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Abstract
Determining the factors that pre-adapt plant species to successfully establish and spread outside of their 
native ranges constitutes a powerful approach with great potential for management. While this source-area 
approach accounts for the bias associated with species’ regions of origin, it has been only implemented 
in pools of species known to be established elsewhere. We argue that, in regions with well-known intro-
duction histories, such as the Mediterranean Biome, the consideration of co-dominant non-introduced 
species as a control group allows a better understanding of the invasion process. For this purpose, we 
used occurrence data from GBIF and trait data from previous studies to find predictors of establishment 
and invasion. We compare the frequency, climatic niche and functional traits of 149 co-dominant plant 
species in their native region in southern Spain, considering whether they have colonised other Mediter-
ranean-climate regions or not and their level of invasion. We found that large native ranges and diverse 
climatic niches were the best predictors of species establishment abroad. Moreover, coloniser species had 
longer bloom periods, higher growth rates and greater resource acquisition, whereas coloniser species be-
coming invasive had also greater reproductive height and nitrogen use efficiency. This framework has the 
potential to improve prediction models and management practices to prevent the harmful impacts from 
species in invaded communities.
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Introduction

Exotic plant species pose an increasing threat to native species and ecosystems conser-
vation (Vilà et al. 2011; Bradley et al. 2019). Identifying predictors of invasion suc-
cess constitutes a fundamental aim in invasion biology in order to support prevention 
measures and risk assessments (Pyšek et al. 2020). Key factors that drive successful 
invasion are high propagule pressure (Cassey et al. 2018) and having competitive traits 
or general-purpose phenotypes that confer ecological versatility and, therefore, high 
invasiveness (Drenovsky et al. 2012; Casado et al. 2018). Invasiveness also depends on 
the interaction with ecological and evolutionary processes occurring in the introduced 
range (Van Kleunen et al. 2010b); therefore, its determinants are context dependent 
(Novoa et al. 2020), which emphasises the necessity to identify variables that facilitate 
invasion under specific environmental constraints.

Most studies interested in identifying factors promoting invasion success frequent-
ly focus on understanding the mismatch in functional trait performance between exotic 
species and their native competitors in the recipient communities (e.g. de la Riva et al. 
2019; Galán Díaz et al. 2021a). An alternative approach is to compare functional strat-
egies of species from the same source or geographic region (i.e. source-area approach) to 
identify whether species’ occurrence, traits and climatic niche in the native range allow 
us to predict their establishment and spread when introduced in other regions. This 
approach accounts for the bias associated with species region of origin and, potentially, 
allows us to focus on the role of traits alone (Martín-Forés et al. 2023). In this regard, 
it has been found that the climatic tolerance and ecological versatility of species in their 
native range are positively correlated with their capacity to establish and spread in other 
regions (Pyšek et al. 2009, 2015; Casado et al. 2018). This is probably associated with 
the display of certain trait attributes (Pyšek and Richardson 2007; Pyšek et al. 2009, 
2015) and the fact that many exotic species are not only frequent and abundant in their 
invaded ranges, but also dominate in the communities of their native range (Firn et al. 
2011; Galán Díaz et al. 2021b). Yet, most studies following the source-area approach 
have only looked at species known to be established in other regions, disregarding the 
role of co-dominant non-colonisers. We argue that, in regions with well-known intro-
duction histories, the consideration of co-dominant non-introduced species as a con-
trol group allow us to broaden our understanding of the predictors of invasion success.

Studies following the source-area approach have mainly explored the importance 
of life history traits as predictors of invasiveness (Pyšek et al. 2009; Arianoutsou et 
al. 2013; Casado et al. 2018), whereas the role of functional traits in species native 
ranges has been frequently overlooked (but see Schlaepfer et al. (2010); Pyšek et al. 
(2015)). Moreover, the combined consideration of above- and below-ground plant 
functional traits remains little explored in invasion studies (Fridley et al. 2022). Plant 
traits might be useful to predict invasion success because, under specific environmental 
constraints, traits that confer dominance in the native range might be the same that 
facilitate establishment and spread in the introduced range (Thompson et al. 1995). In 
this regard, it has been shown that exotic species in Mediterranean regions can be func-
tionally different to other species in their native communities (Galán Díaz et al. 2023) 
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and display phenotypic variation when compared with communities in the introduced 
range (Martín-Forés et al. 2017, 2018). This might suggest that invasive species could 
already have intrinsic attributes to establish and thrive in communities with similar 
abiotic constraints rather than only benefitting from extrinsic ecological and genetic 
factors (Schlaepfer et al. 2010; Colautti et al. 2014). Therefore, it is important to lever-
age the performance of plant functional traits within the native range as predictors of 
the establishment and future stage of the invasion of species in the introduced range. 
In addition, it is necessary to include measures of phylogenetic relatedness as shared 
evolutionary histories of species might lead to statistical non-independence of data 
(Felsenstein 1985; Schlaepfer et al. 2010; Vilà et al. 2015).

Spain is home to many herbaceous species that are naturalised in other Mediterrane-
an-climate regions of the world (Casado et al. 2018). The origin of these introductions 
can be tracked down to the arrival of the first Europeans settlers into these territories 
where species were introduced deliberately (i.e. crops, ornamental plants) or accidentally 
(i.e. weeds introduced with livestock, fodder, wool or cereals) (Barry et al. 2006; Mar-
tín‐Forés 2017). These species (henceforth coloniser species) co-existed long-term with 
anthropogenic activities in their native range (Schlaepfer et al. 2010; MacDougall et al. 
2018) and benefitted from an initial high propagule pressure. These coloniser species 
brought novel traits into the recipient communities, such as annual life cycles and effi-
cient resource-use strategies, highly beneficial in a context of farming, intense herbivory, 
long drought periods and high soil disturbance (Seabloom et al. 2003; Funk and Vi-
tousek 2007; HilleRisLambers et al. 2010; Molinari and D’Antonio 2014). Therefore, 
Spain communities constitute good candidates to apply the source-area approach.

Here, we compare the occurrence (i.e. frequency), climatic niche and functional traits 
of co-dominant plant species in their native region in southern Spain considering whether 
they have colonised other Mediterranean-climate regions or not. Our hypotheses are that: 
(1) Colonisers are more frequent and show greater climatic tolerances than co-occurring 
non-coloniser natives. This would reflect the importance of propagule pressure (high as-
sociation with humans in the native range) and having great ecological versatility; (2) 
Colonisers are functionally different from non-coloniser species and show traits related to 
higher resource-acquisition rates and greater competitive ability. This would reflect that 
coloniser species benefit from niche opportunities or competitive advantages, even in 
Mediterranean-climate regions where the harsh environmental conditions frequently lead 
to functional convergence (Galán Díaz et al. 2021b, 2023); (3) Naturalised and invasive 
coloniser species are functionally distinct in their native range, i.e. certain plant attributes 
are related to the stage of invasion in other Mediterranean-climate regions.

Material and methods

Grassland surveys

We used trait data from co-dominant grassland species in southern Spain (Andalucía) 
compiled by Galán Díaz et al. (2022) which is available from Dryad (Galán Díaz et 
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al. 2022). Dominant species were defined as those whose cumulative cover made up at 
least 90% of the total community cover (Garnier et al. 2004). We selected as a source 
species pool all species native to Spain (149 species in total) which were classified as 
coloniser (98 species) or non-coloniser (51 species), depending on whether they are 
known to be introduced in other Mediterranean-climate regions of the world or not. 
We further classified coloniser species according to their stage of invasion or perfor-
mance in other Mediterranean-climate regions into naturalised (56) and invasive (42) 
(Arianoutsou et al. 2013; Calflora 2014; Henderson 2020; Pagad et al. 2022). Natu-
ralised colonisers are those species that have established at least in another Mediterra-
nean-climate region; whereas, invasive refers to naturalised species that reproduce and 
spread fast at least in another Mediterranean-climate region (Richardson et al. 2000; 
Blackburn et al. 2011). The list of species included in this study can be found in Suppl. 
material 1: appendix S1.

Occurrence and climate data

Occurrence data of the target species in southern Spain were downloaded via the Glob-
al Biodiversity Information Facility (GBIF) using the “rgbif ” package (Chamberlain 
et al. 2022). Although the native range of some species extended beyond this area, we 
focused on the distribution patterns within the species’ native ranges where traits were 
measured (i.e. autonomous community of Andalusia) because intraspecific variation 
in species traits can be high across species distribution ranges (Umaña and Swenson 
2019). To avoid artefacts related to collection bias and spatial clustering (Larridon et al. 
2021), we filtered one observation per species and cell from a raster with a resolution 
of 30 seconds (0.86 km2 at the Equator) which represents species frequency or number 
of grid cells occupied by the species. For the filtered observations, climate data were 
obtained from WorldClim at a resolution of 30 seconds (Fick and Hijmans 2017). 
We used the variables Annual Mean Temperature, Maximum Temperature of Warm-
est Month, Temperature Annual Range, Annual Precipitation, Precipitation of Driest 
Month and Precipitation Seasonality which represent average, extreme and seasonal 
indexes of temperature and precipitation.

Functional traits measurements

We considered eight functional traits that reflect orthogonal axes of plant function 
related to plant investment in above- and belowground vegetative and reproductive 
structures and community assembly processes (Table 1; Garnier et al. 2016; Hulme 
and Bernard-verdier 2018). Traits were measured in 149 species (301 combinations 
of species × site). A detailed description of the methodology followed to measure each 
trait can be found in Galán Díaz et al. (2022). In addition, we retrieved another 13 
traits from literature related to life and growth form, reproduction strategies, pollina-
tion vectors and dispersal vectors (Table 1; the list of references can be found in Suppl. 
material 1: appendix S2).
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Statistical analyses

First, to estimate species’ climatic niches, we performed a Principal Component Analy-
sis (PCA) with the six climatic variables and used the scores of the observations along 
the first three Principal Components (PCs) to calculate two indexes (Suppl. material 
1: appendix S3): (i) climatic niche richness, calculated as the smallest convex hull that 
encloses all observations of a given species; and (ii) climatic niche diversity, calculated 
as the mean pairwise distance amongst observations of a given species. These indexes 
represent two independent facets of species climatic niches. While climatic richness 
represents the dispersion or range of species climatic niches, climatic diversity indicates 
how the observations are distributed within the convex hull. The mean pairwise dis-
tance is less sensitive to outliers and is better correlated to the number of different habi-
tats occupied by the species in their native range, a known predictor of invasiveness 
(Pyšek et al. 2015). We used linear models to compare whether the species frequency 
and climatic niches differ between non-coloniser, naturalised and invasive species.

Second, we compared trait differences between non-coloniser and coloniser spe-
cies and differences between naturalised and invasive species within non-colonisers. For 

Table 1. Traits considered in this study. Traits marked with an asterisk were retrieved from literature (the 
list of references can be found in Suppl. material 1: appendix S2).

Trait Abb. Units Significance
Growth form * Bulbous/Erect/Graminoid/Prostrate/Rosette
Life form * Therophyte/Geophyte//Hemicryptohpyte/Chamephyte

Le
af

Specific leaf area SLA cm2/g Resource acquisition rate and conservation, 
photosynthetic rate, relative growth rate

Leaf dry matter content LDMC mg/g Leaf tissue density, resistance to physical hazards, stress 
tolerance

Ratio C:N CN Resource allocation
Isotopic carbon fraction δ13C ‰ Integrated water use efficiency

Ro
ot

Specific root length SRL cm/mg Resource acquisition rate and conservation, relative 
growth rate

Root dry matter content RDMC mg/g Root tissue density, resistance to physical hazards, 
drought resistance

Root diameter RD mm Mycorrhizal association

Re
pr

od
uc

tio
n

Reproductive height cm Dispersal capacity
Seed mass * g Seedling survival and establishment
Onset of flowering * OFL months Reproductive success
Length of bloom * LB months Reproductive success
Self-compatibility * 1/0
Pollination mechanism * Insects/Wind/Selfed
Dispersal vector * Agochory 1/0 Humans

Autochory 1/0 Self-dispersed
Anemochory 1/0 Wind
Hydrochory 1/0 Water
Zoochory 1/0 Animals

Number of dispersal vectors * numb_disp 1–5
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continuous traits, we used the median value per species. Reproductive height and seed 
mass were log‐transformed prior to analyses. We ran linear models to test for differences 
in continuous traits and chi-squared tests for categorical data. We ran Wilcoxon rank-
sum and Kruskal-Wallis tests for onset of flowering, length of the bloom period and 
number of dispersal mechanisms. To test for the effect of phylogenetic non‐independ-
ence amongst species (i.e. whether the observed patterns reflect contrasting evolutionary 
histories), we ran a phylogenetic ANOVA using the aov.phylo function implemented in 
the “geiger” package (Pennell et al. 2014). For this, we used an existing megaphylogeny 
to obtain a phylogenetic inference of our study species (Qian and Jin 2016). Species 
which were missing in the original tree were substituted by congeneric species (de la Riva 
et al. 2019). The phylogenetic inference is available in Suppl. material 1: appendix S4.

Third, we ran a supervised classification algorithm (random forest) to leverage the 
relative importance of species occurrence (i.e. frequency), climatic niches and traits 
as predictors of invasiveness. We removed qualitative traits with missing data and im-
puted continuous traits using the rfImpute function included in the “randomForest” 
package. We also included family as a predictor because of the importance of phyloge-
netic relationships inferred from the phylogenetic ANOVA.

All statistical analyses were performed in R version 4.2.2. To ensure the results of 
this study are fully reproducible, codes are available from GitHub (https://github.com/
galanzse/colonizersathome) and data from the Dryad Digital Repository (Galán Díaz 
et al. 2022).

Results

Coloniser species were more frequent than non-coloniser species in their shared native 
range in southern Spain and had greater climatic niche richness and diversity (Fig. 1). 
When considering the stage of invasion in other Mediterranean-climate regions, natu-
ralised species were more frequent than non-coloniser species; both coloniser groups 
(i.e. naturalised and invasive species) had similar climatic richness and greater climatic 
richness than non-colonisers; and invasive species had greater climatic diversity than 
non-coloniser and naturalised species (Fig. 1).

We found significant functional differences between non-coloniser and coloniser 
species for four traits: specific leaf area (SLA), specific root length (SRL), length of 
bloom period and number of propagule dispersal vectors (Fig. 2 and Table 2). Colo-
niser species had on average 17.68% greater SLA and 15.23% greater SRL than non-
coloniser species. The bloom period of coloniser species was one month longer than 
non-coloniser species. Coloniser species showed more propagule dispersal vectors than 
non-colonisers.

We found significant differences between groups when considering the stage of 
invasion of colonisers in other Mediterranean-climate regions (Fig. 3). Naturalised col-
onisers had on average 23.20% greater SLA than non-colonisers and their bloom pe-
riods were one month longer. Invasive colonisers were 11.03% taller and had 20.78% 

https://github.com/galanzse/colonizersathome
https://github.com/galanzse/colonizersathome
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greater C:N than naturalised colonisers. Both naturalised and invasive coloniser species 
showed more propagule dispersal vectors than non-colonisers.

The phylogenetic ANOVAs revealed that evolutionary relatedness does not nec-
essarily determine trait differences between non-coloniser and coloniser species, but 
plays a major role when considering the stage of invasion of colonisers. Functional 

Figure 1. Species frequency (i.e. number of cells occupied in the native region), climatic niche richness 
(i.e. smallest convex hull that encloses the observations) and climatic niche diversity (i.e. mean pairwise 
distance amongst occurrences) of non-coloniser and coloniser species, also considering the stage of inva-
sion of coloniser species (i.e. naturalised or invasive) in other Mediterranean-climate regions.
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differences between non-coloniser, naturalised and invasive species may reflect phy-
logenetic non-independence amongst groups, mostly due to the large proportion of 
invasive grasses (Suppl. material 1: appendix S5).

Non-coloniser and coloniser species differed in many qualitative traits (Table 2). 
Naturalised coloniser were more frequently therophytes, whereas invasive colonisers 
were more frequently grasses and, therefore, pollinated by wind more than the other 
groups. More than fifty percent (51.02%) of coloniser species were reported to be self-
compatible in contrast to 15.68% of non-coloniser species. Overall, coloniser species 
presented more dispersal vectors than non-colonisers.

The accuracy of the random forest model was 73.53% when predicting coloniser/
non-coloniser species (Table 3). The most important variables that contributed to this 
model were richness of the climatic niche, dispersal vectors, agochory, family and zoo-

Figure 2. Functional differences between non-coloniser and coloniser species. * p-value < 0.05.
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chory (Fig. 4). The inclusion of the stage of invasion decreased the accuracy of the 
model to 58.82%. The most important variables that contributed to the model specify-
ing the stage of invasion were richness of the climatic niche, dispersal vectors and family.

Discussion

Discerning general invasion syndromes across ecosystems can facilitate the identifica-
tion of species with greater risks of establishment and support management actions at 
different stages of the invasion process (Novoa et al. 2020). In this study, we looked 
at the occurrence, climatic niches and traits of a pool of co-dominant grassland plant 

Figure 3. Functional differences between non-coloniser, naturalised and invasive species. Letters denote 
statistical differences in post-hoc comparison (p-value < 0.05).
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Table 2. Contingency table of qualitative traits of non-coloniser and coloniser species. Coloniser species 
are separated considering their level of invasion in other Mediterranean-climate regions. * p-value < 0.05.

trait non-coloniser 
(n = 51)

coloniser (n = 98)
naturalised (n = 56) invasive (n = 42)

Life form therophyte 32 51 28*
geophyte 2 1 0

hemicryptophyte 10 4 13
chamephyte 3 0 1

Growth form bulbous 3 1 0
erect 26 28 17*

graminoid 4 6 17*
prostrate 13 18 4*
rosette 2 3 4

Pollination insects 32 38 18*
wind 6 9 21*

self-compatible 8 33 17*
Dispersion agochory 2 22 23*

anemochory 12 19 23*
autochory 4 24 6*

hydrochory 1 12 11*
zoochory 13 36 28*

Table 3. Confusion matrices of random forest models. Rows indicate the actual (true) values for each 
category and columns indicate predicted values. The classification error corresponds to the proportion 
of wrongly classified cases, i.e. for a given category, the classification equals to the number false negative 
predictions divided by the total number of actual cases.

predicted

ac
tu

al

Model 1 coloniser non-coloniser classification error
coloniser 79 16 0.17
non-coloniser 20 21 0.49
Model 2 invasive naturalised non-coloniser
invasive 18 13 10 0.56
naturalised 11 36 7 0.33
non-coloniser 6 9 26 0.37

species in their native range in southern Spain to explore its utility as predictors of 
invasiveness in other Mediterranean-climate regions of the world.

We found that coloniser species are more widespread (i.e. frequent) in their native 
region than co-dominant non-coloniser species. This result matches the Casado et al. 
(2018) positive relationship between the degree of occurrence of herbaceous species 
in their native range in the Iberian Peninsula and their capacity to successfully occupy 
other Mediterranean-climate regions. This evidence also adds to previous studies that 
reported high abundances of coloniser species in their native Mediterranean commu-
nities (Firn et al. 2011; Galán Díaz et al. 2021b). This trend, therefore, suggests that 
the more frequent and dominant species are in their native region, the greater the 
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probability of coming into contact with humans and the higher the propagule pres-
sure, ultimately facilitating their establishment (Cassey et al. 2018). We also found a 
positive relationship between the frequencies of coloniser species in their native ranges 
and their climatic niche richness and diversity, i.e. coloniser species occupy a large 
proportion of climatically different areas in their native range reflecting their ecological 
versatility. When considering invasion status, naturalised colonisers were more frequent 
than non-coloniser species and, whereas we did not find evidence supporting a greater 
frequency of invasive colonisers than non-colonisers, invasive colonisers showed the 
greatest diversity in terms of their climatic niche. Similarly, Pyšek et al. (2009, 2015) 
found that the number of habitats that a species occupies in its native range is posi-
tively correlated to the number of regions where it has successfully established abroad. 
As naturalised and invasive species showed similar climatic niches in terms of richness, 
this result reflects that colonisers’ capacity to fully occupy their climatic and ecological 
niches in the native range is a good predictor of their capacity to overcome the dispersal 
and environmental barriers abroad and become invasive (Blackburn et al. 2011).

There were functional differences between non-coloniser and coloniser species. 
Overall, coloniser species achieve a combination of traits that facilitate rapid growth, 
regeneration and spread compared to non-coloniser species. That is, colonisers species 
displayed greater SLA and SRL, which indicates high resource-use efficiency and rela-
tive growth-rates (i.e. high C gain and leaf production when resources are abundant; 
Funk et al. (2017); Fridley et al. (2022)) and higher rates of N uptake (Jo et al. 2015, 
2017). Similar trends have been reported across communities of the Mediterranean 
Biome (Galán Díaz et al. 2021a) and globally (Ordonez and Olff 2013; Fridley et al. 
2022). Our findings also indicated that leaf traits of colonisers appear to be coordinated 

Figure 4. Variable importance plot of random forest classification models. Origin indicates whether 
the species are introduced in other Mediterranean-climate regions of the world (i.e. non-coloniser and 
coloniser). Invasiveness refers to species’ stage of invasion in other Mediterranean-climate regions (i.e. 
non-coloniser, naturalised and invasive).
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with root traits, which suggests that synchronisation amongst organs as part of a whole-
plant resource uptake strategy is common in Mediterranean plants (de la Riva et al. 
2016, 2021). Moreover, we found that coloniser species had longer length bloom peri-
ods, which indicates a greater investment in reproductive structures. Hence, coloniser 
species may benefit from reduced competition via exploiting different temporal niches 
(Godoy et al. 2009), thereby increasing the chances of producing viable propagules by 
potentially covering broader seasonal ranges and climatic conditions (Grubb 1977). 
Coloniser species showed more propagule dispersal vectors (both naturalised and in-
vasive species) than non-coloniser ones. This variety of dispersal vectors provides an 
advantage when they come into contact with humans in the native region and spread 
across other regions after establishment (Pyšek and Richardson 2007; Blackburn et 
al. 2011). Both naturalised and invasive colonisers showed a greater proportion of 
self-compatible species than non-colonisers. It has been argued that self-compatibility 
could facilitate the establishment of exotic species but, hinder species of becoming 
invasive (Pyšek and Richardson 2007). Yet, multiple introductions are frequent and 
within-population genetic diversity of introduced populations has been found to be 
comparable to native populations (Bossdorf et al. 2005); therefore, the possibility of 
self-fertilisation could be an advantage at every stage of the invasion process. This col-
lated evidence suggests that coloniser species could benefit from niche opportunities or 
competitive advantages in their native region (Galán Díaz et al. 2021b, 2023). These 
functional differences could present an advantage in anthropogenic habitats globally if 
they reflect adaptation to agricultural and managed habitats (MacDougall et al. 2018).

As we pointed out, maximising resource uptake and high relative growth rates has 
been observed as a successful strategy for coloniser species. However, when considering 
invasion status, the patterns were more nuanced: we did not find significant differences 
in SRL associated with invasion status and the species displaying the highest SLA and 
longer bloom periods were naturalised instead of invasive colonisers. Invasive species, 
in turn, displayed higher values of reproductive height, which is closely correlated to 
plant stature in grassland species and C:N concentration. Therefore, different traits 
might be relevant along different stages of the invasion process (Pyšek et al. 2015; 
Milanović et al. 2020). On the one hand, higher rates of growth and resource acquisi-
tion might facilitate plant survival and establishment in seasonal climates with dry 
seasons such as the Mediterranean (Funk et al. 2016; Galán Díaz et al. 2021a). Addi-
tionally, the longer length bloom periods of naturalised species compared to non-col-
onisers, which were also frequently pollinated by insects, suggests that the potential to 
participate in native plant–pollinator networks might result in being beneficial (Parra‐
Tabla and Arceo‐Gómez 2021). On the other hand, our results reflect the importance 
of greater dispersal distance and above-ground competitive hierarchy and competition 
for light to overcome the dispersal barrier and become invasive (Schlaepfer et al. 2010; 
Bernard-Verdier et al. 2012). Reproductive height constitutes a well-known driver of 
invasiveness (Van Kleunen et al. 2010a; Gallagher et al. 2015; Divíšek et al. 2018) 
and it has been shown that invasive grasses transform grassland native communities by 
filtering tall native species that can compete for light (Molinari and D’Antonio 2014). 
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Higher C:N ratio indicates high nitrogen use efficiency in nitrogen-limited communi-
ties (Zhang et al. 2020).

The phylogenetic regressions suggest that some observed differences across stages 
of invasion may be masked by evolutionary relatedness amongst groups: naturalised 
species were more frequently forbs, whereas invasive colonisers were more frequently 
grasses. For instance, invasive species not displaying significantly greater SLA than 
non-colonisers, but showing greater C:N, might reflect greater carbon allocation to 
leaves in grasses than in forbs (Duffin et al. 2019). In addition, naturalised species 
were more frequently pollinated by insects, whereas invasive colonisers were more fre-
quently pollinated by wind. The little dependency of invasive species for insect pol-
lination might increase the chances of producing viable propagules. This suggests that 
trait comparisons expecting competition within the LHS strategy scheme might not be 
useful to completely understand community assembly processes along different stages 
of the introduction process (Westoby 1998) and that niche complementarity in terms 
of life forms, pollination and dispersal vectors are key aspects to consider.

The two most important predictors of the random forest models were climatic 
richness and number of dispersal vectors. Family was an important variable reflecting 
the importance of considering evolutionary relatedness in biological invasions to ac-
count for unmeasured trait diversity and to correctly interpret the observed differences 
(Felsenstein 1985; Schlaepfer et al. 2010; Vilà et al. 2015). Agochory (i.e. accidental 
spread of plants by humans) also contributed to the overall accuracy of the models, 
suggesting that species with propagules suspected of being dispersed by (and associated 
with) humans are those with higher probabilities of establishing abroad (MacDougall 
et al. 2018). However, the first model did not allow us to differentiate non-coloniser 
species with the capacity to establish in other regions or, conversely, this might suggest 
that some non-coloniser species could have the climatic tolerance and traits to do so. 
The second model yielded very low overall performance because of the great overlap 
between naturalised and invasive colonisers in the distribution of the predictor vari-
ables. It is worth noting that functional traits constituted poor predictors of species 
establishment and invasiveness compared to climatic or ecological tolerance indexes. 
Therefore, our findings support that, whereas functional traits have the potential to 
capture community assembly processes (Galán Díaz et al. 2023) or intraregional dis-
tribution patterns (Pyšek et al. 2015), traits alone might not directly relate to the stage 
of invasion in most habitats (Fridley et al. 2022).

Conclusions

We have shown that coloniser species are already pre-adapted to broader climatic niche 
conditions in their native range, which predisposes them to occupy greater diverse con-
ditions once they are introduced in a new area. In a similar manner, certain traits, es-
pecially indicating aided dispersal, high relative growth rate and resource efficiency, are 
related to successful colonisation; whereas, invasion processes in grasslands are more 
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associated with plants displaying higher reproductive height and nitrogen use efficiency. 
The source-area approach can be especially useful when comparing regions with shared 
histories of colonisation and trade where plant introduction histories have been mostly 
unidirectional as is the case of the Mediterranean Biome. The knowledge derived from 
such studies may allow us to improve prediction models, identifying key species to moni-
tor; this could, therefore, prevent potential harmful impacts from coloniser species in in-
vaded communities and reduce the investment necessary to target eradication measures.
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