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Abstract: A laboratory-scale analysis using coal from an underground mine was carried out, emulating
a mixture from the gob area in an actual mine, consisting of waste, coal, and free space for the flow of
air. Experimental tests and computational fluid dynamics modelling were done to define and verify
the behavior of the collapsed region in a time-dependent analysis. In addition, the characteristics of
coal were defined, regarding the self-combustion, combustion rate, and pollutants generated in each
stage of the fire. The results achieved are useful for determining the behavior of the collapsed area in
full-scale conditions and to provide valuable information to study different scenarios of a potential
fire in a real sublevel coal mine regarding how the heat is spread in the gob and how pollutants
are generated.
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1. Introduction

The proper management of risk in underground mining, especially coal, is critical to avoid
undesirable situations that could lead to tragic accidents, such as fires or explosions [1,2].
Many preventive and corrective measures have been proposed and developed over time [3], but there
are still important fatalities in these types of activities [4]. Fires in coal mines depend on the intrinsic
characteristics, either thermal or physical, of the available fuel sources (coal, wooden supports,
and equipment, among others); the ventilation system implemented [5]; the size of the drifts and
openings [6,7]; and the operational conditions [8]. As fuel sources are usually distributed throughout
the mine, fire can affect a large part of the ventilation system, spreading substantial quantities of toxic
pollutants along the entire mine [9]. The temperature of the air flowing through the working faces
must be kept as low as possible, especially in deep coal mines. High workplace temperatures can have
an important influence on potential fires. Zhu et al. [10] expose an interesting approach to predict
the temperature.

Therefore, it is necessary to have detailed knowledge of the potential toxic products, in case of
a fire, so as to apply adequate measures if necessary [11–13]. Laboratory tests and specific studies
have been done to analyze fire behavior and smoke generation [14]. Computational fluid dynamics
(CFD) analysis to identify fire evolution and coal characteristics is widely used [15,16], particularly
with Fire Dynamics Simulator (FDS) software [13]. However, there are complicated areas, such as
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the gob, where it is impossible to access and know the real conditions in detail [17], as some of the
coal parameters are difficult to define when modeling software is used, such as the chemical reaction
of coal [18,19] or the effect of moisture [20], while safety issues related to the gob area are multiple,
from ventilation to geomechanics, among others [21]. Airflow leakages from the drifts to the gob are
especially important in the initiation of fires in this area [22].

Several attempts to define the characteristics have made by means of theoretical analysis lab
equipment, such as examining the smoldering characteristics [23,24] and self-heating [25,26]. Here,
we use a very interesting approach to study coal fires under lab conditions [8,23].

The aim of this study is to provide a deep understanding of the characteristics of coal regarding
heating and combustion behavior in the gob area, in addition to knowing how flames spread by
means of a CFD model. This information can be very useful to determine the potential environmental
conditions in an underground coal mine.

2. Materials and Methods

2.1. Experimental Set-Up

The types of coal and waste used came from the Pozo Candín mine, belonging to HUNOSA
(Oviedo, Spain). The installation consisted of a metal chamber insulated with fireproof material and
laterally closed with wood. Inside the metal cube, a volume of one cubic meter of hard coal mixed
with waste material was introduced into it, with a similar proportion to the gob in a real mine (40%
coal,) and a heterogeneous granulometry, with a majority of particles around 12–15 cm, which is within
an order of magnitude comparable to previous research [9]. The characteristics of the coal used are
gathered in Table 1, and the waste material was non-combustible sandstone and shale. A part of
the collapsed area in the mine was simulated with this configuration. The sample was closed with
a metal top cover, with a chimney for exhausting gases, as well as holes for the arrangement of the
thermocouples used in the temperature control (Figure 1).

Table 1. Characteristics of the coal samples used in the tests.

Sample 1 Sample 2 Sample 3

s/Dry s/s.a. s/Gross s/Dry s/s.a. s/Gross s/Dry s/s.a. s/Gross

Air-dried moisture (%) - - 6.91 - - 7.85 - - 2.82
Hygroscopic moisture (%) - 1.69 1.57 - 1.41 1.30 - 1.82 1.77
Total moisture (%) - 1.69 8.48 - 1.41 9.15 - 1.82 4.59
Volatile matter (%) 29.14 28.65 26.67 28.40 28.00 25.80 29.63 29.09 28.27
Ash (815 ◦C) (%) 16.49 16.21 15.09 20.66 20.37 18.77 16.15 15.86 15.41
Carbon (%) 70.47 69.28 64.49 65.08 64.16 59.13 69.58 68.31 66.39
Hydrogen (%) 4.41 4.52 4.98 4.23 2.33 4.86 4.24 4.37 4.56
Nitrogen (%) 1.49 1.46 1.36 1.38 1.36 1.25 1.68 1.65 1.60
Sulphur (%) 0.49 0.48 0.45 0.45 0.44 0.41 0.49 0.48 0.47
Oxygen (%) (calculated) 6.65 8.04 13.63 8.20 9.34 15.58 7.86 9.33 11.58
Higher calorific value
(HCV)v (Kcal/Kg) 6.869 6.753 6.286 6.434 6.343 5.845 6.727 6.605 6.418

Lower calorific value
(LCV)v (Kcal/Kg) 6.648 6.526 6.037 6.223 6.127 5.603 6.515 6.386 6.190

Lower calorific value
(LCV)p (Kcal/Kg) 6.640 6.518 6.027 6.215 6.119 5.592 6.507 6.377 6.181

Sulphur forms:
Sulphate (%) 0.01 - - 0.04 - - 0.04 - -
Pyritic (%) 0.11 - - 0.18 - - 0.19 - -
Organic (%) 0.37 - - 0.23 - - 0.26 - -
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Figure 1. Installation for the tests.

The test went through several phases until combustion was achieved, taking into account similar
conditions to those developed in a real fire in an underground coal mining operation, namely:

1. Monitoring the tendency of the coal to self-combust by injecting an air stream into the sample
volume, with a flow rate ranging from 2.35 to 4.7 m3/h.

2. Hot air, between 50 and 70 ◦C, was injected over the course of the experiment.
3. Because of the difficulty of starting the expected self-combustion process, electrical resistance was

introduced into the coal to cause ignition, producing a significant increase in temperature at the
point where resistance was introduced, between 300 and 800 ◦C.

4. The progress of combustion was observed over a certain period of time, and, finally, it was
extinguished with water.

The characteristics of the coal used in the tests are gathered in Table 1, which were chosen from
several samples of the coal available from Pozo Candín. All of the samples were analyzed by taking
into account the following three conditions: gross sample (s/gross), dry sample (s/dry), and air-dried
sample (s/sa).

Fifteen K-type thermocouples were arranged to carry out temperature control during the test,
and they were measured in degrees Celsius (◦C). Thirteen of them were introduced into the mixture
through the top cover and at different depths (Figure 2). The other two thermocouples were used
to monitor the temperature in the air chamber, between the coal surface and the top cover, and in
the local environmental conditions. Table 2 details the positions and depths of the sample collection.
In addition, during the development of the test, several samples of combustion gases were taken.
The compressor used, together with the heater, was able to provide an adjustable flow rate between
2.35 and 4.70 m3/h, at a high temperature. Water injection was used to extinguish the fire generated.
The flue gas collection was carried out in the chimney, as shown in Figure 2.
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Figure 2. Plan view of the experiment setup.

Table 2. Position and depth of the thermocouples installed.

Name Position Depth (cm) Comment

T01 F5 30 Coal
T02 D7 60 Coal
T03 D6 20 Coal
T04 C3 20 Coal
T05 C2 50 Coal
T06 B2 70 Coal
T07 G2 30 Coal
T08 H1 10 Coal
T09 E4 10 Coal
T10 G7 70 Coal
T11 H8 50 Coal
T12 H9 20 Coal
T13 C8 30 Coal
T14 C6 —– Air chamber

T15 —– —– Environmental
conditions

2.2. CFD Analysis

The model used was initially based on the spontaneous heating of coal [27], providing heat in the
initial stage. The gas flow was treated as a laminar flow in a porous medium, and spontaneous heating
of the coal was modeled as a chemical surface reaction, namely, oxidation of coal, which took place in a
porous medium on the surface of the coal. The Fire Dynamics Simulator (FDS) v5.3 was used to obtain
the mesh and boundary conditions, as well as to solve the equations, while Smoke View (SMV) v5.3
was applied for viewing the results.

The study was carried out for an equivalent volume of coal of 1 m3 (1 × 1 × 1 m), with a cell size
of 0.02 × 0.02 × 0.02 m, with a total of 216,000 cells. A preliminary analysis of the mesh with a smaller
grid was done, obtaining very similar results.

The main environmental and temperature parameters were also included in the simulation, as well
as the air supply system, making it similar to the airflow leakages in the collapsed area of a real
mine. The supposed mixture of coal, waste, and air spaces, with a density of 1600 kg/m3, was taken
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into account. Figure 3 shows the meshing according to the X, Y, and Z planes of one of the models
contemplated in this combustion study. The control points on the three orthogonal axes were marked
on this mesh, with symmetry conditions, taking into account the sensors of the real scale tests.
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After several iterative simulations using the FDS software, the main values used for modelling
the coal seam combustions and fires in the collapsed area were determined (Table 3).

Table 3. Simulation conditions.

Properties Value

Density of the coal particles (kg/m3) 1200
Apparent density (kg/m3) 870
Specific heat (kJ/kg·K) 1
Conductivity W/(m·K) 0.2
Heat reaction (kJ/kg) 209
Combustion heat (kJ/mol·O2) 2.8402 × 104

Activation energy (kJ/kmol) 6.65 × 104

Pre-exponential factor (K/s) 1.9 × 106

Initial temperature (◦C) 20

Based on the capacity of coal to react with oxygen as well as the characteristics from Table 3, a model
with a single coal block was carried out in order to determine the characteristics of self-combustion.
This model allowed for observing the self-heating of the carbon block and its subsequent combustion
(Figure 4). This information is useful to define the characteristics of the combustible materials in
subsequent simulations.Energies 2020, 13, x FOR PEER REVIEW 6 of 12 
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After several previous tests to determine each of the coal characteristics (Table 3), it was
determined that the rate of coal consumption met the following axiom: the less dense, less absorbent,
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more conductive, less specific heat, less emissive, lower pre-exponential factor, and lower activation
and reaction heat, the higher the proportion of fuel in its by-products and the final exothermic reaction.
Therefore, it would burn in less time than another that has the opposite characteristics.

Planes that limited the calculation volume were left open and favored the exposure of coal to air,
increasing the self-burning process. In one of the cases, a horizontal plane was also introduced to
simulate a forced ventilation inlet in order to accelerate the combustion process due to the calculation
limitations that would arise when modeling the behavior of the material over long periods of time.
Figure 5 shows how the process is favored by injecting hot air and adding three points at a high
temperature inside the coal block.
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3. Results and Discussion

3.1. Real Data

Several gas samples were collected in the combustion test. Figure 6 displays the results of the
analyses, grouped by mean values, taking into account the following three groups: (a) Sample 1,
heating of the coal; (b) Sample 2, after starting the combustion, with a small airflow; and (c) Sample 3,
at the time of injecting a larger airflow.Energies 2020, 13, x FOR PEER REVIEW 7 of 12 
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The temperature reached at the hot spot was 800 ◦C at the time of taking the first sample, while in
the other thermocouples, the temperatures recorded were between 50 and 100 ◦C. This fact indicates a
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general heating of the mass of coal, promoting its oxidation and, therefore, the evolution of the gases
(CO, CO2, and CH4). It is observed that the presence of CO2 was higher than the CO concentrations.

The second sample was taken after the start of the fire, when the temperature in the hot spot was
around 250 ◦C, while in the rest of thermocouples it was around 100 ◦C. The flame was produced
when the critical temperature was exceeded, being maintained over time by the supply of air. In this
situation, the amounts of CO, CO2, and CH4 emitted increased, appearing to have a significant amount
of H2.

The third sample was taken under fire conditions and with a continuous supply of air to the coal
mass. Temperatures were between 750 and 1200 ◦C. At these temperatures, coal oxidation occurred,
mainly through homogeneous reactions, with CO2 prevailing over CO, while also decreasing the
presence of CH4 and H2.

The fire evolution throughout the tests, until the extinction phase, was only about 30 cm in
the lateral extension. The main development was vertically, and, therefore, caused the cone to
collapse. There was almost no influence of combustion from a distance of 50 cm, showing only a small
increase in temperature. A reduction of the burned coal of 0.12 m3 was generated throughout the test.
This behavior was consistent with previous research done in a real scale gob [5].

The actual evolution of the thermocouples over time during experimentation is shown below,
taking into account the airflow added. As can be seen in Figure 7, the experiment had a total duration
of 58 h.

It was not possible to initiate self-combustion in this type of coal with the simple injection of
compressed air, as the use of a hot spot of up to 800 ◦C was necessary. Furthermore, it was observed
that the combustion only progressed when there was a sufficient supply of compressed air directly
related to the inserted airflow. As the combustible material was burnt, a free space was generated,
collapsing the mixture of coal and waste from above, reigniting the fire in areas where the temperature
dropped. This phenomenon is crucial to define the fire behavior in the gob of a sublevel coal mine,
which can have several sublevels. These conditions can be substantially different compared with a long
wall method, because the fire can have a large column of combustible material if the fire is initiated in
the gob zone at a low sublevel.
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3.2. CFD Modelling

The evolution of combustion and temperature (◦C) over time can be seen in Figure 8. The start
of combustion was favored by including three sources of ignition, or hot spots, as in the real tests.



Energies 2020, 13, 5274 8 of 11

The disappearance of coal was taken into account as it was consumed, emulating the process of collapse
found in real conditions.Energies 2020, 13, x FOR PEER REVIEW 9 of 12 
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Figure 8. Temperature evolution and combustion progress in the computational fluid dynamics
(CFD)-Fire Dynamics Simulator (FDS) model, in ◦C.

The heat increase developed mainly in a vertical direction, reaching temperatures between 700
and 1000 ◦C in the hot spots and in its vertical axis, while temperatures between 300 to 600 ◦C were
found in the upper part. On the other hand, the temperatures in the lower part remained below 300 ◦C,
reaching similar conditions compared with the actual tests done. Therefore, the model suggests that
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considerable high temperatures can be found in upper drifts, which has been validated in a sublevel
coal mine with a gob fire in the lower levels [5].

The temperature evolution in the different thermocouples can be seen in Figure 9. The beginning
corresponds to the simulation four hours after the start of the experiment, showing the temperature
evolution for an hour.
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Figure 9. Evolution of the temperatures simulated with FDS.

A similar trend was obtained between the simulated and measured temperatures, especially in
the points located near the fire source. Further research should be done to achieve better adjustments
in the thermocouples far from the ignition source. Furthermore, small variations found in the real tests
were not obtained during the simulation.

4. Conclusions

An experimental procedure has been established to analyze the collapsed zone in an underground
coal mine using a sublevel method reproduced at a laboratory scale, using a mixture of coal, waste,
and air space where air leakages flow. This system can help to identify the behavior of a possible fire,
together with the CFD model, which has been generated and validated from the experimental data.

The incidence of the coal characteristics has been determined in reference to its consumption
speed and the pollutants generated under different conditions of temperature, airflow, and fire stage.
This information is crucial to define the type and proportions of pollutants that can be found in the
drifts of a coal mine, by determining the potential hazard and implications of a fire. The model obtained
can be useful to predict, with enough accuracy, the temperatures in the gob and, subsequently, helps to
know the related pollutants.

The airflow contribution has been observed to be the most critical factor for the continuation
and increase of coal combustion. The development of the fire is carried out mainly vertically, with a
horizontal development of only 30 cm from the focus of the fire, causing a collapse as the combustible
material is burnt and relocated, initiating the fire again in areas where the temperature is relatively low.
Combustion has no influence when it is 50 cm away from the focus. This information is important for
a sublevel coal mine because of the large amounts of coal that can burn if the fire is placed at a low
sublevel and if continuous collapses occur.
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