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Abstract: The accurate and reliable extraction and matching of distinctive features (keypoints) in
multi-view and multi-modal datasets is still an open research topic in the photogrammetric and
computer vision communities. However, one of the main milestones is selecting which method is
a suitable choice for specific applications. This encourages us to develop an educational tool that
encloses different hand-crafted and learning-based feature-extraction methods. This article presents
PhotoMatch, a didactical, open-source tool for multi-view and multi-modal feature-based image
matching. The software includes a wide range of state-of-the-art methodologies for preprocessing,
feature extraction and matching, including deep learning detectors and descriptors. It also provides
tools for a detailed assessment and comparison of the different approaches, allowing the user to
select the best combination of methods for each specific multi-view and multi-modal dataset. The
first version of the tool was awarded by the ISPRS (ISPRS Scientific Initiatives, 2019). A set of
thirteen case studies, including six multi-view and six multi-modal image datasets, is processed by
following different methodologies, and the results provided by the software are analysed to show the
capabilities of the tool. The PhotoMatch Installer and the source code are freely available.

Keywords: photogrammetry; computer vision; artificial intelligence; feature-based matching; feature
extraction methods; hand-crafted methods; learning-based methods

1. Introduction

Feature-based image matching is a process that provides a correspondence between
two or more images connecting basically local image features. The development of au-
tomatic and accurate image-matching processes has been a traditional problem in the
field of photogrammetry and computer vision [1]. At present, modern camera orientation
techniques such as Structure from Motion (SfM) or Visual Simultaneous Localization and
Mapping (VSLAM) also rely on the extraction of accurate and reliable homologous points
between images. Particularly, these correspondence points between images are normally
used within the image orientation and self-calibration process, exploiting globally inherent
geometric constraints in an optimization scheme known as bundle adjustment. Image
matching can be used for object recognition and tracking, including some specifically
hand-crafted features [2,3] and, more recently, deep learning approaches [4–7].

The spread of smartphones with powerful cameras, as well as the development
of automatic tools for the creation of 3D models from a set of images, has led to the
democratization and popularization of photogrammetry and computer vision. At first,
photogrammetry was applied only by experts with good knowledge and expertise and
using very specialized equipment. At present, techniques such as SfM, together with
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multi-view stereo (MVS), allow for the creation of 3D models by end-users without specific
knowledge [8–12]. The creation of 3D models from images acquired by non-experts also
presents a challenge for image matching, since the basic rules and protocols for imagery
acquisition are often not fulfilled [13]. These amateur users will often acquire images with
low overlap, at different scales and perspectives, or even with large differences in lighting
or other radiometric conditions.

Although modern matching techniques cope with images with radiometric and ge-
ometric variations, the image matching process is especially challenging in the case of
multi-modal images. Multi-modal image matching is performed between images coming
from different sensors or different acquisition techniques and those with significant and
nonlinear radiometric distortions. The differences can be due to the use of different sensors
(e.g., multispectral, thermal, depth cameras), differences in data types (e.g., drawings
vs. photography, vector vs. raster), or different illumination conditions (e.g., day/night
images). Multi-modal matching is a critical task for a wide range of applications, such
as medicine [14], cultural heritage documentation [15], multitemporal monitoring [16] or
person re-identification [17,18], among others.

Image matching algorithms can be classified in two large groups: (i) traditional hand-
crafted methods, and (ii) learning-based methods. The latter group utilises artificial intelligence
for the development of new detectors and descriptors learned from the data [19]. While the
hand-crafted feature-extraction methods are well-established in photogrammetric processes,
they are not able to overcome important geometric, radiometric and spectral changes.

The number of artificial intelligence algorithms that can be used for image matching
is rapidly growing. As a consequence, the selection of a suitable combination of detector,
descriptor and matching function for a specific case is a complex task [20]. A detailed study
must be conducted for each type of data to select the best algorithm from the increasing
number of available options. Additionally, it is important not to overlook the manual
configuration of certain input parameters, which can be highly theoretical and difficult for
end-users to understand. Configuring each option is a time-consuming process, especially
when including deep learning methodologies and training processes. Furthermore, there is
a lack of tools that facilitate the processing, comparison, and assessment of the different
feature-based image matching methodologies.

The purpose of the present study is to try and contribute to the scientific community
in this gap. Here, we introduce PhotoMatch, an educational and open-source tool for multi-
modal and multi-view feature-based image matching. The tool allows for the use of a wide
range of algorithms for keypoint detection, description, and matching. It also provides a
method for evaluating and comparing the obtained results among different approaches in a
didactic way, including the ability to provide reference data for the evaluation of the tested
methodologies. In [21], a first version of the PhotoMatch tool was presented and awarded by
ISPRS (ISPRS Scientific Initiatives, 2019). This article presents a new version of the PhotoMatch
tool, which includes several improvements and consolidated learning-based methods.

The standard methodology for hand-crafted methods consists of feature detection,
feature description, and matching:

• Detectors identify distinctive features (keypoints), localizing meaningful and salient
regions of the image, and extracting these regions as patches. These patches are
generally normalized in order to achieve invariance to geometric and radiometric
transformations. These keypoints are represented by their point representatives, such
as the centre of gravity or other distinctive points.

• Descriptors analyse the neighbourhood of the keypoints and create a 2D vector of
information based on the different mathematical properties of the point and its neigh-
bourhood. Usually, distance is used to establish the candidate correspondences.

• Matching identifies homologous keypoints between images using the information
provided by the descriptors. The most common matching methods are brute-force
and Flann [22], and robust matching by means of spatial global or local constraints,
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such as those provided by epipolar geometry [23] and RANdom SAmple Consensus
(RANSAC) [21–24].

A wide range of detectors and descriptors has been developed in the last decades [25]
SIFT [26], and its last version RootSIFT [27], which introduces a slight variation in the
descriptor computation; SURF [28]; or MSD [29]. These are just a few examples of the
large number of detectors and descriptors available in the scientific community. SIFT
has monopolised feature-based matching in the last two decades. SIFT matching relies
on keypoints, whose associated patches are normalized to become invariant to scale and
rotation changes. Nevertheless, although SIFT is still valid and able to obtain robust results
in the SfM pipelines, it is not invariant to considerable scale and rotation changes, and even
less invariant to radiometric and/or spectral changes.

Deep learning detectors and descriptors have emerged in recent years as a promising
alternative to hand-crafted methods, especially for multi-modal matching [14]. Although
learning-based methods are often seen as a replacement of hand-crafted methods, they
still face an important number of challenges. In particular, acquiring sufficient data to
effectively train and evaluate deep learning algorithms can be challenging in many ap-
plication fields. Furthermore, the variability in the types of multi-modal combinations
complicates the development of tools that can be simultaneously utilized across a wide
range of applications [14,30].

The challenge of acquiring the data required for training is being overcome by the
development of unsupervised learning approaches. For image matching, unsupervised
learning approaches include techniques such as the use of video, where the temporal coher-
ence between frames can be used for model training [31]. Nevertheless, these approaches
require a high amount of video data, which are not always available for other applications,
such as medical imaging.

In certain complex scenarios, or when dealing with multi-modal datasets, learning-
based methods might outperform hand-crafted methods. A high number of deep learning
algorithms have been presented for keypoints’ detection and description, many of them
focused on specific applications [20,30,32,33], and many are fully available and tested. For
instance, in the last Image Matching Challenge (IMC) (Image Matching Challenge—2022
edition) [34], the best-performing algorithms were ASpanFormer [35], and combinations
of SuperGlue [36], SuperPoint [37], LoFTR [38], DKM [39] and DISK [40]. Although
the datasets of IMC included images with different positions, cameras, illumination or
even filters, they did not include multimodal datasets (i.e., a combination of different
sensors or combination of images coming from different wavelenghts). A comparison
and evaluation of the best IMC algorithms was also carried out by other authors [41],
using multi-view imagery and applied to cultural heritage. However, the obtained results
did not show a clear winner, with some algorithms performing better than others under
specific conditions. Trying to find specific multi-modal image matching contributions, other
authors used TILDE [42], SuperPoint [37], and LF-Net [33]. More recently, an outstanding
turning point was the “detect-and-describe” approach, D2-Net, network [43], and the
repeatable and reliable detector and descriptor R2D2 [44], which represents a step forward
in photogrammetry and computer vision.

Being aware of the pros and cons of the existing learning-based methods, these two
methods, D2-Net and R2D2, were included in PhotoMatch.

This paper has been structured as follows: after this introduction, the tool, PhotoMatch,
is described in Section 2. Section 3 outlines and analyzes the main results focused on multi-
view and multi-modal images. Section 4 is devoted to highlighting the main conclusions
and future perspectives.

2. PhotoMatch

PhotoMatch is an educational and open-source tool developed in C++ and Qt, which
was awarded by the ISPRS through a Scientific Initiative [45]. It is available at https:
//github.com/TIDOP-USAL/PhotoMatch/releases (accessed on 20 February 2023). The

https://github.com/TIDOP-USAL/PhotoMatch/releases
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tool follows a pipeline of six steps: (i) project and session definition, (ii) pre-processing,
(iii) feature extraction, (iv) feature matching, (v) quality control, and (vi) export (Figure 1).
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Figure 1. PhotoMatch pipeline, including a list of available algorithms/options for each step.

2.1. Project and Session Definition

This first step allows for the creation of a new project and uploading of the images.
Each project can consist of one or several sessions, enabling a comparative assessment of
the results. The tool accepts common image formats and an unlimited number of images.

2.2. Image Pre-Processing

Image pre-processing is stated as a fundamental step prior to feature extraction.
The goal is to improve the radiometric content of the images, and thus to facilitate the
subsequent feature extraction and matching process. This pre-processing is especially
useful in cases with unfavourable texture images [46].

PhotoMatch offers different approaches to image pre-processing (Figure 1), including
decolorization [47], Adaptive ContrastEnhancement Based on modified Sigmoid Func-
tion (ACEBSF) [48], Dynamic Histogram Equalization (DHE) [49], Parametric-Oriented
Histogram Equalization (POHE) [50], Recursively Separated and Weighted Histogram
Equalization (RSWHE) [51], and Wallis Filtering [52]. Pre-processing is highly recom-
mended to obtain better results in the successive steps.

2.3. Feature Extraction

The feature extraction includes the detection and description of keypoints. The tool
includes several alternatives that can be classified as hand-crafted or learning-based feature-
extraction methods (Figure 1).

A total of 20 different hand-crafted methods were implemented. These include:
SURF [28], SIFT [26], AKAZE [53] or MSD [29]. Most of the hand-crafted algorithms
include a detector and a descriptor, which can be combined (e.g., SURF detector and SIFT
descriptor). Different advanced parameters can be tuned, providing educational support
for each available algorithm. An example of the MSD and SIFT options is provided in
Figure 2b.

In addition, the Affine SIFT (ASIFT) [54] algorithm is also available. This algorithm
computes a fully affine invariant matching. It is specifically designed to deal with images
that present considerable geometric variations in terms of scale and perspective. The
algorithm simulates all possible views by modifying the longitude and latitude of the
camera orientation parameters. The ASIFT algorithm can also be used, in combination with
other similarity invariant-matching methods such as SURF, BRISK [55] or AKAZE.
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Regarding the learning-based methods, two deep learning detectors/descriptors were
incorporated in PhotoMatch: D2-Net [43] and R2D2 [44]. This selection was made based on
their outstanding performance, and considering that these algorithms are freely available
and use pretrained models, so they are not designed for a specific type of data.

D2-Net uses a single convolutional neural network for simultaneous feature descrip-
tion and detection. Instead of carrying out the detection of low-level image structures,
the process is carried out after the computation of the feature maps, when more reliable
information is available. This has been assessed on multi-modal datasets, where it has
proven to perform well for the matching of features under challenging illumination or
weather conditions.

R2D2 also simultaneously acts as a keypoint detector and descriptor. This includes a
local predictor of discriminativeness during learning, to avoid areas with salient features but
where accurate matching is not possible due to repetitiveness (e.g., sea waves or canopy). It
has been proven to perform especially well for the matching of day and night images.

The included deep learning algorithms were incorporated within PhotoMatch with
pretrained models, while the selection of different pretrained models is also an option.
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2.4. Matching

The matching process consists of finding the right correspondence between previously
detected keypoints. PhotoMatch includes Brute-force and FLANN [22] as classical match-
ing methods, while Robust Matching (RM) and Grid-based Motion Statistics (GMS) [56]
are also possible matching strategies. The available descriptors distances are L1, L2, and
Hamming Norm [57]. Then, the matching process is filtered using different methods.
Homography [37], or Fundamental Matrix [58] can be combined with different computa-
tional methods, including RANSAC, all points, Least Median of Squares (LMedS), and
Spearman’s RHO Correlation Coefficient (Figure 2c).

2.5. Assessment of Results

The main limitation in the analysis of feature-based image matching results is the
unavailability of reliable reference data. To overcome this issue, PhotoMatch includes a
reference data editor (as shown in Figure 3) that allows for the end-user to manually and
accurately introduce a set of matching points. These points are later used to assess different
feature-based matching algorithms.
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Once the reference matchings are defined, PhotoMatch calculates and graphically
represents the Receiver Operating Characteristic (ROC) curve and the Detection Error Trade-
off (DET) curve, which illustrate the error in feature-based image matching. PhotoMatch
offers the option to choose between homography or a fundamental matrix to compute these
errors. Homography should be used when all points in the image are on the same plane,
while the fundamental matrix should be selected when the points are not co-planar.

Furthermore, PhotoMatch provides a user-friendly visualization of the matchings (as
shown in Figure 4), allowing for a better interpretation of the results.
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2.6. Export

Finally, PhotoMatch allows for the exportation of the extracted keypoints and match-
ings in different formats, including XML and YML for OpenCV and plain text. This allows
for end-users to import and use these observations in other tools for image triangulation
(bundle adjustment) or photogrammetric reconstruction. This also allows for a more de-
tailed assessment of the results to be carried out, or for the combination of the algorithms
presented in PhotoMatch and other approaches.

2.7. Educational Information

PhotoMatch includes educational information with a short introduction to the different
algorithms. The scientific references are also included in a more detailed explanation of the
process (Figure 4). In this way, the idea is to provide researchers, students, and even end-
users, with the information needed to select the optimal parameters and combinations for
each algorithm. This also contributes to making PhotoMatch an educational and research
resource, far from being a black-box tool. Last but not least, thanks to its exportation
capabilities, PhotoMatch offers a solution for SfM tools that cannot correctly solve the
matching and, thus, the orientation of the images.

3. Experimental Results and Discussion

Six multi-view and six multi-modal case studies with different characteristics were
selected and analysed to show the PhotoMatch capabilities. Different feature detectors, de-
scriptors and matching were used for each dataset and the obtained results were compared
and assessed.

3.1. Multi-View

The selected multi-view datasets are related to the close-range photogrammetric
applications. Due to the widespread adoption of SfM and MVS tools for 3D modeling,
feature-based image matching has become a critical process. As end-users increasingly
apply photogrammetry, this method must overcome more challenging conditions than
traditional aerial photogrammetry, such as larger geometric and radiometric differences.

To this end, we selected six multi-view datasets, each composed of four images.
Four sets of images were obtained from the ETH3D benchmark (https://www.eth3d.net/
datasets, accessed on 11 November 2022) and comprised the images of a façade (Figure 5a),

https://www.eth3d.net/datasets
https://www.eth3d.net/datasets
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a forest (Figure 5b), a playground (Figure 5c) and a boulder (Figure 5d). The façade dataset
is characterised by low overlap and repetitive features; the forest dataset is characterised
by low resolution and unfavourable lighting conditions; for the playground dataset, the
viewpoints between images have large differences; the boulder dataset also has a low
overlap, but distinctive features that should help to solve the feature-based image matching.
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The last two multi-view datasets were obtained from the public benchmark VGG Oxford
(Visual Geometry Group—University of Oxford, accessed on 11 November 2022). The images
cover a planar wall covered by graffiti. For one of the datasets, the images have good overlap
and low geometric differences (Figure 5e). For the last dataset (Figure 5f), two of the images
are synthetically derived from the other two and enclose considerable geometric differences,
substantially hampering the matching process, even for a human operator.

3.2. Multi-Modal

Considering the increasing popularity of sensors and cameras, the multi-modal matching
of images is a growing demand in many applications. We selected some of the most common
examples: the combination of thermal and visible imagery for a building (Figure 6a); scanning
electron microscopy (SEM) images, including a backscattered electrons and secondary electron
images of a mineral surface (Figure 6b); the combination of visible and range imagery from a
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laser scanner (Figure 6c); the combination of visible and thermal for aerial imagery (Figure 6d);
satellite imagery with different wavelengths, where two images were synthetically derived by
applying geometric and radiometric distortions to the other two images (Figure 6e); Magnetic
Resonance Imaging (MRI) with different visualization parameters, used to highlight different
tissues and synthetically derived images (Figure 6f).
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For the first case (Figure 6a), the matching was carried out for a visible and a thermal
image of a building for its energetic inspection. The second case (Figure 6b) is composed
of two SEM images: an imaging technique used to analyse the surface of a sample at very
high magnifications, used in various scientific fields such as materials science, geology,
archaeology and biology to gain insight into the structure and composition of a sample. The
third case (Figure 6c) corresponds to a visible and a range image of a heritage building for
its 3D reconstruction and texture mapping. The resulting matching can be used to improve
the registration between the camera (visible) and the laser (range), and then to map the
high-resolution texture coming from the visible imagery into the 3D point cloud coming
from the laser scanner. The fourth case (Figure 6d) combines visible and thermal aerial
images of a city area using a drone; this type of aerial image can be used for the estimation
of land surface temperature or for the study and mitigation of urban heat islands, among
other applications. The fifth case (Figure 6e) is composed of two satellite images taken with
different sensors and the other two are synthetically derived from the original ones; in this
case, the registration is important for automatic georeferencing. The sixth case (Figure 6f)
is also composed of four images: two of them are medical resonance images taken using
different parameters and the other two are synthetically derived images. Synthetic images
represent possible processing and acquisition modifications by the application of geometric
(rotation, scale, perspective) and radiometric (brightness, hue and addition of random
noise) changes.

The first (Figure 6a) and third (Figure 6c) multi-modal image pairs contain non-coplanar
points; therefore, the evaluation of the matches needs to be carried out using the fundamental
matrix. For the rest of the multimodal datasets, the points in the images could be considered
totally coplanar, with homography being the best method for their assessment.

3.3. Feature-Based Image Matching Strategies

The process carried out for each dataset consists of three steps: (i) pre-processing,
(ii) feature extraction and (iii) matching (Figure 2).

All images were pre-processed by applying decolorization (Figure 2a). Pre-processing
is reported as a fundamental step by different authors [21,59]. Decolorization is the simplest
pre-processing algorithm provided by PhotoMatch and is commonly used prior to image
matching [60].

For the feature extraction step (Figure 2b), many algorithms are provided by PhotoMatch,
while a selection of the most representative ones was tested. To this end, hand-crafted methods
were identified based on the best results obtained in previous tests [21]. The following com-
binations of detector and descriptor were assessed: SIFT + SIFT, SURF + SURF, SURF + SIFT,
MSD + SIFT and ASIFT. In addition, both deep learning algorithms included in PhotoMatch,
R2D2 and D2-Net, were also tested.

For hand-crafted algorithms, the following parameters were selected in PhotoMatch:
the maximum number of features was set to 5000; for MSD, the threshold saliency was set to
650, and the number of selected points (KNN) was set to 1. The saliency threshold is linked
to the level of dissimilarity between neighboring pixels and should be higher for images
with a higher level of detail. KNN refers to the number of salience points considered; in
this case, only the points with higher saliency were selected. The reason for selecting these
parameters was based on their good performance after different tests, especially for the
case of multi-modal images [21].

For the learning-based algorithms, the input parameters were based on choosing
among the different pretrained models. Alternatives were tested, and the best pretrained
models were chosen. For R2D2, the pretrained model ‘r2d2_WASF_N16′ was used, while
for D2-Net, the pretrained model ‘d2_tf’ was selected. The choice of these models was based
on information provided by the developers of each tool. However, since the models were
trained using different datasets, different models may have different outcomes. Therefore,
it is recommended to test various options for each specific application.
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The selected matching approach (Figure 2c) was the same for all algorithms, since its
accuracy and reliability was tested in previous studies [21]. It consisted of FLANN and Robust
Matching, supported by ratio test, cross-checking and geometric test (fundamental matrix
or homography computed by RANSAC). The RANSAC filtering was carried out using a
Lowe ratio test with a value of 2 [61], a distance threshold of 10, and 2000 maximum trials.
The homography and fundamental matrices were used to achieve self-supervised validation
while supporting the relative orientation backbone. The value of the Lowe ratio test refers
to the minimum distance between the two best matches for each keypoint; if the distance is
below the threshold, the matches are considered too similar and the keypoint is removed. The
distance threshold in RANSAC filtering is used to distinguish inliers from outliers; a higher
value would be needed if the dataset is composed of matches with a relatively high error,
while more precise algorithms would benefit from lower values. The maximum number of
trials controls the trade-off between computational complexity and accuracy.

Detailed information on the different parameters for each algorithm is presented in
the help section of the tool (Figure 4).

3.4. Assessment

PhotoMatch provides a reference data editor (Figure 3) that allows for the end-user to
select the reference keypoints with subpixel accuracy and compute the error for each point
using the homography or fundamental matrix adjustment. Using this reference data editor,
each imagery dataset was registered using a set of at least 12 manually selected keypoints
and their corresponding matchings. The maximum error for these points was below one
pixel for all image pairs.

Once the reference keypoints and matchings are defined, PhotoMatch computes the
homography or fundamental matrix transformation between each pair of images. After the
keypoints are extracted by each algorithm (detector and descriptor), their coordinates are
evaluated through comparison with the reference coordinates obtained via homography, or
by computing the distance between each point and the line determined by the collinearity
condition in the case of a fundamental matrix transformation (Tables 1 and 2).

Table 1. Number of correct matches (CM) with percentage and mean error (ME) (in px) for the
different hand-crafted and learning-based algorithms and the six multi-view datasets. The best
results are highlighted in bold.

Detector
Descriptor

SIFT +
SIFT SURF + SURF SURF + SIFT MSD +

SIFT ASIFT R2D2 D2-NET

Facade
(Figure 5a)

CM 24 (27.2%) 26 (22.7%) 47 (33.7%) 19 (34.8%) 190
(27.8%) 68 (52.5%) 27 (32.7%)

ME (px) 175.1 170.6 163.8 123.2 172.2 110.5 176.9

Forest
(Figure 5b)

CM 108 (79.4%) 89 (71.2%) 139 (80.7%) 77 (80.6%) 1155
(86.4%)

187
(94.1%) 123 (89.1%)

ME (px) 19.2 21.1 8.9 8.7 13.5 4.1 6.3

Playground
(Figure 5c)

CM 8 (36.9%) 51 (57.2%) 60 (60.7%) 30 (65.6%) 214
(74.2%) 47 (80.5%) 49 (69.2%)

ME (px) 607.8 224.6 66.5 40.6 137.5 26.3 45.9

Boulder
(Figure 5d)

CM 150 (80.1%) 261 (83.2%) 283 (86.4%) 24 (77.8%) 551
(98.8%) 322 (96.1%) 533 (91.4%)

ME (px) 50.9 49.9 30.3 163.5 12.6 29.8 20.3

Graffiti low
differences
(Figure 5e)

CM 681 (99.9%) 613 (99.4%) 602 (96.8%) 62 (93.3%) 8713
(99.9%) 241 (98.4%) 165 (94.9%)

ME (px) 1.2 2.4 3.4 14.4 1.3 2.9 8.0

Graffiti high
differences
(Figure 5f)

CM 91 (94.4%) 62 (90.9%) 50,5 (87.1%) 1 (10.3%) 2182
(99.8%) 2 (38.7%) 2 (30%)

ME (px) 17.0 18.6 31.7 241.0 1.4 151.3 171.0
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Table 2. Number of correct matches (CM) with percentage and mean error (ME) (in px) for the
different hand-crafted and learning-based algorithms in the seven multi-modal datasets. The best
results are highlighted in bold.

Detector
Descriptor SIFT + SIFT SURF + SURF SURF + SIFT MSD + SIFT ASIFT R2D2 D2-NET

Visible-Thermal
(Figure 6a)

CM 0
(0%)

1
(3,2%)

1
(4,2%)

4
(22,2%)

3
(2,9%)

1
(6,25%)

53
(81,54%)

ME (px) 273.7 143.8 172.2 63.1 202.7 184.3 13.7

SEM
(Figure 6b)

CM 0
(0%)

0
(0%)

3
(33.3%)

0
(0%)

6
(28.6%)

5
(62.5%)

16
(76.2%)

ME (px) 1470.0 983.4 22.0 860.0 1013.4 10.7 6.9

Visible-Range
(Figure 6c)

CM 1
(3,3%)

13
(25%)

154
(53,1%)

3
(23,1%)

47
(32,9%)

5
(31,3%)

77
(77,8%)

ME (px) 216.9 141.9 34.4 136.1 140.8 88.2 43.4

Visible-Thermal
Aerial

(Figure 6d)

CM 0
(0%)

3
(30%)

9
(60%)

0
(0%)

26
(86.7%)

17
(100%)

107
(97.3%)

ME (px) 383.9 159.2 15.9 259.3 30.7 3.9 4.3

Satellite
(Figure 6e)

CM 0
(0%)

0
(0%)

7
(41,17%)

9
(75%)

0
(0%)

6
(75%)

135
(95,7)

ME (px) 179.1 154.6 16.5 11.2 178.4 25.3 4.7

Magnetic
Resonance
(Figure 6f)

CM 0
(0%)

0
(0%)

10
(66.7%)

0
(0%)

0
(0%)

5
(16.4%)

44
(92.6%)

ME (px) 194.0 151.9 8.2 122.9 144.1 30.2 5.3

3.5. Results

The multi-view and multi-modal datasets were assessed separately. For each dataset,
the number of correct matches, percentage of correct matches, and mean error of the
matches for the different methodologies (hand-crafted vs. learning-based) are presented.
The threshold established for a correct matching was set to 10 px, which is relatively high for
precise photogrammetry applications, but can provide a better insight into the approcimate
matching ability of the algorithms.

3.5.1. Multi-View

The results for each case and image matching are outlined in Table 1.
For the first four multi-view datasets (Figure 5a–d), all of them corresponding to

non-planar environments, R2D2 was the best algorithm in terms of accuracy, while ASIFT
was able to obtain a higher number of matches with a lower accuracy. The exception was
the boulder multi-view dataset (Figure 5d), where ASIFT achieved the highest accuracy, as
the environment does not represent important challenges for matching. For the façade’s
multi-view dataset (Figure 5a), none of the algorithms (hand-crafted and learning-based)
were able to obtain acceptable results as a consequence of the low overlap and repetitive
features. Only R2D2 provided the best result, with 52.5% of correct matches (Table 1).

The fifth multi-view dataset (Figure 5e) represents a favourable photogrammetric
acquisition with high overlap and low geometric differences. In this case, the hand-crafted
algorithms outperform learning-based algorithms, in terms of both accuracy and the
number of correct matches (Table 1).

For the last multi-view dataset (Figure 5f), with images with considerable geometric
differences covering a wall, ASIFT was the only hand-crafted algorithm capable of comput-
ing a high number of accurate matches. Neither the other hand-crafted algorithms, nor the
learning-based algorithms, provided acceptable results (Table 1).

Although the performance of hand-crafted methods is guaranteed for multi-view
datasets with high overlap and favourable conditions, for challenging environments (i.e.,
important geometric variations) the image matching is not always successful. The exper-
imental results show that some learning-based algorithms, such as R2D2, are capable of
outperforming classical, hand-crafted methods for challenging datasets with low overlap
and low-resolution images. Due to its capacity to avoid areas with low reliability, R2D2
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outperforms the accuracy of other algorithms for the facade and forest dataset, which are
characterized by repetitive features (i.e., windows and canopy). However, ASIFT, which
is specifically designed to deal with large perspective distortions, was the only algorithm
capable of registering the images in the graffiti dataset with high geometric differences
(Figure 5f). This is probably due to the lack of training of the chosen matching learning
algorithms for this particular case. It is also worth noting that ASIFT is a technique that
simulates different affine distortions to the images, and a similar technique can work
with different detectors and descriptors, so the combination of ASFIT and learning-based
algorithms would be possible.

In order to evaluate this tool in comparison to other commercial and open-source
software, a 3D reconstruction for each multi-view dataset was carried out using Agisoft
Metashape 2.0.1 and GRAPHOS [1]. Acceptable results were obtained only for the fifth
multi-view dataset (Graffiti with low differences, Figure 5e), while both software failed to
compute a 3D reconstruction for the rest of the datasets.

3.5.2. Multi-Modal

The results of the multi-modal dataset are outlined in Table 2. The learning-based
algorithms outperform the hand-crafted based algorithms for every dataset. D2-Net is the
best-performing algorithm for every case, with the exception of the visible thermal aerial,
where R2D2 obtains the highest accuracy. For the visible-range dataset, no acceptable
results were obtained using any of the tested algorithms. For the visible-thermal dataset,
the mean error was above the threshold, even for the D2-Net algorithm.

The hand-crafted algorithms performed much worse than learning-based algorithms.
They were capable of obtaining a mean error below the threshold of ten pixels in only one
case (SURF + SIFT for the magnetic resonance dataset).

Learning-based algorithms are shown to be a suitable approach for multimodal image
matching for different datasets and applications. An algorithm such as D2-Net has been
able to achieve good results for the majority of the presented datasets. Nevertheless, the
difference in results for different types of images encourages the study and comparison
of different approaches and parameters for any specific application requiring multimodal
image matching.

The final matchings obtained for the two best-performing algorithms for each multi-
modal dataset can be analysed in Figure 7.

The combination of different hand-crafted algorithms could be useful for some types
of multi-modal data [21]. Nevertheless, some learning-based algorithms greatly outperform
hand-crafted methods in multi-modal cases, being able to obtain acceptable results when
hand-crafted algorithms fail.

In general, the experimental results presented in this paper demonstrate the great vari-
ability of results for different approaches and with different case studies. This highlights the
importance of offering an educational and open-source tool, PhotoMatch, to compare and
assess different algorithms through an experimental evaluation of learning-based and hand-
crafted algorithms to better understand their performance across a wide range of scenarios.
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4. Conclusions

A growing number of detectors, descriptors, and matching algorithms are available
to extract and match keypoints between images. The most important distinction can be
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made between hand-crafted and learning-based feature-extraction methods. Some of
these algorithms for keypoint extraction and matching are well-known and available in
different libraries, such as OpenCV, or integrated into SfM tools. Other algorithms require
expertise in dealing with source code and programming, and sometimes the use of external
libraries. All of them are too abstract to be understood by end-users, requiring the setup of
advanced parameters.

Despite the large quantity of available options provided in the scientific community, there
are no educational and open-source multi-view and multi-modal image-matching tools to date,
which allow for a comparative assessment of hand-crafted and learning-based algorithms.

In real-world problems (e.g., 3D reconstruction, image registration for the analysis
of different wavelengths, SLAM or digital correlations between 3D and 2D data for ap-
plications such as material deformation analysis), selecting the best-matching algorithm
and optimal parameters for a specific application is a time-consuming process requiring
very specialised knowledge and is not integrated into the existing tools. This situation can
easily lead to the adoption of not-optimal solutions and certainly hampers the adoption of
new methodologies.

PhotoMatch provides a solution to this bottleneck, integrating hand-crafted and
learning-based algorithms for comparing and assessing feature-based image matching, with
special attention to multi-view and multi-modal imagery. PhotoMatch allows for students,
researchers, and other end-users to compare and assess different matching methodologies
through an educational and friendly environment, and thus to find the best algorithms
for different applications. The different case studies exhibit the capabilities of PhotoMatch
and its possibility to offer an accurate and reliable input for image orientation and 3D
reconstruction. The results also highlight how different combinations of algorithms and
setup parameters can lead to significant changes in the validity of the results.

Of course, PhotoMatch was conceived to support future developments, so future
work will include the addition of new deep learning algorithms [36,40,61], as well as
new detectors and descriptors [62–64]. These additions will be added to new release
versions or presented as plugins. This will allow PhotoMatch to present a wider array of
algorithm combinations for the assessment of the different approaches, while maintaining
its educational goal and ease of use.
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