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a b s t r a c t

It is important to note that seasonality could affect ram reproductive parameters, and therefore, fertility
results after artificial insemination. In this work, 1) we assessed fertility rates after cervical artificial
insemination of 11,805 ewes at the beginning (June 21st to July 20th) and at the end (November 20th to
December 21st) of the reproductive season in the Assaf breed for the last four years, and 2) we aimed to
identify male factors influencing the different reproductive success obtained depending on the time at
the mating season in which ovine artificial insemination was performed. For this purpose, we evaluated
certain ram reproductive and ultrasonographical parameters as well as we performed a multiparametric
and proteomic sperm analysis of 6e19 rams at two very distant points in the mating season (July as Early
Breeding Season eEBSe and November as Late Breeding Season eLBSe). Rutinary assessments carried
out in the ovine reproduction centers (testicular volume, libido, sperm production and mass motility)
showed non-significant differences (P � 0.05) between both studied times, as well as the ram ultraso-
nographic evaluation (Resistive and Pulsatility Index as Doppler parameters; and pixels mean gray level,
and hypoechoic areas percentage and density as echotexture parameters). However, at level of sperm
functionality, although sperm quality appeared non-significantly lower (P � 0.05) in the EBS, we iden-
tified a significantly different (P < 0.05) sperm proteomic profile between the seasonality points. The
following proteins were identified with the lowest abundance in the EBS with a fold change > 4, a
P ¼ 2.40e-07, and a q ¼ 2.23e-06: Fibrous Sheath-Interacting Protein 2, Disintegrin and Metal-
loproteinase Domain-Containing Protein 20-like, Phosphoinositide-Specific Phospholipase C, Tektin 5,
Armadillo Repeat-Containing Protein 12 Isoform X3, Solute Carrier Family 9B1, Radial Spoke Head Protein
3 Homolog, Pro-Interleukin-16, NADH Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex Subunit 8,
Testis, Prostate and Placenta-Expressed Protein, and Acyl Carrier Protein Mitochondrial. In conclusion,
while our basic analyses on male and sperm quality showed similar results between the beginning and
the end of the breeding season, on a proteomic level we detected a lower expression of sperm proteins
linked to the energy metabolism, sperm-oocyte interactions, and flagellum structure in the EBS. Prob-
ably, this different protein expression could be related to the lower fertility rate of Assaf ewes after
cervical artificial insemination at this time. More importantly, sperm proteins can be used as highly
effective molecular markers in predicting sperm fertilization ability related to intraseasonal variations.
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1. Introduction

Artificial insemination in sheep is not very globally widespread
due to its irregular and low fertility results [1]. There are several
factors intrinsic and extrinsic to the inseminated female that can
affect the effectiveness of ovine artificial insemination: farm, year,
season, breed, male, ewe age and body condition, reproductive
handling, technician, and so on [2]. Among them, it is widely
known that the season of insemination have a strong effect on the
fertility results [3], even if an hormonal treatment is used to
induced and synchronize ewes estrus [4e6]. For males, changes in
sexual behavior, hormonal activity, testicular weight and volume,
and semen quantity and quality that affect the reproductive per-
formance of rams have been reported [7]. Fertility is a high complex
process that depends upon a heterogeneous population of sperm
interacting at various levels of the female tract, the vestments of the
oocyte, and the oocyte itself [8]. Therefore, male has a direct in-
fluence on the fertilization process, as well as on the viability of the
preimplantation embryo [9,10]. Classical methods for semen eval-
uation measured ejaculate volume and sperm cell concentration,
sperm gross and progressive motility, and sperm morphology [11].
However, it is generally accepted that conventional sperm charac-
teristics are poorly correlated with the fertilizing capacity of sperm
of several species [12e15]. For this reason, laboratory semen eval-
uation must include the testing of several functional aspects of
sperm relevant for fertilization and embryo development, not only
in individual sperm but also within a large sperm population as
well [16]. In recent years, diverse fluorescent dyes have been used
to evaluate several functional characteristics of the sperm cell such
as integrity [17], phospholipid transposition [18] and lipid peroxi-
dation [19,20] of the plasmalemma, DNA damage [21,22], apoptosis
[23e25], and mitochondrial status [26,27] among others, often
assisted by modern flow cytometry that allows rapid counting of a
large sperm [28]. New technologies, including genomics, prote-
omics and, most recently, metabolomics, have been also incorpo-
rated in the last decade into the study of sperm biology [29].
Particularly, proteomic analyses of sperm proteins have allowed to
understand how sperm acquire their capacity for fertilization and
have revealed numerous changes in the sperm proteome related to
different variables [30]. This has made possible to identify male
fertility biomarkers in several domestic animal species [31e34],
new roles of sperm proteins controlling early embryo development
[35], new endogenous metabolic pathways [36], and differences in
the proteome of ejaculates with high and lowmotility [37e39] and
different ability to withstand preservation by cooling or freezing
[40e42]. Changes in the sperm proteome in relation to the sperm
preservation protocol have been also described in different species
such as ovine [43,44], porcine [45,46], and equine [47]. In addition,
studies have carried out on the variations in the sperm proteomic
profile at different times of the year in bucks [48], boars [49], and
stallions [50]. However, there are no data currently available on
how ram sperm proteome varies through the year, and specifically
within the mating season.

In this work, 1) we assessed fertility rates after cervical artificial
insemination at the beginning (June 21st to July 20th) and at the end
(November 20th to December 21st) of the reproductive season in the
Assaf breed for the last four years, and 2) we aimed to identify male
factors influencing the different reproductive success obtained
depending on the time at the mating season in which ovine arti-
ficial insemination was performed, with special interest in the
proteomic study of ram sperm.
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2. Materials and methods

2.1. Ethics statement

The current study was performed according to the Guidelines of
the European Union Council (2010/63/EU), following Spanish reg-
ulations (RD/1386/2018) for the protection of laboratory animals.
All experimental protocols and procedures were approved by the
institutional Animal Care and Use Committee of the University of
Le�on (�ETICA-ULE-013-2018).

2.2. Study design

This work was designed to investigate the involvement of ram
reproductive and seminal parameters on the differences in fertility
rates of Assaf breed in cervical artificial insemination between the
beginning (June 21st to July 20th) and the end (November 20th to
December 21st) of the breeding season for the last four years. To this
end, three levels of evaluation were performed at two very distant
points in the mating season (July as Early Breeding Season eEBSe
and November as Late Breeding Season eLBSe) (Fig. 1). On a first
level, parameters routinely used in ovine reproduction centers such
as testicular measurements (in our study total testicular volume),
libido, number of sperm doses obtained per male and day of semen
collection (calculated from the total daily sperm production) and
mass motility were analyzed. In a second level, within the ram
evaluation, we performed an ultrasonographic evaluation of
testicular blood flow (Resistive and Pulsatility Index) and echo-
texture (pixels mean gray level, and hypoechoic areas percentage
and density). Finally, at the third level, we carried out multi-
parametric analyses of sperm functionality combined traditional
analyses (spermmotility and kinetic parameters by a CASA system)
with new ones (sperm quality by flow cytometry), including a
sperm proteome study.

2.3. Insemination procedures

Adult Assaf ewes (11,805 females) were subjected to estrus in-
duction and synchronization using intravaginal sponges with
20 mg fluorogestone acetate (Chronogest®, MSD Animal Health,
Salamanca, Spain) over 14 days. At sponge withdrawal, ewes were
treated with 500 IU of eCG (Folligon®, MSD Animal Health, Sala-
manca, Spain). Cervical artificial inseminations were performed at
54 ± 2 h after sponge removal. Semenwas collected from 246 adult
Assaf rams of proven fertility by artificial vagina (water at 40 �C)
(IMV Tecnhologies, L'Aigle, France). Only ejaculates with volume �
0.5 mL, mass motility � 4 and sperm concentration � 3,000 � 106

sperm/mL were processed. Insemination doses were diluted with
INRA 96® diluent (IMV Tecnhologies, L'Aigle, France) at a concen-
tration of 1,600 � 106 sperm/mL and slow cooled (�0.5 �C/min)
until 15 �C in a programmablewater bath (CC-K8, Huber, Germany).
Semen was put into French mini-straws (0.25 mL) and held in a
transportable refrigerator until arrival at the insemination farm
(2e6 h). Cervical artificial inseminations were performed by
experienced technicians in the Early Breeding Season (June 21st to
July 20th) and in the Late Breeding Season (November 20th to
December 21st) for the last four years. Animals were placed with
the hindquarter upwards, and the cooled semen (400 � 106 sperm)
was deposited in the entrance of the cervix using a speculum with
an attached light source and an ovine artificial insemination cath-
eter (IMV Tecnhologies, L'Aigle, France). Reproductive success was



Fig. 1. Study design. Evaluation levels performed in each experimental group (EBS, Early Breeding Season; LBS, Late Breeding Season): (1) Reproduction center evaluation: testicular
volume, libido, sperm production, and mass motility; (2) Ultrasonography evaluation: testicular blood flow and testicular echotexture; (3) Sperm functionality evaluation: sperm
motility and kinetic parameters, sperm quality, and sperm proteome.
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evaluated in terms of fertility according to the total births
(including stillbirths) registered at 137e154 days post-
insemination.

2.4. Sperm collection and processing

Sperm donors used for the experiment were 19 adult and
healthy Assaf rams of proven fertility and trained for semen
collection by artificial vagina on a regular basis (weekly semen
collections, twice a week). Animals were housed and fed with a
standard balanced diet at the Animal Selection and Reproduction
Center of the Junta de Castilla y Le�on (CENSYRA, Villaquilambre,
Le�on, Spain).

Ram ejaculates (two per male in the same day) were collected in
July as Early Breeding Season (EBS) and in November as Late
Breeding Season (LBS) by artificial vagina at 40 �C (IMV Technolo-
gies, L'Aigle, France) in the presence of a female decoy. Sample
tubes were kept in a water bath at 35 �C during the initial evalua-
tion of semen quality. Ejaculate volume was determined using the
graduationmarks of the collection tube. Massmotility was assessed
with a subjective score of 0e5 by a microscope equipped with a
warmed stage programmed at 37 �C (Leica DM LB, Meyer In-
struments, Houston, TX, USA) using a �4 objective. Sperm con-
centration was analyzed by a cell counter (NucleoCounter SP-100,
ChemoMetec, Allerod, Denmark). After that, both ejaculates from
each male were mixed and diluted down to a final concentration of
1,600 � 106 sperm/mL in INRA 96® medium. At this time, samples
were refrigerated in a programmable bath using a rate of �0.5 �C/
min from 30 �C down to 15 �C. Semenwas packed then into 0.25 mL
French straws and stored at 15 �C for 6 h.

2.5. Reproduction center evaluation

2.5.1. Testicular volume
Testicular volume of all males was calculated through ultra-

sound measurements performed by the same technician. All ex-
aminations were conducted using a real-time ultrasound scanner
(EXAPad®, IMV Tecnhologies, L'Aigle, France) equipped with a
7.5 MHz linear-array transducer. Transducer was covered with a
large amount of gel to facilitate ultrasonographic imaging. Scanning
was done without pressure to avoid distorting the testicular shape.
Images were obtained as caudo-cranial, latero-lateral and ventro-
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dorsal axis of the testes. Testicular width (W), height (H) and
length (L) were measured in triplicate using electronic calipers
integrated into the ultrasound machine. Cursors were attached to
the edges of the tunica albuginea. Testicular volume was calculated
using the formula described by Hedia et al. [51]: W x H x L x 0.71.

2.5.2. Libido
Libido was assessed as previously described Montes-Garrido

et al. [52]. Time elapsed from the male contact with the female
teaser (a single non-synchronized estrus ewe) until ejaculationwas
timed in both daily sperm collection and libido was categorized
using a 0e10 score. If ejaculation took place in 1 min or less, libido
was scored with a value of 10. If ejaculation occurred in 1e2 min,
libido obtained a score of 9, and so on. When more than 10 min
elapse before ejaculation occurs, libido was scored as 0. Then, the
mean of the score obtained in the two seminal collections was
calculated.

2.6. Ultrasonography evaluation

2.6.1. Testicular blood flow
As recommended Hassan et al. [53], Doppler parameters were

determined at the supratesticular artery in the middle spermatic
cord region using a real-time ultrasound scanner equipped with a
10 MHz high-frequency linear-array transducer. Based on previous
studies [54e56], angle between the long axis of the vessel and the
Doppler beam was set at 35� in the direction of the blood flow.
Doppler gate was kept constant at 1 mm. Ultrasound settings
(focus, gains, brightness and contrast) were standardized, fixed and
used equally for the whole study period to minimize variations. At
least three consecutive waveforms were analyzed, and Doppler
parameters were automatically calculated by the software package
provided with the ultrasound machine. Doppler indices studied
were Resistive Index (RI) and Pulsatility Index (PI), which quantify
the resistance to blood flow caused by microvascular beds distal to
the site of measurement and the pulsatility of oscillations of the
waveform, respectively.

2.6.2. Testicular echotexture
Assessments were performed by the same operator using a real-

time ultrasound scanner equipped with a linear-array transducer
(7.5 MHz). Ultrasound probe was positioned transversely on the
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center of each testicle and at least three clips were captured. Eco-
text® Software (Humeco, Huesca, Spain) was used for analyzed
parenchyma echotexture. Reported echotexture parameters were
Test 3 (pixels mean gray level), hypoechoic areas percentage (pro-
portion of the total area occupied by the lumen of the seminiferous
tubules in the parenchyma) and hypoechoic areas density (density
of seminiferous tubules/cm2).

2.7. Sperm functionality evaluation

2.7.1. Sperm motility and kinetic parameters by a CASA system
Sperm motility and kinetic assessments were performed using

Computer-Assisted Sperm Analysis (CASA) (Sperm Class Analyzer®
eSCAe software V 6.3.0.59, Microptic S.L., Barcelona, Spain) set to
capture at 100 frames/s a total of 50 frames and particles with an
area of 20e70 mm2. An aliquot of each sperm sample was diluted to
a final concentration of 25 � 106 sperm/mL in a TES-Tris-Fructose
medium supplemented with 1% clarified egg yolk (320 mOsm/kg,
pH 7.2) and warmed to 37 �C on a warmed plate for 5 min. Then,
5 mL of the diluted semen was dropped into a Makler counting cell
chamber (10 mm depth; Sefi Medical Instruments, Haifa, Israel).
Samples were examined with a �10 negative phase contrast
objective in a microscope (Eclipse E400, Nikon, Tokyo, Japan)
equipped with a BASLER acA1300-200uc digital camera (Basler
Vision Technologies, Ahrensburg, Germany) and a warmed stage
(37 �C). At least 400 sperm from four different randomly selected
fields were captured and analyzed afterward using the editing fa-
cilities provided by SCA. Other events different from sperm were
removed, and settings were adjusted in each case to assure a cor-
rect tract analysis. Reported kinetics parameters were linearity
(LIN, %) and amplitude of the lateral displacement of the sperm
head (ALH, mm). Total motility (TM) was defined as the percentage
of spermwith curvilinear velocity (VCL) > 15 mm/s and progressive
motility (PM) as the percentage of sperm with VCL > 45 mm/s [57].

2.7.2. Sperm quality by flow cytometry
The staining protocol previously described by Riesco et al. [58]

was used. Sperm samples were diluted at 2 � 106 sperm/mL in
phosphate-buffered saline (PBS) (300 mOsm/kg, pH 7.2) in order to
wash the cells by short centrifugation (15 s; MiniSpin plus,
Eppendorf, Hamburg, Germany). The supernatant was discarded
and the sperm pellet was incubated at room temperature and in the
dark for 30 min with Zombie Violet™ Fixable Viability Kit (plasma
membrane integrity probe) (1:1000 final dilution in PBS; Bio-
Legend, San Diego, CA, USA), CellEvent™ Caspase-3/7 Green
Detection Reagent (apoptosis marker) (4 mM final concentration in
PBS; ThermoFisher, Waltham, MA, USA) and CellROX™ Deep Red
Reagent (reactive oxygen species content labeling) (5 mM final
concentration in PBS; Invitrogen, Eugene, OR, USA). After that,
another washing step was performed to stop cell staining, and the
pellet was resuspended in 1 mL of PBS, carrying out immediately
the multiparametric flow cytometry analysis.

Flow cytometry acquisition was performed in a MACSQuant
Analyzer 10 (Miltenyi Biotech, Bergisch Gladbach, Germany)
equipped with three lasers emitting at 405, 488, and 635 nm (vi-
olet, blue and red, respectively) and ten photomultiplier tubes.
Violet fluorescence was detected in V1 (excitation 405 nm, emis-
sion 450/50 nm), green fluorescence was detected in B1 (excitation
488 nm, emission 525/50 nm), and red fluorescence was detected
in R1 (excitation 635 nm, emission 655e730 nm (655LP þ split
730)). The system was controlled using MACS Quantify™ software
(Miltenyi Biotech, Bergisch Gladbach, Germany) recording a total of
40,000 events per sample and at least 20,000 sperm at a flow rate
of 200e300 cells/s. Data were analyzed using FlowJo™ V 10.2
(Ashland, Wilmington, DE, USA).
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The interest sperm subpopulations assessed were plotted as
follows: viable sperm (Zombie Violet™ low intensity ealivee),
apoptotic sperm (CellEvent™ Caspase-3/7 positive) and spermwith
high mitochondrial activity (CellROX™ positive).

2.7.3. Sperm proteome analysis
Semen samples from sixmales were centrifuged at 10,000�g for

15 min at 4 �C after being stored at 15 �C for 6 h. Supernatant was
discarded and pellet (200 � 106 sperm) were kept frozen at �80 �C
until analysis. Purity of the samples was checked using phase
contrast microscopy. Protein solubilization, quantification and
digestion were performed according to the protocol described by
Martín-Cano et al. [47]. Briefly, isolated spermatozoa were solubi-
lized in 400 mL of Protein Extraction Reagent Type 4 lysis buffer
(Sigma-Aldrich, Saint Louis, MI, USA; 7.0 M urea, 2.0 M thiourea,
40 mM Trizma® base, and 1.0% C7BzO; pH 10.4) and incubated
under constant rotation at �4 �C for 1 h. Samples were then
centrifuged at 17,000�g for 30 min at room temperature to remove
cell debris and supernatant was transferred to a new tube. Protein
quantification was performed using the 2-D Quant Kit (GE
Healthcare, Sevilla, Spain) and 100 mg of protein from each sample
were subjected to in-solution trypsin digestion. Analysis of the
samples was performed in duplicate with a UHPLC/MS system
consisting of an Agilent 1290 Infinity II Series UHPLC (Agilent
Technologies, Santa Clara, CA, USA) equipped with an automated
multisampler module and a high-speed binary pump, and coupled
to an Agilent 6550 Q-TOFMass Spectrometer (Agilent Technologies,
Santa Clara, CA, USA) using an Agilent Jet Stream Dual electrospray
(AJS-Dual ESI) interface. The control of the UHPLC and Q-TOF were
made by the MassHunter Workstation Data Acquisition software
(Rev. B.06.01; Agilent Technologies, Santa Clara, CA, USA). A total of
75 mg of protein per sample were injected into an Agilent Advan-
ceBio Peptide Mapping UHPLC column (2.7 mm, 150 � 2.1 mm;
Agilent Technologies, Santa Clara, CA, USA) thermostatted at 55 �C
at a flow rate of 0.4 mL/min. The gradient program started with 2%
of B (buffer B: water/acetonitrile/formic acid, 10:89.9:0.1) that
remained in isocratic mode for 5min and then increased linearly up
to 45% B in 40 min, increasing up to 95% B in 15 min and remaining
constant for 5 min. After this 65 min of run, 5 min of post-time
followed using the initial condition for the conditioning of the
column for the next run. Mass spectrometer was operated in pos-
itive mode. The nebulizer gas pressure was set to 35 psi, whereas
the drying gas flow was set to 10 L/min at a temperature of 250 �C,
and the sheath gas flow to 12 L/min at a temperature of 300 �C. The
capillary spray, fragmentor and octopole RF Vpp voltages were
3,500 V, 340 V and 750 V, respectively. Profile data were acquired
for both MS and MS/MS scans in extended dynamic range mode.
MS and MS/MS mass range were 50e1,700m/z and scan rates were
eight spectra/s for MS and three spectra/s for MS/MS. Auto MS/MS
mode was used with precursor selection by abundance and a
maximum of 20 precursors selected per cycle. A ramped collision
energy was used with a slope of 3.6 and an offset of �4.8. The same
ion was rejected after two consecutive scans.

Data processing and analysis was performed using Spectrum
Mill MS Proteomics Workbench (Rev B.04.01; Agilent Technologies,
Santa Clara, CA, USA). Briefly, raw datawere extracted under default
conditions as follows: non-fixed or variable modifications were
selected; [MH] þ 50e10,000 m/z; maximum precursor charge þ5;
retention time and m/z tolerance ±60 s; minimum signal-to-noise
MS (S/N) 25; finding 12C signals. The MS/MS search against the
appropriate and updated protein database (in this case: Uniprot/
Sheep) was performed with the following criteria: non-fixed
modifications were selected and as variable modification: carba-
midomethylated cysteines and tryptic digestion with 5 maximum
missed cleavages were selected. ESI-Q-TOF instrument with
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minimum matched peak intensity 50%, maximum ambiguous
precursor chargeþ5, monoisotopic masses, peptide precursor mass
tolerance 20 ppm, product ion mass tolerance 50 ppm, and calcu-
lation of reversed database scores. The autovalidation strategy used
was auto-threshold, in which the peptide score is automatically
optimized for a target %FDR (False Discovery Rate) of 1.2%. Then, the
protein polishing validationwas performed in order to increase the
sequence coverage of validated results with the restriction of a new
maximum target protein %FDR of 0%.
2.8. Bioinformatic analysis of proteomic data

Qlucore Omics Explorer® (Lund, Sweden) was used to compare
changes in the relative amounts of proteins based in spectral counts
between the EBS and LBS aliquots. Datawere Log2 transformed and
normalized, and one-way ANOVA was performed filtered by fold
change (> 2) with P and q (equivalent to FDR) < 0.05. Results are
displayed as means ± SEM. Differences were considered significant
when P < 0.05. Proteins identified in the EBS and LBS samples were
queried for g:Profiler (https://biit.cs.ut.ee/gprofiler/) against the
Ovis aries database to identify biological pathways likely to be
active in ram sperm.
2.9. Statistical analysis

Statistical analysis of fertility data was performed using SAS/
STAT® V 9.1 (SAS Institute, Cary, NC, USA), while data from in vitro
analysis were analyzed using Prism 9 (GraphPad Software, San
Diego, CA, USA). Fertility data were analyzed as binomial using the
Chi-square test considering the year, farm and male as random
factors. Data from in vitro analysis were submitted to Levene's and
Kolmogorov-Smirnov tests to verify the homogeneity and
normality of variables, respectively. Normally distributed datawere
analyzed by one-way ANOVA, whereas non-normally distributed
data were analyzed by Kruskal-Walli's test. The same 12e19 males
were analyzed in each experimental group. Results are displayed as
mean ± SEM (Standard Error of the Mean). Significant differences
were considered at P < 0.05.
3. Results

3.1. Insemination procedures

The results of the fertility trial are shown in Table 1. Fertility was
significantly lower (P < 0.0001) in the EBS than in the LBS.
3.2. Reproduction center evaluation

Quality control assays used in ovine reproduction centers are
testicular size, libido, total daily sperm production and mass
motility. In this regard, there were non-significant differences
(P� 0.05) in any of these four parameters between the EBS and LBS
(Fig. 2).
Table 1
Fertility (lambed ewes/inseminated ewes, %) for the last four years according to the
season of insemination.

SEASON Fertility (%) Lambed ewes/Total

EBS 28.61a 1,388/4,852
LBS 34.69b 2,412/6,953

EBS, Early Breeding Season (June 21st to July 20th); LBS, Late Breeding Season
(November 20th to December 21st). Different lowercase superscripts letters (a, b)
indicate significant differences (P < 0.0001) between the EBS and LBS.
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3.3. Ultrasonography evaluation

Another factor to consider in order to maximize semen pro-
duction centers quality control effectiveness is the ultrasound
evaluation of the testicular complex. In connection with this, and
taking into account the testicular blood flow, both RI and PI Doppler
indices were maintained at similar values (P � 0.05) at the two
assessment points (Fig. 3). Concerning to the testicular echotexture,
we observed that pixels mean gray level and percentage and den-
sity of seminiferous tubules in the testicular parenchyma were
similar (P � 0.05) between the EBS and LBS (Fig. 4).

3.4. Sperm functionality evaluation

Sperm quality after 6 h of liquid storage at 15 �C was similar
(P� 0.05) at both points of the breeding season (Figs. 5 and 6). Only
significantly higher sperm viability was observed in the EBS
(P < 0.05) (Fig. 6A).

3.5. Sperm proteome analysis

Changes in the relative amounts of proteins of samples stored at
15 �C for 6 h as consequence of the timing of the mating season are
presented as a heat map (Fig. 7 and Fig. S1). Qlucore Omics Ex-
plorer®was used to identify discriminant variables with significant
difference between the EBS and LBS samples. 189 proteins with
significantly different expression were identified between both
moments with a q-value cut-off of 0.094 and a fold change > 2.
Interestingly, proteins related to carbon metabolism, citrate cycle
(TCA cycle), biosynthesis of amino acids, diabetic cardiomyopathy, and
glycolysis/gluconeogenesis were decreased at the EBS (Fig. 8). Then,
in order to reduce the number of proteins and to obtain fewer
proteins with the highest discriminant power between both mo-
ments of the reproductive season, those variables with a fold
change > 4, P ¼ 2.40e-07, and a q ¼ 2.23e-06 (equivalent to FDR)
were selected. The following proteins were identified with the
lowest abundance in the EBS (Fig. 9): A0A6P7DP96, A0A6P7DP85,
A0A0U1WU05, A0A6P3ERG0, A0A6P7D6E6, A0A6P7E8V0,
A0A6P3ET71, A0A835ZRR9, A0A6P3EAP5, A0A6P7ETW8, and
A0A6P3EHT6, corresponding to Fibrous Sheath-Interacting Protein 2,
Disintegrin and Metalloproteinase Domain-Containing Protein 20-
like, Phosphoinositide-Specific Phospholipase C, Tektin 5, Armadillo
Repeat-Containing Protein 12 Isoform X3, Solute Carrier Family 9B1,
Radial Spoke Head Protein 3 Homolog, Pro-Interleukin-16, NADH
Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex Subunit 8, Testis,
Prostate and Placenta-Expressed Protein, and Acyl Carrier Protein
Mitochondrial.

4. Discussion

Within temperate latitudes, the breeding season starts during
summer or early autumn and ends during the winter in most ovine
breeds [59]. As in natural mating, season affects fertility after
artificial insemination [60]. Windsor reported low cervical artificial
insemination fertility rates in the non-breeding season in Merino
ewes [61]. In the same way, Palacín et al. [62] obtained the worse
cervical artificial insemination fertility results from March to June
and better during the first months of decreasing day length (July
and August) in Rasa Aragonesa breed. Our research group previ-
ously demonstrated that the seasonmodified the conception rate in
Churra ewes after both laparoscopic and vaginal insemination, but
also identified differences even within the reproductive season
(FebruaryeJune 43.96 and 29.79%; JulyeAugust 38.95 and 22.72%;
SeptembereJanuary 46.88 and 35.53%, respectively) [63] as we
have done now in the Assaf breed. This effect not only should be

https://biit.cs.ut.ee/gprofiler/


Fig. 2. Ovine reproduction center routine evaluation. (A) Total testicular volume (mL); (B) Libido (0e10); (C) Total daily sperm production (x 106 sperm); (D) Mass motility (0e5).
The same 15 (A) or 19 males (B, C, D) were analyzed in each experimental group (EBS, Early Breeding Season; LBS, Late Breeding Season). Graph dots represent the individual values
of each ram. Non-significant differences (P � 0.05) were found between the EBS and LBS.
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attributed to the female, since seasonal variations in ram repro-
ductive parameters have been also described [7].

In commercial reproduction centers, the routine andrological
evaluations include the determination of testicular dimensions
because is considered a valuable index for sperm production
assessment in rams [64]. Although conflicting results have been
published as regard the highest testicular volume and the time
when it is reached, most authors agree that testicular mass
increased continuously from the minimum value measured in
winter to the maximum recorded in autumn [65e68]. Sexual
behavior of rams varies in parallel with changes in testicular size
[69], with a peak in summer-autumn and a trough in spring [70]. In
33
our study, both total testicular volume and sperm output as well as
libido remained constant from early summer to late autumn, in
agreement with previous research conducted on fat-tailed rams in
different localities [71e73]. Therefore, we decided to perform an
ultrasound evaluation of the testicular complex of the males.
Recently, the use of gray-scale ultrasound followed by the appli-
cation of pulsed-wave Doppler analysis of the testicular artery has
widely been conducted to assess the testicular functionality in
different species such as rams [74e77], bucks [78], stallions [79],
and dogs [80]. Indeed, subjective appearance of the color Doppler
image and RI and PI values had been used as diagnostic fertility
parameters in camelids [81], stallions [82], dogs [80], and humans



Fig. 3. Ram testicular blood flow evaluation. (A) Resistive Index (RI); (B) Pulsatility Index (PI). The same 12 males were analyzed in each experimental group (EBS, Early Breeding
Season; LBS, Late Breeding Season). Graph dots represent the individual values of each ram. Non-significant differences (P � 0.05) were found between the EBS and LBS.
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[83,84]. Both indices are independent of age, bodyweight, and pulse
rate, and therefore, significant changes in their values are usually
associated with vascular pathologies [85]. In this work, the overall
mean of RI and PI values was stable and comparable to those re-
ported by the previously mentioned studies. Today, previously
saved B-mode ultrasound images of testicular parenchyma are
analyzed in addition by means of computer-assisted image analysis
systems that estimate the numerical pixel intensity values of
testicular echogenicity in order to determine tissue density [75,86].
Several studies showed that testicular echotexture had a consid-
erable association with testicular histopathological changes in
adult rams [86e88]. However, none of the testicular echotexture
parameters studied in our work showed significant differences
between the EBS and LBS.

Seasonal variations in ram semen characteristics have been
extensively studied, recording the best semen yield in the breeding
Fig. 4. Ram testicular echotexture evaluation. (A) Test 3 (pixels mean gray level); (B) hypo
analyzed in each experimental group (EBS, Early Breeding Season; LBS, Late Breeding Seaso
(P � 0.05) were found between the EBS and LBS.
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season [89e91]. Moreover, some reports also determined that
monthly fluctuation affects sperm quality in terms of morphology,
total and progressive motility, viability, and acrosome integrity
[51,71,72]. In this regard, we noticed significant intraseasonal
changes only in terms of sperm viability. Surprisingly, the per-
centage of viable sperm was higher in July than in November,
coinciding with the findings of Hedia et al. [92] in fat-tailed Awassi
rams under subtropical conditions. In contrast, other study con-
ducted by the same authors using the same experimental condi-
tions showed the lowest percentage of live sperm in July [51], while
several authors registered a similar percentage of live cells in
summer and autumn in different breeds within the ovine species in
studies conducted in the northern hemisphere [66,90,91]. These
different trends may be, at least in part, due to breed differences
and geographical location. Using proteomic strategies, 189 sperm
proteins were identified with a significantly different expression
echoic areas (HA, %); (C) hypoechoic areas density (HA/cm2). The same 14 males were
n). Graph dots represent the individual values of each ram. Non-significant differences



Fig. 5. Ram spermmotility and kinetic evaluation. (A) Total motility (TM, %); (B) Progressive motility (PM, %); (C) Linearity (LIN, %); (D) Amplitude of lateral head displacement (ALH,
mm). The same 19 males were analyzed in each experimental group (EBS, Early Breeding Season; LBS, Late Breeding Season). Graph dots represent the mixed ejaculates of each ram.
Non-significant differences (P � 0.05) were found between the EBS and LBS.
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between the EBS and LBS, and the enrichment analysis revealed
that carbon metabolism, citrate cycle (TCA cycle), biosynthesis of
amino acids, diabetic cardiomyopathy, and glycolysis/gluconeogenesis
pathways were less expressed in the EBS. It is well known that
mammalian sperm use monosaccharides as the most generalized
energy source through both glycolysis (anaerobic pathway) and
TCA cycle (aerobic pathway) [93]. However, they can utilize a wide
array of substrates to obtain energy such as lactate, pyruvate, citrate
35
[94,95], and glycerol [96]. Our results confirm these previous re-
ports and reveal that ram sperm have a decreased energy meta-
bolism at the start of the reproductive season. The presence of an
impaired amino acids synthesis at this time also deserves attention.
Recent researches have evidence glutathione (GSH) synthesis in
human [97] and stallion sperm [98] after an oxidative insult. One of
the consequences of sperm liquid storage is oxidative stress due to
redox deregulation caused by an overproduction of ROS and a



Fig. 6. Ram sperm quality evaluation. (A) Viable sperm (%) (Zombie Violet™); (B) Apoptotic sperm (%) (CellEvent™ Caspase-3/7 Green); (C) Sperm with high mitochondrial activity
(%) (CellROX™ Deep Red). The same 19 males were analyzed in each experimental group (EBS, Early Breeding Season; LBS, Late Breeding Season). Graph dots represent the mixed
ejaculates of each ram. Different lowercase superscripts letters (a, b) indicate significant differences (P < 0.05) between the EBS and LBS.
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decrease in the antioxidant capacity of the sample [99]. GSH is the
major natural antioxidant protecting cells from oxidative stress
[100]. Thus, a decreased GSH synthesis in the EBS could lead to
increased oxidative stress, which would inhibit mitochondrial
respiration at this time [101,102]. The minor levels of NADH Dehy-
drogenase and Mitochondrial Acyl Carrier Protein (ACP) detected
with the highest discriminant power in the EBS support these
findings. NADH Dehydrogenase constitutes complex I, the largest
component of the mitochondrial respiratory chain which results in
the transfer of electrons from NADH to the electron acceptor ubi-
quinone thereby providing a proton gradient to produce ATP by ATP
synthase [103]. On the other hand, Mitochondrial ACP is mainly
located in the matrix compartment as a key component of the
mitochondrial fatty acid synthesis (FAS) pathway by presenting
acyl chain intermediates to catalytic sites of enzymes [104]. In this
way, it is required for the production of long-chain fatty acids that
are crucial for maintaining phospholipid levels essential for the
activity of respiratory complexes II, III, and IV [105]. Furthermore, a
small fraction of this protein is integrated into complex I of the
Fig. 7. Heat map showing the impact of the time of the breeding season in the pro-
teome of ram sperm. Proteins are classified following hierarchical clustering. The heat
map code is present with red areas representing larger amounts of protein and green
areas representing smaller amounts of protein. Proteins were normalized, filtered by a
fold change > 2, with P ¼ 0.01 and q ¼ 0.1.
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electron transport chain [106]. That is, both proteins are necessary
for the efficient functioning of the electron transport chain and
both of them are down-regulated in the EBS, coinciding with a
decreased in energetic metabolism and synthesis of amino acids
such as GSH. Within the non-structural proteins with reduced
relative abundance in the EBS we also found the Solute Carrier
Family 9B1 (A0A6P7E8V0). In most mammalian species examined,
sperm experience a natural increase in intracellular Naþ/HCO3
concentration and pH value during the journey in the female
reproductive tract [107]. This is of great importance for sperm
physiology, since it is necessary for further activation of CatSper
channels and Ca2þ entrance, thus influencing glycolysis and
axoneme activity [108,109]. It is known from the literature that two
main categories of transmembrane proteins are involved in sperm
intracellular pH regulation: bicarbonate and proton carriers [110].
The latter include transporters of the Solute Carrier 9 (SLC9) family,
commonly termed SodiumeHydrogen Exchangers (NHEs) or
Antiporters (NHAs), involved in the electroneutral exchange of
intracellular Hþ with extracellular Naþ according to the concen-
tration gradient across the membrane [111]. The SLC9 family is
divided into three different subgroups: SLC9A, SLC9B and SLC9C.
Specifically, the SLC9B subgroup consists of two recently cloned
isoforms: NHA1 (SLC9B1), which is testis-specific, and NHA2
(SLC9B2), which is ubiquitous [110,112,113]. The physiological role
of NHA1 and NHA2 is fairly unknown [114], although they appear to
have different transport properties. While NHA2 behaves as an
electroneutral Naþ/Hþ exchanger, NHA1 is better modeled as an
Hþ-Cl- cotransporter [115]. Changes in other two proteins confirm
the diminished fertilization ability of ram sperm at the beginning of
the reproductive season. According to gene knockout studies in
mice [116e119], Disintegrin and Metalloproteinase Domain-
Containing Proteins (ADAMs) are involved in the binding of sperm
to the zona pellucida in the initial gamete adhesion process.
However, the binding mechanism is not yet clear. Several studies in
mice have suggested that the disintegrin domain of ADAMs bound
to particular integrins on the egg plasma membrane [120,121]. On
the other hand, crystal structural studies revealed that the hyper-
variable region in the cysteine-rich domain would serve as an ad-
hesive site [122,123]. In pigs, ADAM20-like expressed on the
anterior portion of the plasma membrane was reported to be
involved in the adhesion to a specific carbohydrate present in the
zona pellucida [124]. The aforementioned function explains our
findings, since fertility is lower in EBS, coinciding with a lower
expression of this protein. Phosphoinositide-specific Phospholipase C
(PLC) also plays an essential role in the fertilization process by



Fig. 8. g:GOST multiquery Manhattan plot showing the enrichment analysis of ram sperm proteins underrepresented in the Early Breeding Season. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways are depicted in pink. The P values are depicted in the y axis and more detailed in the result table below the image.
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means of the phosphatidylinositol phosphates (PIPs) metabolism.
PLC hydrolyzes phosphatidylinositol 4,5-biphosphate (PIP2) to
generate two second messengers: diacylglycerol (DAG) and inositol
1,4,5-trisphosphate (IP3). DAG and IP3 initiate further signal trans-
duction pathways through activation of protein kinase C (PKC) and,
in turn, intracellular calcium release [125e127]. Ca2þ has a primary
role in the execution of the capacitation and acrosomal reaction, an
exocytotic event required for fertilization [128], and in the oocyte
activation, a fundamental event that initiates embryonic develop-
ment [129]. The importance of this sperm specific protein has been
highlighted by numerous clinical studies directly linking defects or
deficiencies in human PLC with documented cases of male infer-
tility [130e134]. Thus, its lower expression in the EBS sperm jus-
tifies the lower fertilization rate obtained at this time.
Fig. 9. Qlucore Omics® overrepresentation test of proteins of interest showing a fold chang
A0A0U1WU05, A0A6P3ERG0, A0A6P7D6E6, A0A6P7E8V0, A0A6P3ET71, A0A835ZRR9, A0A6
Protein 2, Disintegrin and Metalloproteinase Domain-Containing Protein 20-like, Phospho
Isoform X3, Solute Carrier Family 9B1, Radial Spoke Head Protein 3 Homolog, Pro-Interleukin
and Placenta-Expressed Protein, and Acyl Carrier Protein Mitochondrial. The same 6 male
Breeding Season). Graph dots represent the individual values of each sample (two technical
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A0A6P7ETW8 encodes for Testis, Prostate and Placenta-Expressed
Protein (TEPP) with uncertain function [135]. Pro-Interleukin-16
(Pro-IL-16) is the precursor molecule of the Inlerleukin-16 (IL-16), a
pro-inflammatory cytokine originally designated as a lymphocyte
chemoattractant factor [136]. However, apart from their role in the
immune system modulation, some cytokines are directly involved
in the regulation of the testicular function [137]. It has been pro-
posed that they are released by germ, Leydig and Sertoli cells,
epididymis and prostate [138], acting as local mediators of the
action of sex hormones and paracrine regulators of the spermato-
genesis process [139,140]. That is, the lower amount of this protein
at the start of the breeding season could influence the course of a
successful spermatogenesis. In fact, we also detected changes in
four structural proteins of the sperm flagella, a specialized form of
e > 4, P ¼ 2.40e-07, and q ¼ 2.23e-06 (equivalent to FDR): A0A6P7DP96, A0A6P7DP85,
P3EAP5, A0A6P7ETW8, and A0A6P3EHT6, corresponding to Fibrous Sheath-Interacting
inositide-Specific Phospholipase C, Tektin 5, Armadillo Repeat-Containing Protein 12
-16, NADH Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex Subunit 8, Testis, Prostate
s were analyzed in each experimental group (EBS, Early Breeding Season; LBS, Late
replicates per male). The P values for each protein are depicted at the top of each plot.
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cilium with a structure with more than 1,000 proteins responsible
for generating the mechanical force for sperm mobility to reach
oocytes in the female genital tract [141]. Sperm flagellum is divided
into four parts: connecting, middle, principal, and end pieces. It is
composed by the axoneme in its entire length with additional
surrounding structures known as peri-axonemal complex, except
the end piece which is surrounded by plasma membrane only
[142]. Microscopically, the axoneme is a microtubule-based struc-
ture consisting of nine outer doublet-microtubules and a central
pair that are linked with radial spokes (RSs) and dynein arms. The
peri-axonemal complex is composed of outer dense fibers (ODFs),
satellite fibrils, and amitochondrial sheath (MS) in themiddle piece
[143]. Tektins (TEKTs) are constitutive proteins of the axonemal
microtubules that seem to be involved in their stability and struc-
tural complexity [144]. Five TEKTs (TEKT 1-5) have been identified
in mammals so far [144e146]. TEKT 5 is predominantly associated
with the inner side of the MS and might work as a middle-piece
component requisite for flagellar stability and sperm motility
[145]. RSs are T-shaped structures anchored on the outer doublet-
microtubules through the spoke stalk (vertical bar of the “T”) that
transiently interact with the central pair projections using the
spoke head (horizontal bar of the “T”) [147]. Through studies on
Chlamydomonas reinhardtii, the purification of the RSs led to the
identification of 23 proteins (RSP1eRSP23) [148]. Radial Spoke
Protein 3 (RSP3) spans and plays a key role in uniting the spoke stalk
and head, acting as a core scaffold for RSs and as an anchor to the
axoneme [149]. Therefore, defects in this protein are characterized
by multiple malformations of the flagella, asthenoteratospermia,
and male infertily [150,151]. The Armadillo Repeat-Containing Pro-
tein 12 (ARMC12) is an outer mitochondrial membrane protein
belongs to the ARM family which is evolutionarily conserved
among the species and essential for MS formation [152]. Defects in
this protein cause morphological abnormalities in the middle piece
of sperm flagella in humans [153] andmice [152] resulting, as in the
previous case, in asthenoteratospermia and infertility. The principal
piece is surrounded by the fibrous sheath (FS), a unique cytoskeletal
structure that modulates flagellar bending and defines the shape of
the flagellar beat [154]. Fibrous Sheath-Interacting Protein 2 (FSIP2)
is one of the major components of the FS [155], so is critical for the
maintenance of flagellum structure and function [156]. In fact,
mutations in FSIP2 have been reported to cause multiple
morphological abnormalities of sperm flagella and infertility in
humans [156e160]. In addition, FSIP2 has been demonstrated to
interact with the A-kinase Anchoring Protein-4 (AKAP4), a crucial
enzyme of energy metabolism [161]. Specifically, FSIP2 could play
an important role for directing the anchoring of cyclic AMP-
dependent Protein Kinase (PKA) to AKAP4, thereby compartmen-
talizing PKA within the immediate proximity of its enzymatic
substrates [162]. Thus, FSIP2 has a vital role on sperm motility and
maturation [163,164], and its lower expression in the EBS explains
the lower fertilizing capacity of these samples.

In conclusion, while our basic analyses on male and sperm
quality showed similar results between the beginning and the end
of the breeding season, on a proteomic level we detected a lower
expression of sperm proteins linked to the energy metabolism,
sperm-oocyte interactions, and flagellum structure in the EBS.
Probably, this different protein expression could be related to the
lower fertility rate of Assaf ewes after cervical artificial insemina-
tion at this time. More importantly, sperm proteins can be used as
highly effective molecular markers in predicting sperm fertilization
ability related to intraseasonal variations.
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