameters always decreased with burn severity. 
Nevertheless, the magnitude of the fire impact differed notably across 
them (Table 3). SOC values accounted in plots burned at low-moderate 
burn severity were lower than those accounted in plots affected by high 
burn severity. MWD of soil aggregates diminished slightly with severity, 
while SMC values were more strongly affected. 

3.2. Soil burn severity discrimination through soil properties 

Decision tree (DT) analysis featured a high performance to classify 
soil burn severity through the considered soil properties (overall accu
racy and Kappa of 91.18 % and 0.82, respectively). DT was composed of 
seven nodes, where each node established a splitting rule according to 
the values of the most important soil biophysical parameters to classify 
burn severity (Fig. 6). These splitting rules and their uncertainty are 
described in Table SM1 in supplementary material. DT classification 
model featured a high specificity for classifying high burn severity 
samples (producerś accuracy -PA- = 100 %). Further details of computed 
confusion matrix are presented in Table SM2 in supplementary material. 
DT output showed that SMC and SOC were the best indicators of soil 
burn severity. SMC was set as the first node, with values lower than 1.9 
% indicating high soil burn severity. Likewise, SOC was included in the 
second node of the classification, with values higher than 48 μg C/g, 
corresponding to low-moderate burn severity, and values between 36 
and 48 μg C/g dry soil, indicating a high burn severity. 

3.3. Spectral reflectance of soil samples 

The mean spectral reflectance of the field plots was similar for the 
three considered spectral datasets (Sentinel-2, UAV and fused UAV- 
Sentinel-2) across the VIS-NIR (400–900 nm) spectral region (Fig. 7). 
Nonetheless, significant differences were found in the NIR region (above 
700 nm) for UAV data with respect to the other datasets (Kruskal-Wallis 
test, χ2 = 6.51; p-value < 0.05), with the highest reflectance values being 
captured by the Parrot Sequoia camera. In the NIR-SWIR (900–2350 nm) 
spectral region, mean reflectance values of fused spectral signature had 

a similar trend than Sentinel-2 spectral signature, as found for the VIS- 
NIR, which indicates remarkable spectral consistency in all absorption 
bands related to soil characteristics. The ERGAS value of 0.130 also 
indicates a high degree of similarity between the original image and the 
fused image, i.e. a high level of spectral information preservation. The 
spectral signatures of each soil burn severity level were compared to 
obtain a better understanding of their spectral behaviour and potential 
discriminatory ability. The near-infrared region (NIR) (700–900 nm) 
offered greater discrimination than the visible one (400–690 nm) for all 
spectral dataset, and the lowest spectral distance was obtained in SWIR 
bands where severely burned areas began to show higher reflectance 
(see Figure SM1 and SM2 in supplementary material for further details 
on spectral signatures). The relationship between CBSI field-measured 
and CBSI-estimated values by NDVI and NDWI spectral indices 
computed from the fused UAV-Sentinel-2 dataset featured a higher 
performance than the computed from Sentinel-2 and UAV images 
(Table SM3 and Figure SM3 in supplementary material. 

3.4. Prediction of SOC and SMC from spectral data 

The predictive performance varied according to the spectral dataset 
used (Table 4). Sentinel-2 at 10 m of spatial resolution was the spectral 
dataset that produced the SOC models with the weakest accuracy and 
predictive performance (R2 = 0.13, RPD = 0.96). Nevertheless, this 
dataset featured the best SMC models (R2 = 0.11, RMSE = 1.93, RPD =
1.05) (Table 4). When using the UAV spectral dataset at 0.50 m as 
predictor of SOC content model evaluation improved notably (R2 =

0.24, RPD = 1.14). Indeed, training the models with fused UAV- 
Sentinel-2 data had a much better performance (R2 = 0.52, RMSE =
7.83, RPD = 1.47) (Fig. 8). However, in the case of SMC, UAV and fused 
data did not perform well. 

In the case of UAV data, green (B1) and near-infrared (B4) spectral 
bands (wavelengths ranging between 510 and 590 and 750–830 nm, 
respectively) were of the greatest importance for the evaluation of soil 
properties through GSA analysis, especially for the case of SOC (Fig. 9). 
Regarding Sentinel-2 data, both visible and SWIR bands (492–665 nm 
and 1614–2202 nm wavelength, respectively) were the most important, 
particularly for SMC. As for the fused data, wavelengths belonging to the 
SWIR (1614–2202 nm) and visible (492–665 nm) regions of the spec
trum were significantly useful for estimating SOC. 

4. Discussion 

The results of this study evidenced the suitability of remote sensing 
fusion techniques of images with high spatial and spectral resolution to 
predict soil properties in a Mediterranean forest landscape affected by 
fire, with particularly good results for SOC, which is one of the best soil 
indicators of burn severity. This result, that is in line with previous 
studies (Mataix-Solera et al., 2002; Badía et al., 2017; Fernández-García 

Table 3 
Descriptive statistics for the soil properties affected by fire in the study area: soil organic carbon (SOC), mean weight diameter (MWD) and soil moisture content (SMC). 
Columns report basic statistics including the number of samples (n), minimum values (Min), maximum values (Max), mean values (Mean), Q1 – First quartile, Q3 – 
Third quartile, standard deviation (SD), coefficient of variation (CV) and coefficient of skewness (Skew).  

Soil properties Soil burn severity scenario Min Q1 Mean Q3 Max SD CV Skew 

SOC (µg C⋅g − 1 soil) Overall  21.72  33.76  41.38  47.30  75.74  11.47  27.30  0.99 
Low-moderate  26.40  33.36  44.43  52.25  75.74  14.60  32.87  0.72 
High  21.72  36.10  38.67  42.95  47.60  7.14  18.46  − 0.90  

MWD (mm) Overall  0.63  0.76  0.95  1.07  1.30  0.19  20.55  0.28 
Low-moderate  0.63  0.75  0.97  1.12  1.30  0.23  23.27  0.01 
High  0.70  0.79  0.93  1.04  1.26  0.17  17.87  0.53  

SMC (%) Overall  0.85  1.52  2.62  2.85  9.85  2.03  77.31  2.72 
Low-moderate  1.36  2.20  3.56  3.73  9.85  2.58  72.45  1.94 
High  0.85  1.41  1.78  2.06  3.55  0.73  41.03  0.99  
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et al., 2019b; Fernández et al., 2021), can be attributed to the volatili
zation degree of organic matter in the most superficial soil layers as a 
function of the temperatures reached during the wildfire (Giovannini 
et al., 1988), and shows a large variability in mixed-severity wildfires, as 
found in northwest Spain by Vega et al. (2013). 

Our results in burned areas mainly indicated that spatial resolution 
improvement of Sentinel-2 imagery with UAV data led to a significant 

increase in the accuracy of SOC prediction models, with a predictive 
capacity similar to that offered by laboratory VIS-NIR spectroscopy 
(Cañasveras et al., 2010; Debaene et al., 2014) or with hyperspectral 
spectrometer airborne imaging (Gomez et al., 2012). Even though the 
same modelling methods were applied to each dataset, the predictive 
performance was completely different when UAV and Sentinel-2 imag
ery were considered separately. The spectral richness of Sentinel-2 

Fig. 6. Decision tree showing soil burn severity classified according to analyzed soil properties. We indicate the entropy value (without brackets) and the percentage 
of samples under the node (inside brackets). 

Fig. 7. Mean spectral reflectance of soil samples for the entire dataset and each soil burn severity category of all sensors used in this study, as well as their spatial and 
spectral fusion. 
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allows to properly discriminate SOC patches from the spectral compo
sition and soil colouration. This is mainly due to the signal quality in the 
SWIR region which is related to organic matter compounds such as 
cellulose and lignin or starch, affecting the reflectance around 2100 nm 
and 2300 nm, respectively (Castaldi et al., 2016; Castaldi et al., 2019a). 
However, the degree of spatial agreement between Sentinel-2 pixels and 
real soil samples can negatively influence in SOC estimation (Lin et al., 
2020). The high spatial variations in SOC content after fire showed their 
importance to enhanced the spatial resolution. The ground sample dis
tance (GSD) of UAV allowed for greater detail of post-fire soil charac
teristics and textures, where the increase in ash or burned fine and 
coarse plant debris is closely related to SOC changes (Vega et al., 2013; 
Marcos et al., 2018). Therefore, fused image took advantage of the 
spatial quality of UAV image, achieving a better sharpness of the final 
product with a satisfactory ability to predict SOC content. Similar results 
were provided in other studies carried out in agricultural areas, where 
the high spatial and spectral resolution of fused images have proven to 
be useful in soil properties evaluation. For instance, Xu et al. (2018) 
observed positive correlations between soil total nitrogen and spectral 
indices based on visible and near-infrared bands derived from 
WorldView-2 (2 m of spatial resolution) and Landsat 8 OLI (30 m) fused 
images. In addition, the inclusion of spectrally and spatially enhanced 
remote sensing data significantly improved the accuracy of soil predic
tion maps in small and heterogeneous croplands (Xu et al., 2017). These 
further support statements promoting image fusion in soil investigation 
by exploiting the advantages of different sensor sources (Lin et al., 
2020). 

In agreement with Taktikou et al. (2016) and Adab et al. (2020), 
surface soil moisture prediction from passive remote sensing data re
mains a challenge. SMC is an essential soil variable after fire because 
affects water repellence in the first centimetres of the top soil (Arcenegui 
et al., 2008) and may influence surface runoff and erosion processes in 
the burned area (Badía et al., 2017). SMC was also able to discriminate 
soil burn severity, but it was poorly predicted from multispectral im
agery. The higher spatial resolution offered by UAV and the fused UAV- 
Sentinel-2 image has not been effective enough in providing good re
lationships with the spatial distribution of soil water content. In burned 
areas, soil texture controls SMC spatial variability, although other fac
tors such as slope, soil depth, soil surface or roughness also play a crucial 
role (Gómez-Plaza et al., 2000). Furthermore, the presence of a vege
tation cover alters temporal patterns of moisture behaviour, showing a 
smaller effect in severely burned areas (higher temporal stability) than 
in slightly burned or unburned areas (Gómez-Plaza et al., 2000). The 
temporal changes have also hampered SMC determination despite 
optimal relationships between soil water content and SWIR reflectance 
from high spectral information imagery (Baroni et al., 2013; Taktikou 
et al., 2016). This spatial and temporal variability makes SMC a complex 
soil parameter to estimate by means of passive remote sensing tech
niques, as other authors have already shown (Gómez-Plaza et al., 2000; 
Baroni et al., 2013). In this regard, the physical sense of active remote 
sensing techniques such as synthetic-aperture radar (SAR) may be a 
more reliable alternative for SMC estimation (Kasischke et al., 2007). In 
addition, multi-temporal observations from large coverage satellite 
sensors have improved soil moisture modelling by resolving daily and 

Table 4 
Results derived from the leave-one-out cross-validation of the support vector machine (SVM) regression between the different spectral datasets and each soil property 
considered for the set of field plots located in the burned area affected.  

Multispectral sensor type Spatial resolution (m) Soil organic carbon content SOC (µg C⋅g − 1 soil) Soil moisture content SMC (%) 

RMSE RPD RPIQ R2 RMSE RPD RPIQ R2 

Sentinel-2A MSI 10  12.01  0.96  1.13  0.13  1.93  1.05  0.65  0.11 
UAV Parrot Sequoia 0.50  10.03  1.14  1.35  0.24  2.04  0.99  0.65  0.01 
Fused UAV-Sentinel-2 0.50  7.83  1.47  1.73  0.52  2.03  0.99  0.65  0.01  

Fig. 8. Relationship through support vector machine (SVM) regression models between estimated values by each spectral dataset and field-measured values of (A) 
SOC and (B) SMC properties. 
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seasonal distortions. 
The spectral signatures indicated that the Gram-Schmidt (GS) 

transformation may correctly preserve the input spectral information in 
the fused image. Moreover, ERGAS index reflected the quality of the 
fused image in terms of normalized mean error of each processed band. 
The low ERGAS value indicated low distortion in the fused image, so the 
GS algorithm provides an optimal spectral-spatial performance 
commitment at these scales (Yilmaz and Gungor, 2016). This image 
sharpening technique has allowed us to incorporate accurate spatial 
information into the original multispectral image from Sentinel-2 and 
has also maintained the mean spectral response of each band in the fused 
image (Fig. 7). In accordance with previous studies in agricultural sites 
(Castaldi et al., 2016; Gholizadeh et al., 2018), the visible and SWIR 
were the most important regions for estimating soil properties through 
the fused image, mainly to SOC content. At these wavelengths, the 
reflectance response is strongly related to soil organic matter and water 
content, as well as other intrinsic soil factors such as particle size dis
tribution, mineral composition, surface roughness, and colour of soil 
elements (Muller and Décamps, 2001). The lower relative importance of 
the NIR region in Sentinel-2 and in the fused UAV-Sentinel-2 images 
may be related to variations in the performance of the atmospheric 
correction methods employed in the pre-processed Sentinel-2 scene, as 
has been found with other satellite imagery (Vaudour et al., 2014). For 
example, overestimates in the B8A band have been observed in previous 
studies (Sola et al., 2018). Conversely, the reflectance from green and 
NIR bands of the Parrot Sequoia sensor on-board the UAV were the most 
important in the models. These bands have already proven to be useful 
for computing spectral indices related to soil burn severity (Beltrán-
Marcos et al., 2021). However, in this study, we have further evidenced 
that the prediction of the spatial variability in soil burn severity through 
spectral indices was improved by using fused UAV-Sentinel-2 datasets 
because of the higher spatial/spectral information provided. In further 

research, the high spectral resolution of hyperspectral data together 
with high spatial resolution UAV data could allow a better discrimina
tion of SOC content and other fire-sensitive soil properties in burned 
landscapes. 

Although we reported promising findings in this study, some limi
tations should be highlighted. Jenerowicz and Woroszkiewicz (2016) 
noticed that the improvement of spatial resolution of multispectral 
image could imply a slight worsening of the spectral quality in the fused 
image. The low performance achieved in the SMC predictions could be 
due to underlying spatial variations in pre-fire soil characteristics in this 
specific study area, although alterations in spectral information could 
represent a potential supply of uncertainty. Logistic restraints in field 
sampling (e.g. a short period for data acquisition after the fire and 
specific distribution of soil field samples) could affect the generalization 
of the results. The requirement of adjusting the number and size of 
samples plots at the spatial resolution of Sentinel-2, and looking for 
homogeneous burned areas where tree canopy could not cause inter
ference in the UAV data acquisition, may limit the representativeness 
and inference of the results. However, it has been shown that at small 
spatial scales, a small field dataset can be used to predict soil properties 
such as SOC, obtaining satisfactory results (Gomez et al., 2012; Debaene 
et al., 2014). Our results can be improved by using commercial satellite 
sensors with a higher spatial and spectral resolution (e.g. Worldview-2) 
(Yilmaz and Gungor, 2016; Xu et al., 2017) or aerial hyperspectral 
surveys (Ge et al., 2019). Moreover, further progress in increasing the 
predictive power of the fused datasets is needed. Nonetheless, the main 
advantage of the multispectral data used in this experimental work is 
that they can be obtained relatively cheaply and are almost immediately 
available. Therefore, they offer a cost-effective and reliable data source 
for mapping post-fire effects (Fernández-Guisuraga et al., 2018). High 
spatial resolution images from UAV platforms for soil burn severity 
estimation at the plot scale and Sentinel-2 data at the regional scale may 

Fig. 9. Relative importance of the variables (reflectance bands) included in different regression models based on UAV, Sentinel-2 and fused UAV-Sentinel-2 datasets 
for the estimation of (A) SOC and (B) SMC. 
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represent excellent support to forest management evaluations to identify 
priority areas where restoration post-fire actions need to be applied. The 
observation of spatial changes in SOC through novel remote sensing 
techniques such as image fusion contributes to advancing knowledge in 
severely damaged soils, allowing to act in areas with the greatest fire 
impact. 

5. Conclusion 

This pioneering study presents relevant results in the analysis of soil 
biophysical properties in burned areas by means the application of 
remote sensing image fusion techniques useful to predict the impact of 
fire at a very detailed spatial scale. Soil organic carbon (SOC) and soil 
moisture content (SMC) have been demonstrated to be good indicators 
of soil burn severity. The fusion of multispectral data at different spatial 
and spectral resolutions, collected immediately after wildfire by sensors 
on board a UAV and Sentinel-2A satellite platforms, provide a powerful 
tool to estimate soil organic carbon in complex and heterogeneous forest 
landscapes affected by mixed-severity fires. The image sharpening 
techniques of this study preserved the spectral information of satellite 
images with the addition of a very high spatial resolution particularly 
useful to characterize fire effects on soil. Nevertheless, more research is 
needed to explore further the effects of image sharpening on fire- 
sensitive soil properties prediction models. 
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Gascón, J., 2017. Burn effects on soil properties associated to heat transfer under 
contrasting moisture content. Sci. Total Environ. 601, 1119–1128. https://doi.org/ 
10.1016/j.scitotenv.2017.05.254. 

Baroni, G., Ortuani, B., Facchi, A., Gandolfi, C., 2013. The role of vegetation and soil 
properties on the spatio-temporal variability of the surface soil moisture in a maize- 
cropped field. J. Hydrol. 489, 148–159. https://doi.org/10.1016/j. 
jhydrol.2013.03.007. 
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españoles. Cátedra de Divulgación de la Ciencia. Universitat de Valencia. pp. 133- 
155. 

Marcos, E., Fernández-García, V., Fernández-Manso, A., Quintano, C., Valbuena, L., 
Tárrega, R., Luis-Calabuig, E., Calvo, L., 2018. Evaluation of composite burn index 
and land surface temperature for assessing soil burn severity in mediterranean fire- 
prone pine ecosystems. Forests 9, 1–16. https://doi.org/10.3390/f9080494. 
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