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ABSTRACT

In this paper the secular change in the length of day due to mass redistribution effects is revisited using the Hamiltonian formalism
of the Earth rotation theories. The framework is a two-layer deformable Earth model including dissipative effects at the core–mantle
boundary, which are described through a coupling torque formulated by means of generalized forces. The theoretical development leads
to the introduction of an effective time-averaged polar inertia moment, which allows us to quantify the level of core–mantle coupling
throughout the secular evolution of the Earth. Taking advantage of the canonical procedure, we obtain a closed analytical formula for
the secular deceleration of the rotation rate, numerical evaluation of which is performed using frequency-dependent Love numbers
corresponding to solid and oceanic tides. With this Earth modeling, under the widespread assumption of totally coupled core and
mantle layers in the long term response, a secular angular acceleration of −1328.6 ′′ cy−2 is obtained, which is equivalent to an increase
of 2.418 ms cy−1 in the length of day. The ocean tides and the semidiurnal band of the mass-redistribution-perturbing potential, mostly
induced by the Moon, constitute the main part of this deceleration. This estimate is shown to be in very good agreement with recent
observational values, and with other theoretical predictions including comparable modeling features.
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1. Introduction

The redistribution tidal potential is an additional term of the
gravitational potential energy of the mechanical Earth–Moon–
Sun system describing the Earth’s rotation. It arises from the
tidal deformation exerted on the Earth by the perturbing bod-
ies (Munk & MacDonald 1960; Peale 1973). The main fea-
tures of this potential energy were recently revisited by Baenas
et al. (2019, 2020a) who studied the effect of mass redistri-
bution with a tidal origin on the precessional and nutational
motions of the Earth’s figure axis. These latter authors apply
the Hamiltonian formalism to a deformable two–layer Earth
model (Getino & Ferrándiz 2001) with an anelastic mantle and
fluid core, and derive analytical closed-form formulae describ-
ing those motions. The mathematical framework is a canon-
ical perturbative procedure based on the first-order Lie–Hori
method combined with averaging (Hori 1966; Baenas et al.
2017b).

In the present work, we focus on the Earth’s rotation rate
about its polar axis to study its secular angular deceleration due
to tidal effects, following a similar theoretical approach. The
gravitationally induced Earth deformation, leading to solid and
oceanic tides, is modeled through frequency-dependent Love
numbers. In particular, the Love number set of International
Earth Rotation and Reference Systems Service (IERS) conven-
tions (IERS Conventions 2010) is used to account for the solid
tides (including ocean loading), and that of Williams & Boggs
(2016) is used to account for the direct effects of the oceanic
tides. Both sets together offer a very complete scenario of mass
redistribution due to the tidal phenomenon. In the scope of

secular angular deceleration, the dissipative effects at the core–
mantle boundary (CMB) play a relevant role. These effects
are addressed by means of the generalized forces approach
(Getino & Ferrándiz 1997, 2001), which allows us to build a gen-
eral formula for the Earth rotation rate where the core–mantle
coupling is described through an effective time-averaged polar
inertia moment. The theoretical situation of a decoupled secu-
lar evolution of mantle and core, and that of a totally coupled
evolution where core and mantle decelerate together as a whole
(Gross 2015), are treated as limit values of such an effective
inertia moment.

The secular deceleration of the Earth’s rotation rate was
previously obtained from theoretical approaches in several inves-
tigations. We perform a comparison with those of Getino &
Ferrándiz (1991), Ray et al. (1999), Krasinsky (1999), Mathews
& Lambert (2009), and Williams & Boggs (2016), highlighting
the main features of each of these works. These authors, with
the exception of Getino & Ferrándiz, used angular momentum
conservation in Newtonian mechanics or Liouville equations to
describe the physics of the problem. In turn, Getino & Ferrándiz
(1991) is a part of a series of papers published in the 1990s where
the Hamiltonian formalism of the non-rigid Earth was devel-
oped, of which Getino & Ferrándiz (1995, 2001) form the main
compendium.

The contributions to the Earth’s rotation rate are directly
related to offsets in the length of day. The length of a sidereal day,
Λ, is defined through the third component of the Earth’s angular
velocity vector in a Tisserand reference system of Earth, ωz, as
Λ = 2π/ωz (Moritz & Mueller 1986, Sect. 3.7). We directly refer
to length of day (LOD) when Λ is expressed in mean solar days
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using the rate of advance of the Earth’s rotation angle (ERA),
θ̇= 1.002737... rev UT1-day−1 (IERS Conventions 2010) giving
the number of sidereal days per solar day, that is, LOD = 2πθ̇/ωz.
In the same way, the mean LOD is defined as LOD = 2πθ̇/ωE ,
with ωE being the nominal mean angular velocity of Earth, and
its value is 86400 s by definition (i.e. one mean solar day).

An offset δLOD of the length of day with respect to its nomi-
nal value is related to an equivalent variation, δωz, of the angular
velocity component with respect to ωE , in such a way that

LOD + δLOD = θ̇
2π

ωE + δωz
' LOD

(
1 −

δωz

ωE

)
, (1)

where the approximation sign stands for a first-order Taylor
expansion in δωz/ωE , which is of small magnitude. Thus, the
following relation is obtained (e.g. Wahr et al. 1981, or recently,
Bizouard 2020),

δLOD =−LOD
δωz

ωE
. (2)

In this study we are interested in contributions to the secular
angular acceleration of the Earth about its spin axis. The rela-
tion of this acceleration to the offsets of LOD time rate are then
given by

δ

(
dLOD

dt

)
= −

LOD
ωE

δ

(
dωz

dt

)
. (3)

The structure of this paper is as follows. Section 2 summa-
rizes the theoretical framework of the problem, explaining the
main features of the canonical set of variables and the secu-
lar redistribution potential. The mathematical expressions are
retrieved from previous works by the authors. In Sect. 3 the
Earth’s rotation rate is studied, leading to the expression of
the polar axis angular velocity component as a function of the
canonical set under certain modeling assumptions. Following a
perturbative procedure in the framework of generalized Hamil-
tonian systems in Sect. 4, an analytical closed-form expression
for the Earth’s angular acceleration due to mass redistribution
is obtained. In this formula, the anelastic response of the Earth
is incorporated through frequency-dependent Love numbers,
describing solid and oceanic tides. This section also includes a
comparison with previous investigations – paying special atten-
tion to those incorporating similar modeling features – and
with recent observational evidence of the phenomenon. Finally,
Sect. 6 includes the conclusions of this work.

2. Secular redistribution potential in canonical
variables

We take advantage of the previous works by Baenas et al. (2019,
2020a) to simplify the approach to the present research objective.
An Andoyer-like set of canonical variables (Getino 1995) is used
to describe the transformation between the non-rotating quasi-
inertial reference system (OXYZ) and the Tisserand reference
system of the Earth (Oxyz). This latter is referred to as a terres-
trial system, and is defined as a reference system for the Earth’s
mantle. The coordinates {λ, µ, ν} and their conjugated momenta,
{Λ,M,N}, stand for the Andoyer variables of the Earth, while
those of the fluid outer core (FOC) are denoted with a sub-
script c. Auxiliary angles, σ and I, are defined as functions of
the canonical set through Λ = M cos I and N = M cosσ (giving
the subtended angle of the angular momentum vector with the

Equator of core

Andoyer plane of core

Equator of mantle
Andoyer plane

m

m

Fig. 1. Andoyer-like canonical set for a two-layer Earth model.

Earth’s figure axis and the Z axis of the non-rotating system,
respectively). Similar relations with a subscript c define σc and
Ic. A graphical description of these variables is shown in Fig. 1.
The order of magnitude of σ and σc is about 10−6 rad (Kinoshita
1977; Getino 1995), which allows expansions of the functions
of the canonical variables truncated in σ and σc. More details
on these variables can be found in Baenas et al. (2017a) and
references therein.

The redistribution potential energy,Vt, is expressed in these
Andoyer-like variables in the same way as the tidal (or tide-
rasing) potential in the original Hamiltonian theory of the rigid
Earth rotation (Kinoshita 1977). The method relies on an ana-
lytical solution of the ephemeris of the perturbers, and leads to
a Fourier-like expansion of Vt where the secular part is iden-
tified by looking for the cancellation of the frequency of the
trigonometric arguments. Baenas et al. (2019) can be consulted
for further details on this procedure. Therefore, for purposes
of this paper, we directly recover Eqs. (36) and (37) from this
latter study, that is, the following expression of the secular
redistribution potential,

Vt,sec = V
(0)
t,sec +V

(1)
t,sec +V

(2)
t,sec, (4)

where

V
(0)
t,sec = −

9
4

CωE

∑
p,q = M,S

fqkp

∑
i, j;τ,ε∈I

∣∣∣k̄20, j
∣∣∣ Bi;pB j;q

× cos
(
τΘi − εΘ j − ε20, j

)
,

V
(1)
t,sec = −3CωE

∑
p,q = M,S

fqkp

∑
i, j;τ,ε∈I

∣∣∣k̄21, j
∣∣∣Ci;pC j;q (5)

× cos
(
µ + ν − τΘi − µ̃ − ν̃ + εΘ j + ε21, j

)
,

V
(2)
t,sec = −

3
4

CωE

∑
p,q = M,S

fqkp

∑
i, j;τ,ε∈I

∣∣∣k̄22, j
∣∣∣ kpDi;pD j;q

× cos
(
2µ + 2ν − τΘi − 2µ̃ − 2ν̃ + εΘ j + ε22, j

)
.

In this expression, the (0), (1), and (2) superscripts stand for the
zonal, tesseral, and sectorial components of the secular redis-
tribution potential, respectively. Summation indices1, i and j,
1 The summation index i (and j) is an abridged notation of a quintuple
of integers, mki (k = 1, 2, . . . , 5), such that the fundamental argument Θi
(and Θ j) is given by Θi = m1il + m2il′ + m3iF + m4iD + m5iΩ, where l,
g, and h are the Delaunay variables of the Moon, l′, g′, and h′ are those
of the Sun, and F = l + g, D = l + g + h − l′ − g′ − h′, and Ω = h − λ
(Kinoshita 1977).
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represent the ith and jth orbital frequencies in the Fourier-like
expansion of the orbital motion of the perturbed bodies (those
gravitationally affected by the deformation of Earth) and the per-
turbing ones (those inducing the deformation of Earth via their
gravitational field), respectively; τ and ε take the values ±1 from
certain linear combinations of the fundamental arguments Θi and
Θ j in the form τΘi − εΘ j. The Moon (M) and the Sun (S ) act
at the same time as perturbing and perturbed bodies, and those
two roles are distinguished using different notations. Namely, the
perturbed bodies are identified with the set of indexes {i, p, τ},
while { j, q, ε} refers to the perturbers. This distinction is impor-
tant because functions related to the perturbing bodies are time
functions in our modeling, where the Earth’s rotational motion is
decoupled from the orbital motion of the perturbers. In the same
way, in order to distinguish the Andoyer variables corresponding
to perturbed or perturbing bodies, the last ones are marked with
a tilde symbol (λ̃, µ̃, ν̃, and Ĩ whose dependence is implicit in
Eq. (5)), as in Getino & Ferrándiz (1995).

Modulus and phase of the complex Love functions are given
by

∣∣∣k̄2m, j

∣∣∣ and ε2m, j (m = 0, 1, 2). As the deformation is induced
by the perturbers, these functions depend on the j index, namely
on the jth orbital frequency inducing the anelastic response of
the Earth. The ephemeris of the Moon and the Sun are included
in the Bi;p, Ci;p, and Di;p Kinoshita (1977) orbital functions
(depending on auxiliary angle I), and their respective versions
with j and q subscripts (depending on Ĩ) in the redistribu-
tion potential. As is customary, the polar principal moment of
inertia of the Earth is represented by C. The kp and fq param-
eters are those of Kinoshita (1977) and Baenas et al. (2019),
that is,

kp =
3Gmp

ωEa2
p

Hd, fq =
mqa2

E

3CHd

(
aE

aq

)3

. (6)

Finally, the I set has been defined for the summation
conditions,

I=
{
τ, ε ∈ {−1,+1} | τΘi − εΘ j = 0

}
, (7)

equivalent to the secular condition given by the cancelation
of the frequency within the trigonometric arguments of the
redistribution potential to obtain itsVt,sec portion.

3. Earth rotation rate in canonical variables

In the Oxyz Tisserand system of the deformable Earth, the
elements of the matrix of inertia are functions of time. The iner-
tia matrix can be decomposed in the form I = I0 + I1, where
I0 is a constant and diagonal matrix where the diagonal ele-
ments are given by the principal moments of inertia of the
symmetric Earth, A = B < C, and I1 is a time-varying symmetric
matrix accounting for the tidal deformation of the Earth, and is
small when compared with I0. Specifically, the quotient between
matrix elements of I1 and C, I1i j/C, are small parameters in the
approximation of a first-order deformation (e.g. Escapa 2011;
Getino & Ferrándiz 1995).

Moreover, I = Im + Ic, where Im and Ic are the inertia matri-
ces of the mantle and core layers, respectively. We consider the
angular velocity vector, ω, of the Oxyz system with respect to
the OXYZ non-rotating one, and δω of the rotation of the geo-
centered core-fixed system with respect to the Tisserand one.
The total angular momentum of the Earth (L) can therefore
be decomposed into those of the mantle, Lm = Imω, and the

core, Lc = Ic (ω + δω), as (Getino 1995; Moritz & Mueller 1986,
Chap. 3)

L = Lm + Lc = Iω + Icδω, (8)

or, accordingly, the Earth’s angular velocity vector is given by

ω= I−1 (L − Icδω). (9)

The matrix I−1 = (I0 + I1)−1 can be expanded keeping only its
first-order terms (in the order of magnitude of I1i j/C) as

I−1 = I−1
0 − I−1

0 I1I−1
0 . (10)

Therefore, by considering Eqs. (9) and (10), the ω vector can be
approximated by the following expansion

ω= I−1
0 L − I−1

0 I1I−1
0 L − I−1Icδω. (11)

Here, the first two addends are those of a one-layer deformable
Earth (Escapa 2011), which in turn are split into the angular
velocity in the torque-free case (I−1

0 L) and the terms due to
tidal perturbation (−I−1

0 I1I−1
0 L), also known as convective terms

(Efroimsky & Escapa 2007). The remaining part (−I−1Icδω)
arises from the presence of the FOC in the two-layer Earth
model. The core contribution can be expressed in a similar
manner using a decomposition of Ic, as in that of I, namely
Ic = Ic0 + Ic1, in such a way that

ω=ω0 + ω1, (12)

whereω0 comprises the torque-free terms, andω1 the convective
terms collecting the tidal perturbation contributions,

ω0 = I−1
0 (L − Ic0δω) ,

ω1 = −I−1
0 I1I−1

0 (L − Ic0δω) − I−1
0 Ic1δω. (13)

Here, it should be noted that second-order terms arising from the
product of matrix elements of I1 and Ic1 have been neglected in
ω1.

The convective terms play a key role in the study of the quasi-
periodic evolution of ω, which is computed through the tidal
kinetic energy of the system (e.g. Escapa 2011 for the one-layer
elastic Earth case). However, they are negligible in a first-order
theory when computing the secular evolution of ω, because it
only emerges from the action of the redistribution potential. In
fact, the increment of the rotational kinetic energy due to the
Earth’s tidal deformation (Tt) has no secular part that can induce
a secular contribution into the functions of the canonical vari-
ables when considering first-order perturbation equations. This
is not the case for second-order terms in the sense of pertur-
bation methods, where Tt has a non-negligible contribution, as
is shown in Baenas et al. (2017a) for the case of precession in
longitude. Further, the Vt,sec potential (Eq. (5)) is proportional
to the dimensionless small parameters fq (about 10−5, Baenas
et al. 2019), while ω1 terms are of order I1i j/C (about 10−4,
Kubo 1991); the combination of both leads to a second-order
contribution in the sense of magnitude.

Therefore, in this investigation, we focus on the ω0 angular
velocity to obtain the Earth’s rotation rate in combination with
theVt,sec Hamiltonian through first-order perturbative equations.
This objective requires writing the ω0 third component, ω0z,
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in the Andoyer-like canonical set, which is done by means of
the L and δω respective expressions (e.g. Getino & Ferrándiz
1997),

L =

 M sinσ sin ν
M sinσ cos ν

N

 ,
δω =


− 1

Am

(
M sinσ sin ν − A

Ac
Mc sinσc sin νc

)
− 1

Am

(
M sinσ cos ν + A

Ac
Mc sinσc cos νc

)
− 1

Cm

(
N − C

Cc
Nc

)
 , (14)

where Am, Ac and Cm, Cc are the equatorial and polar principal
moments of inertia of mantle and core, respectively. Perform-
ing the matrix operations in Eq. (13), and retaining only the
third component of ω0 vector, that is, the angular velocity about
the polar axis in the terrestrial system, we obtain the following
expression:

ωz ' ω0z =
1

Cm
(N − Nc). (15)

With Eq. (15) we can calculate the secular deceleration of the
Earth’s rotation due to tidal effects, which is given as an offset of
the ω0z time derivative (i.e. angular acceleration). Equation (15)
is coincident with that of for example Getino (1995, Eq. (14))
which was obtained from the solution of the unperturbed Hamil-
tonian in a two-layer Earth model2. However, using that method
is not valid here because there is no consideration of the tidal
mass redistribution, and therefore the convective terms do not
appear. It should be noted that we strictly avoid the convective
terms for numerical magnitude reasons in the case of the secular
evolution of the Earth’s rotation rate, which is governed by the
secular tidal redistribution potential.

4. Secular angular acceleration formula

4.1. Two-layer Earth with coupling torque at CMB

Following a parallel development such as that of the calcula-
tion of the precession rates in longitude and obliquity induced
by the redistribution tidal potential (Baenas et al. 2019 can be
consulted for details), this research is restricted to the study of
the evolution of a given function of the canonical set under the
secular perturbation Hamiltonian Hsec =Vt,sec. In particular, if
ω0z (Eq. (15)) is considered, its secular evolution is determined
through the change of its time derivative, δ (dω0z/dt), that is,
secular angular acceleration. The applicable dynamical equation
in the absence of dissipative torques comes from the Lie-Hori
perturbation method (Hori 1966; Ferraz-Mello 2007), which is
combined with an averaging method to isolate the secular evo-
lution of the functions of the canonical set. At the first-order of
perturbation, the equation

δ

(
dω0z

dt

)
=

{
ω0z,Vt,sec

}
(16)

2 In the Hamiltonian approach of Getino & Ferrádiz, which is based on
the Lie–Hori perturbation method, the unperturbed problem of a two-
layer Earth is shared by the Poincaré model (rigid mantle and FOC,
Getino 1995), or the cases including the Tt (Getino & Ferrándiz 2001)
andVt (Baenas et al. 2019, 2020a) tidal perturbations.

describes the secular evolution, where {−,−} is the Poisson
bracket3 expressed in terms of the Andoyer-like canonical
variables. Taking into account the variables involved in ω0z
(Eq. (15)) and Vt,sec (Eq. (5)), the previous dynamical equation
reduces to

δ

(
dω0z

dt

)
=−

1
Cm

∂Vt,sec

∂ν
. (17)

Equation (17) is similar to that of a one-layer Earth model,
because there are no FOC variables. The reason for this is
twofold: the Vt,sec potential ‘sees’ the Earth as a whole (Eq. (5)
does not have core variables), and the dynamical equation
(Eq. (17)) is a first-order perturbative one (at higher orders there
are mixed terms with the generating functions of the method
causing the presence of the core variables; e.g. Baenas et al.
2017a). However, this does not mean that the FOC has no influ-
ence on the secular angular acceleration at this approximation
order. It must be noted that Eqs. (15) and (17) depend on the Cm
mantle polar principal moment of inertia, while in a one-layer
model the angular velocity is written as ω0z = N/C (Getino &
Ferrándiz 1991), where C is the polar principal moment of iner-
tia of the whole Earth. This difference between the one-layer and
two-layer situations was also recognised by Yoder et al. (1981),
who based their arguments on observational and rheological
considerations, and its implications are discussed later.

However, Eq. (17) must be corrected in order to include the
interaction between core and mantle due to the dissipative effects
at the CMB, which can be incorporated into the Hamiltonian
formalism of the two-layer Earth by means of the generalized
forces approach (Getino & Ferrándiz 1997, 2001). This is the
Hamiltonian counterpart of the Sasao et al. (1980) approach
(known as SOS formalism and based on Euler–Liouville equa-
tions) to introduce a dissipative torque at the CMB accounting
for electromagnetic coupling and viscosity. A modification of
the Lie-Hori method in order to deal with a certain set of gener-
alized Hamiltonian systems is exposed in Baenas et al. (2017b,
2020b). Such a modified Lie-Hori method is applicable here, and
leads to the fact that the secular problem is not altered at the first
order, except for the inclusion of the generalized forces within
the auxiliary system (in our case, the unperturbed situation).

We are particularly interested in the third component of the
dissipative torque acting on the core in the Tisserand system,
−R∗δω3, where R∗ is a coupling constant following the notation
of Getino & Ferrándiz. When dealing with generalized canonical
systems, the time evolution of a function of the canonical set not
only depends on the Hamiltonian at the first-order of perturba-
tion (Eq. (16)) but also on the generalized forces. An explanation
of the fundamentals of this type of mechanical system can be
found in Escapa (2006, Sect. 1.2.1). Briefly, the time evolution of
a smooth f function of the (q, p) canonical set in a generalized
canonical system is given by

d
dt

f = { f ,H} +
∂ f
∂t
−

n∑
i = 1

(
∂ f
∂qi

Qpi −
∂ f
∂pi

Qqi

)
,

where H is the Hamiltonian of the system, and Qpi and Qqi the
generalized forces.. In our case, ω0z depends on N and Nc vari-
ables (Eq. (15)), whose secular evolution in a two-layer model
3 The Poisson bracket (or Lie derivative) of two f and g smooth
functions of the (q, p) canonical set is defined by the bilinear operation

{ f , g} =

n∑
i = 1

(
∂ f
∂qi

∂g

∂pi
−
∂g

∂qi

∂ f
∂pi

)
.
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incorporating mass redistribution is governed by the following
equations at first order in σ and σc,

dN
dt

=
{
N,Vt,sec

}
+ Qν,

dNc

dt
=

{
Nc,Vt,sec

}
+ Qνc . (18)

Here, Qν and Qνc are the generalized forces corresponding to the
ν and νc coordinates (N and Nc being their conjugated momenta)
obtained from the coupling torque. Their construction can be
retrieved from Getino & Ferrándiz (1997). The Qν force is null
because the virtual work of the torque only depends on the
virtual displacement of the core variables, while Qνc is given
by

Qνc =
R∗

Cm

(
N −

C
Cc

Nc

)
. (19)

It must be noted that the decoupled situation is recov-
ered if R∗ = 0, but also if the free–torque approximations N '
CωE and Nc ' CcωE are taken (usually employed for numer-
ical estimates), both leading to Qνc = 0. Equation (18) is sim-
plified because

{
Nc,Vt,sec

}
vanishes. Meanwhile,

{
N,Vt,sec

}
=

−∂Vt,sec/∂ν can be evaluated at some epoch (J2000.0) for our
purposes, giving a constant value, as is shown in the follow-
ing section. Therefore, Eq. (18) is equivalent to the following
second-order linear differential equation with constant coeffi-
cients in the canonical momentum Nc,

d2Nc

dt2 +
CR∗

CcCm

dNc

dt
=−

R∗

Cm

∂Vt,sec

∂ν
, (20)

CR∗/ (CmCc) being the damping coefficient. The solution of the
initial value problem given by Eq. (20) and the initial conditions
Nc (0) and (dNc/dt) (0) = 0, by standard procedure, allows us to
write, taking into account Eq. (15),

d
dt

(
N − Nc

Cm

)
=−

1
C

(
1 +

Cc

Cm
e−

CR∗ t
CmCc

)
∂Vt,sec

∂ν
. (21)

Therefore, the secular evolution of dω0z/dt is given by the time-
averaging of Eq. (21) over a T period of time. For the sake of
convenience, we define

1
Ceff (T )

=
1
T

∫ T

0

1
C

(
1 +

Cc

Cm
e−

CR∗ t
CmCc

)
dt

=
1
C

1 +
C2

c

C
1 − e−

CR∗T
CmCc

R∗T

 , (22)

where Ceff (T ) is a time function playing the role of the time-
averaged effective inertia moment. In the previous integral, t = 0
formally stands for the initial moment of the actuation of the
dissipative torque, where only the T elapsed time of evolution is
relevant. Equations (21) and (22) allow us to write

δ

(
dω0z

dt

)
=−

1
Ceff (T )

∂Vt,sec

∂ν
, (23)

which generalizes Eq. (17) for the secular angular acceleration
of the Earth over a period of time T because of the redistribution

potential effects and when a dissipative core–mantle coupling
torque is introduced within the modeling4.

Equation (17), which describes the secular evolution of the
Earth’s rotation rate when the FOC and the mantle evolve
decoupled, is obtained from Eq. (23) in the limiting case
of a null period of core–mantle coupling, that is, Ceff (0) ≡
limT→0 Ceff (T ) = Cm. Such physical behavior of the decoupled
FOC in the rotation of Earth is studied in Wahr et al. (1981),
Yoder et al. (1981), and Moritz & Mueller (1986), Sect. 3.7,
among others.

In turn, if the core–mantle coupling is prolonged indefinitely
in time, we have Ceff (∞) ≡ limT→∞Ceff (T ) = C. Because in this
case Eq. (23) is equivalent to that of a one-layer deformable
Earth model (where ω0z = N/C), the introduction of dissipative
effects through a coupling torque at the CMB implies a limit
situation in the secular evolution of the angular acceleration
where the two-layer Earth behaves as a whole, with core and
mantle decelerating together. This property is due to the fact
that dissipative coupling tends to attenuate the differential rota-
tion between core and mantle. With respect to the redistribution
potential perturbation, a one-layer deformable Earth is indistin-
guishable from a two-layer Earth with totally coupled core and
mantle. The core–mantle total coupling in the secular evolution
– Ceff (∞) – is assumed from the outset by example Mathews &
Lambert (2009) or Williams & Boggs (2016), although such an
assumption is not justified in those studies.

4.2. Secular angular acceleration due to mass redistribution

Once the derivative in Eq. (23) is performed, it is possible to
identify the sets of variables of perturbed and perturbing bod-
ies, that is, λ̃= λ, µ̃= µ, and ν̃= ν, because they are the same
bodies but play different mathematical roles inVt,sec. The secu-
lar condition (Eq. (7)) must therefore be applied. The B, C, and
D Kinoshita orbital functions can be evaluated with sufficient
accuracy at some epoch, that is, I = Ĩ = I0 (J2000.0), taking into
account the fact that the value of such functions does not vary
substantially throughout the integration period. Further minor
details from a similar calculation can be found in Baenas et al.
(2017a, 2019). Finally, the contribution to the secular angular
acceleration, or Earth rotation rate, reads

δ

(
dω0z

dt

)
= −ωE

C
Ceff (T )

∑
p,q = M,S

fqkp

∑
i, j;τ,ε∈I
m = 1,2

∣∣∣k̄2m, j

∣∣∣ T (ωz)
i jpq,m sin ε2m, j,

(24)

where the following orbital-dependent function has been
defined:

T (ωz)
i jpq,m = 3Ci;pC j;qδm1 +

3
2

Di;pD j;qδm2. (25)

In Eq. (25), δmn stands for Kronecker delta symbol, introduced
by the dependence of the Love number set with m index of the
frequency band. As there is no contribution of the zonal part of
the redistribution potential, because ∂V(0)

t,sec/∂ν= 0, the m index
in Eq. (24) only counts for m = 1, 2.

The dimensionless C/Ceff (T ) quotient establishes the type of
core–mantle evolution considered during a period of time where
4 The same result is achieved if Eq. (16) is generalized by

δ

(
dω0z

dt

)
=

{
ω0z,Vt,sec

}
+

(
∂ω0z

∂N
Qν +

∂ω0z

∂Nc
Qνc

)
sec
.
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Table 1. Contribution to secular angular acceleration (′′ cy−2) and LOD rate (ms cy−1) by Earth modeling and tides.

Earth modeling Solid tides Ocean tides
(IERS2010) (WB2016) Total

Coupled core–mantle (′′ cy−2) −59.3 −1269.3 −1328.6
secular evolution (ms cy−1) 0.108 2.310 2.418

Decoupled core–mantle (′′ cy−2) −67.0 −1432.3 −1499.2
secular evolution (ms cy−1) 0.122 2.607 2.729

Ceff (T ) acts as the time-averaged moment of inertia. The theo-
retical situation of a decoupled core–mantle secular evolution is
studied by taking

C
Ceff (0)

=
C

Cm
= 1 +

Cc

Cm
, (26)

where the unit part corresponds to the one-layer Earth case,
while Cc/Cm works as the contribution due to the two-layer mod-
eling. The widespread assumption (Mathews & Lambert 2009;
Williams & Boggs 2016) is the totally coupled core–mantle
secular evolution, which is given by

C
Ceff (∞)

=
C
C

= 1. (27)

5. Numerical results and comparisons

A numerical estimate of the exponential in Eq. (22) can be per-
formed considering the frictional coupling constant magnitude,
R∗ ' 3.2 × 1028 kg m2 s−1 (Stacey & Davis 2008, Sect. 7.5), and
numerical values of the principal inertia moments (e.g., Chen
et al. 2015). The exponential shows a fast decay (∼e−12.6T , T in
cy), allowing its numerical irrelevance in a few centuries. Hence,
in what follows, totally coupled core–mantle secular evolution is
assumed (Eq. (27)).

For the numerical evaluation of Eq. (24) we use the IERS
Conventions (IERS Conventions 2010) frequency-dependent
Love number set for solid tides (with oceanic load), and Williams
& Boggs (2016) correction to account for the direct contribu-
tion of the oceans based on the FES2004 (Lyard et al. 2006)
ocean tide model. In addition to those references, Baenas et al.
(2019) can be consulted for further details on such Love num-
ber sets. This is a very complete scenario to describe the Earth’s
anelastic response to gravitational perturbation, which is inte-
grated in the formula through the modulus and phase,

∣∣∣k̄2m, j

∣∣∣ and
ε2m, j (m = 1, 2), of the complex Love numbers. We use the same
sign convention for the ε2m, j phase as that used in Williams &
Boggs (2016).

The rest of the involved parameters are those of Table 1 in
Baenas et al. (2019) (not included here for the sake of brevity),
and the factor 1 + Cc/Cm (Eq. (26)) used for comparative pur-
poses. A numerical estimate of 1 + Cc/Cm can be obtained
from the basic Earth parameters (BEPs) of the two-layer Earth
(Getino & Ferrándiz 2001), namely PCW (period of Chandler
wobbe), PFCN (period of free core nutation), and the Ac/Am ratio,
which are connected through the ellipticities of the Earth (e) and
the FOC (ec); or with a direct calculation of the Cc/Cm ratio
following for example Chen et al. (2015). In any case, the approx-
imation Cc/Cm ' Ac/Am can be accepted with great accuracy5,
5 Depending on the selected Earth set of parameters, the relative error
between Ac/Am and Cc/Cm can vary from 5 ppm to 0.1%.

and therefore we take 1 + Cc/Cm ' 1.1284 (with Ac/Am given by
Dziewonski & Anderson 1981). In other words, Eq. (24) directly
shows that the influence of the decoupled FOC in the angular
deceleration of the rotation of Earth about its spin axis is about
11% in magnitude (in agreement with Wahr et al. 1981)6.

Table 1 displays the numerical contributions obtained from
Eq. (24) divided into tides and Earth modeling situations. In
Table 2, the division is made according to frequency band or har-
monic contribution of the redistribution potential, that is, tesseral
(m = 1, diurnal) and sectorial (m = 2, semidiurnal), in the cou-
pled core–mantle secular evolution. Both tables show the results
in angular acceleration (arcseconds/century2, ′′ cy−2) and LOD
rate (millisecond/century, ms cy−1, ms are implicitly per day),
computed through Eq. (3).

In coupled core–mantle secular evolution, the total contri-
bution of the secular redistribution potential in the deformable
two-layer Earth with oceans is given by an angular acceler-
ation of −1328.6 ′′ cy−2 (secular deceleration), equivalent to
2.418 ms cy−1 in the LOD rate. This result is mainly due to the
ocean tides (Table 1), and the semidiurnal band of the redistri-
bution potential (Table 2). Regarding the separate action of each
perturber, the Moon induces a deceleration of −1135.3 ′′ cy−2

(2.067 ms cy−1, 85.45%), while the Sun contributes −193.3
′′ cy−2 (0.352 ms cy−1, 14.55%).

Some comparisons with previous works on the calculation
of the secular deceleration are included in Table 3. Here, AE and
OT labels refer to the anelasticity of the mantle and the oceanic
tide, respectively. The value given by Getino & Ferrándiz (1991)
is obtained with a one-layer Earth model using the Hamiltonian
formalism. These authors introduce ad hoc phases per frequency
band in the trigonometric arguments to account for the anelastic
behavior in the Earth deformation. Equation (40) in this latter
paper is somehow equivalent to our Eqs. (24) and (25) for the
case of a one-layer Earth with a constant Love number. These
simplifications lead to an LOD rate that is lower than ours by
about 0.32 ms cy−1. Krasinsky (1999) uses a similar Earth mod-
eling to that of Getino & Ferrándiz (1991) but in the framework
of Newtonian mechanics. The obtained results are very close in
both approaches.

In Ray et al. (1999), the obtained LOD rate is only due to
ocean tides based on satellite-altimeter and satellite-tracking tide
solutions. The formalism used by these latter authors does not
provide an analytical formula, and so the comparison is strictly
numerical. The suitable comparison must be partial with respect
to our total values in the ocean tides column of Table 2. This
leads to a small increase in LOD rate of about 0.07 ms cy−1.

6 The combination of Eqs. (2.8) and (2.10) in Wahr et al. (1981) lead
to such a result because the numerical value of the ratio between LOD
offsets in the cases of the Earth with FOC and the entirely solid Earth
is given by 0.886. In our case, C/Cm ' 0.886. This fact is also stated in
Moritz & Mueller (1986; Sect. 3.7).
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Table 2. Contribution to angular acceleration (′′ cy−2) and LOD rate (ms cy−1) by frequency bands and tides (coupled core–mantle secular
evolution).

Potential component Solid tides Ocean tides
(IERS2010) (WB2016) Total

Tesseral (′′ cy−2) 2.4 −193.5 −191.1
(m = 1) (ms cy−1) −0.004 0.352 0.348

Sectorial ( ′′ cy−2) −61.7 −1075.8 −1137.5
(m = 2) (ms cy−1) 0.112 1.9589 2.071

Total (′′ cy−2) −59.3 −1269.3 −1328.6
Two–layer Earth (ms cy−1) 0.108 2.310 2.418

Table 3. Comparisons.

Acceleration LOD rate Mass
(′′ cy−2) (ms cy−1) redistr.

Getino & Ferrándiz (1991) −1154 2.10 AE
Krasinsky (1999) −1168 2.13 AE
Ray et al. (1999) −1305 2.38 OT
Lambert & Mathews (2008) −1286 2.34 AE+OT
Mathews & Lambert (2009) −1369 2.50 AE+OT
Williams & Boggs (2016) −1316 2.40 AE+OT
This work −1329 2.42 AE+OT

5.1. Comparison with Mathews & Lambert (2009)

Lambert & Mathews (2008) and Mathews & Lambert (2009)
make very similar theoretical assumptions to those made in this
investigation. We focus on the latter study as it is an update of the
former on the same topic. In Mathews & Lambert (2009), a two–
layer Earth model with oceanic contribution is tackled within the
SOS approach. As in our construction, terms of second order in
magnitude are considered to be negligible, avoiding the effect
of the differential rotation of the core. The coupled core–mantle
secular evolution is assumed by these authors from the outset.
Due to the fact that the employed formalism does not provide
analytical results, the comparison is also strictly numerical.

Table 1 of Mathews & Lambert (2009) is directly comparable
to Table 2 of this work, both giving an angular acceleration and
LOD rate split in the harmonic components of the tidal potential.
There is a typo in Table 1 of this latter work: the total amount of
the angular acceleration is −1369 ′′ cy−2 (instead of the stated
−1449 ′′ cy−2 ), corresponding to 2.50 ms cy−1 in the LOD rate.
In the total count, there is a small difference with respect to our
calculation of about +40 ′′ cy−2 or an increase of 0.08 ms cy−1,
mostly coming from the ocean tides contribution.

Furthermore, there are substantial differences between the
oceanic model used by Lambert & Mathews (2006, 2008), which
is the supporting theory of Mathews & Lambert (2009), and that
of Williams & Boggs (2016), which is included in our calcula-
tions (this topic was already discussed in Baenas et al. 2020a).
In addition, in Mathews & Lambert (2009) the Earth’s man-
tle anelasticity and oceanic contribution are tackled by means
of constant compliances (parameters proportional to Love num-
bers) defined per frequency band, which is a simplification with
respect to the more realistic situation of frequency-dependent
tidal deformation (Love functions) used in our approach. Table 4
shows that such a simplification explains the differences found
in the solid tides contributions. In Table 4 we use constant Love

Table 4. Contribution of solid tides with Love numbers per frequency
band.

Potential component Angular acceleration LOD rate
(′′ cy−2) (ms cy−1)

Tesseral (m = 1) −15.3 (−15) 0.028 (0.03)
Sectorial (m = 2) −61.7 (−65) 0.112 (0.12)
Total −77.1 (−80) 0.140 (0.15)

numbers per frequency band in Eq. (24), i.e., k̄2m, j = k̄2m, taken
from Table 6.3 of IERS Conventions (2010). The angular accel-
eration and LOD rate contributions are compared with their
counterparts in Table 1 of Mathews & Lambert (2009), displayed
in parentheses in the table. Both sets of numerical results are in
good agreement.

5.2. Comparison with Williams & Boggs (2016)

The calculation of the Earth rotation rate in Williams & Boggs
(2016) is performed through evaluation of the torque acting to
decelerate the rotation of the Earth about its polar axis follow-
ing an analytical approach in an assumed coupled core–mantle
secular evolution situation. The same orbital ephemeris solu-
tion for the perturbers (ELP2000, Chapront-Touzé & Chapront
1983) is used as that of the Hamiltonian formalism (Kinoshita
and Souchay 1990) adopted in this work. After some algebra
it can be shown that Eq. (26) of Williams & Boggs (2016) is
equivalent to our Eq. (5) of the redistribution tidal potential7.
Accordingly, this coincidence also happens with their Eq. (28)

7 Such a comparison requires the relation between Williams & Boggs
(2016) U orbital functions and those of Kinoshita (1977) theory, B, C,
and D. As an example, Kinoshita’s zonal function is related to those of
Williams & Boggs through U11 + U22 − 2U33 =−6B.
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of the tidal angular acceleration and Eqs. (24) and (25) of the
present paper, in the totally coupled core–mantle case. In view
of the fact that we have used the Williams & Boggs (2016) Love
number set of the Earth with oceans, we expect to see very good
agreement in the numerical results of both investigations.

As shown in Table 3, Williams & Boggs (2016) give a secular
contribution of −1316 ′′ cy−2 to the angular acceleration, corre-
sponding to 2.40 ms cy−1 in the LOD rate. This is a difference
of about −13 ′′ cy−2 and 0.02 ms cy−1 with respect to our values
(Table 1), respectively. These differences are further reduced to
−6 ′′ cy−2 and 0.01 ms cy−1 if we consider the S W = 1.005 param-
eter introduced ad hoc in Eq. (28) of Williams & Boggs (2016)
to take into account the small dependence of the C moment of
intertia on spin rate, i.e., a direct substitution of C with S WC.
These almost negligible differences can only be attributed to
small changes in the constants used in the modeling.

5.3. Comparison with observational evidence

The secular angular acceleration of the Earth is an average
magnitude consisting of tidal contributions (solid, oceanic, and
atmospheric tides) and other parts of nontidal origin inducing
a secular change in the Earth’s oblateness or inertia matrix.
The most important of these nontidal geophysical effects is the
glacial isostatic adjustment (GIA) attributed to viscous rebound
of the solid Earth from the decrease in load on the polar caps
following the last deglaciation (Peltier & Wu 1983; Yoder et al.
1983; Williams et al. 2016). Mechanisms linked to the core–
mantle coupling (Mitrovica et al. 2009) and some other identified
sources producing a linear trend in LOD (a list of them can be
found in Gross 2015) are also taken into account.

The average value of the LOD rate can be estimated in differ-
ent ways from observational methods, some of them depending
on ancient astronomical observations. This is the case of the
study of Stephenson et al. (2016), which is based on a previ-
ous work by Stephenson & Morrison (1995), where the authors
consider reports of solar and lunar eclipses between 720 BC and
AD 2015. In Stephenson et al. (2016), the average change in the
LOD with tidal origin is obtained following an empirical rela-
tion between the observed tidal acceleration of the Moon and
the retardation of the Earth’s spin due to lunar and solar tides
(Christodoulis et al. 1988). Stephenson et al. (2016) estimate an
increase of 2.3± 0.1 ms cy−1 in LOD due to tidal friction, which
is consistent with their averaged observed change of 1.78±
0.03 ms cy−1 (including effects of tidal and nontidal origin). In
order to perform a proper comparison of this value with our the-
oretical prediction, it is interesting to note that Ray et al. (1999)
give a contribution of the atmospheric tides, amounting to an
angular acceleration of +55 ′′ cy−2. Assuming this complemen-
tary tidal contribution, our complete estimate for comparative
purposes gives a secular acceleration of −1273.6 ′′ cy−2, or
2.32 ms cy−1 of LOD rate offset: this is a relative error of less
than 0.9% with respect to that of Stephenson et al. (2016).

Morrison et al. (2021) is a recent update of the work by
Stephenson et al. (2016). However, in this addendum the authors
have taken the tidal part of the LOD rate from Williams &
Boggs (2016), namely 2.40 ms cy−1. As such an estimate comes
from a calculation similar to that of the present paper (we make
the comparison with Williams & Boggs 2016 in Sect. 5.2),
it does not provide relevant information in terms of observa-
tional evidence of the tidal offset in LOD. The updated value
of the observed deceleration is 1.72± 0.03 ms cy−1 (includ-
ing effects of tidal and nontidal origin). As pointed out above,
the widespread assumption explaining the substantial difference

between the predicted change of the LOD rate with tidal ori-
gin and the observed one is mainly ascribed to GIA. Mitrovica
& Forte (1997) found that GIA causes a secular trend in LOD
of −0.5 ms cy−1 (Gross 2015), which is in very good agreement
with the difference of −0.5 ms cy−1 for the nontidal contribution
found by Stephenson et al. (2016), and even the updated value of
−0.7 ms cy−1 in Morrison et al. (2021).

It is interesting to note that, prior to these estimates,
Christodoulis et al. (1988) gave an observed tidal braking of
the Earth’s rotation rate of 2.24± 0.08 ms cy−1 (−5.98± 0.22×
10−22 rad s−2 in the original paper) based on laser and Doppler
range data from artificial satellites. With respect to the center of
the interval, the relative difference with our calculation is less
than 3.5%, the 2.32 ms cy−1 being included in the interval error.
Their value has been confirmed by Deines & Williams (2016) by
means of an indirect empirical method based on fossil data. This
investigation leads to a very close average value of despinning
rate, 2.23± 0.66 ms cy−1 (−5.969± 1.762× 10−22 rad s−2 in the
original paper). However, due to the large error interval affecting
their inferred LOD rate, all the theoretical predictions in Table 3
are covered.

Regardless of the set of geophysical effects causing changes
in the Earth’s oblateness, the decrease of the polar principal
moment of inertia C has been monitored for several decades
using methods of satellite geodesy, showing a decreasing trend
(Rubincam 1982; Cox & Chao 2002; Cheng et al. 2013) and peri-
odic components (Marchenko 2018). In this sense, it should be
noted that the derivation of our formula for the secular angular
acceleration due to tidal mass redistribution (Eq. (24)) assumes
the C, Cc, and Cm moments of inertia as constants. This work-
ing hypothesis avoids the inclusion of the nontidal change in the
Earth’s oblateness within the modeling, allowing us to isolate the
tidal contribution as required for the purposes of this investiga-
tion. It can be proven that tidal and nontidal parts of the secular
LOD rate are decoupled at first order when only the linear trend
is considered. The investigation of such nontidal effects on LOD
within the Hamiltonian framework is an interesting topic, and
one that we aim to investigate in future work.

6. Conclusions

In this work we use the Hamiltonian formalism of Earth rota-
tion theory to derive a closed-analytical formula comprising the
contribution of the secular redistribution potential to the angular
acceleration in the rotation rate. The formula can be evaluated
for different Earth rheological and oceanic models by means
of frequency-dependent Love number formalism. We compare
our numerical results with previous works in detail, and explain
existing discrepancies.

We study the secular evolution of the Earth rotation rate,
including the dissipative torque at the CMB. We describe such
core–mantle coupling by means of a generalized forces approach
and use the first-order Lie-Hori perturbation method combined
with an averaging method. Within this framework, we define
a time-averaged effective moment of inertia Ceff (T ), which
comprises the limit situations of core–mantle decoupled evo-
lution, and the situation where core and mantle are rigidly
connected in their secular evolution or response to the long-term
perturbations.

Our best estimate is achieved for a two-layer Earth model
composed of an anelastic mantle with oceans and fluid outer
core. Solid tides with ocean load are described through IERS
Conventions (2010) frequency-dependent Love numbers, while
oceans tides are introduced following Williams & Boggs (2016).
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With this Earth modeling, we obtain a secular angular accelera-
tion of −1328.6 ′′ cy−2 (deceleration) equivalent to an increase in
the LOD rate of 2.418 ms cy−1. We show that such an estimate
is in very good agreement with a recent determination of the
Earth’s tidal braking (Williams & Boggs 2016; Stephenson et al.
2016) and is consistent with the total rates inferred from observa-
tions (Morrison et al. 2021). The main components of this result
are the ocean tides and the semidiurnal band or sectorial com-
ponent of redistribution potential. With respect to the perturbers,
the Moon induces 85.45% of the secular deceleration.

This paper is the third in a series studying the effects of the
mass redistribution potential on the rotation of the Earth, namely,
Baenas et al. (2019; precession), Baenas et al. (2020a; nutation),
and the present paper (secular changes in the length of day). All
these results have been obtained taking advantage of the versa-
tility of the Hamiltonian approach, which allows not only the
numerical estimates without consistency problems (Escapa et al.
2017), but the achievement of analytical formulae describing the
physical effects. The canonical framework also allows second-
order effects to be dealt with; strictly speaking these cannot be
studied with linear-based theories (Escapa et al. 2020). In this
way, within the general scope of the mass redistribution effect,
Baenas et al. (2017a) can also be included in the same list, where
the influence of mantle elasticity on precessional motion in lon-
gitude is studied through a second-order effect in the sense of
perturbation methods. The final report of the International Astro-
nomical Union (IAU) and International Association of Geodesy
(IAG) Joint Working Group on the theory of Earth rotation and
validation (Ferrándiz et al. 2020), and Resolution 5 adopted8 by
the IAG General Assembly in 2019, include some of the the-
oretical recommendations and updated values of Earth rotation
parameters belonging to this series of works.
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