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In this paper, a new system based on combinations of a shape descriptor and a contour descriptor has been
proposed for classifying inserts in milling processes according to their wear level following a computer
vision based approach. To describe the wear region shape we have proposed a new descriptor called
ShapeFeat and its contour has been characterized using the method BORCHIZ that, to the best of our
knowledge, achieves the best performance for tool wear monitoring following a computer vision-based
approach. Results show that the combination of BORCHIZ with ShapeFeat using a late fusion method
improves the classification performance significantly, obtaining an accuracy of 91.44% in the binary
classification (i.e., the classification of the wear as high or low) and 82.90% using three target classes
(i.e., classification of the wear as high, medium or low). These results outperform the ones obtained
by both descriptors used on their own, which achieve accuracies of 88.70% and 80.67% for two and
three classes, respectively, using ShapeFeat and 87.06% and 80.24% with B-ORCHIZ. This study yielded
encouraging results for the manufacturing community in order to classify automatically the inserts in
terms of their wear for milling processes.
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1. Introduction

Tool wear is one of the most influential factors on the quality of machined surfaces. Thus, a key
step of a machine system is the replacement of tools affected by wear at the optimal moment. It
is essential, not only because of the cost of cutting tools themselves, but also for the indirect costs
derived by the fact that the machine must be stopped during the time the tool is replaced. For
this reason, tool wear monitoring becomes a critical operation in automatic manufacturing. Many
research groups have been working with the aim of developing automatic systems to deal with this
problem (J. et al. 2015; Sick 2002; Jeang and Yang 1992; Zhou, Chandra, and Wysk 1990).

Approaches to tool wear monitoring may be divided into two broad categories: indirect and
direct methods. Indirect monitoring methods estimate the wear by measuring variables such as
cutting forces (Azmi 2015; Wang et al. 2014a), vibration (Li 2002) (Rao, Murthy, and Rao 2014)
or acoustic emission (Scheffer and Heyns 2001). For example, Kilundu et al. use pseudo-local
Singular Spectrum Analysis (SSA) on vibration signals measured on the tool holder in order to
determine the tool wear (Kilundu, Dehombreux, and Chiementin 2011). This is coupled to a band-
pass filter to allow definition and extraction of features which are sensitive to tool wear. These
features are defined, in some frequency bands, from sums of Fourier coefficients of reconstructed
and residual signals obtained by SSA. More recently, Nouri et al. (Nouri et al. 2015), developed
a new method to monitor end milling tool wear in real-time by tracking force model coefficients



during the cutting process. The behavior of these coefficients is shown to be independent from
the cutting conditions and correlated with the wear state of the cutting tool. A multiple sensor
monitoring system comprising cutting force, acoustic emission and vibration sensing units was
employed in (Segreto, Simeone, and Teti 2013) for tool state assessment during turning of Inconel
718 nickel alloy. Feature extraction was carried out by processing the detected sensor signals in
order to reduce the high dimensionality of the data. The extracted features were merged by means
of a sensor fusion methodology based on neural network pattern recognition for decision making
on tool wear condition.

The downside of indirect methods are that they do not provide sufficient information to perform
an optimal replacement of the inserts because the relationship between tool wear and the observed
variables depends on the cutting conditions and, in general, it is not known in advance. Even though
these methods are the most popular, the precision achieved with them is seriously affected by noise
signals in industrial environments. Furthermore, they are cost-inefficient and may be unavailable
for some real applications (Kassim, Mannan, and Zhu 2007).

In contrast, direct methods based on computer vision monitor the state of the cutting tools
directly at the cutting edge when the head tool is in a resting position. Although less popular than
indirect approaches, they have the advantage of measuring actual geometric changes in the tool,
offering more accuracy and reliability (Sick 2002) (Kurada and Bradley 1997).

In (Castejon et al. 2007), a binary image for each of the wear flank images have been obtained
by applying several pre-processing and segmenting operations. Every wear flank region has been
described by means of nine geometrical descriptors. LDA (Linear Discriminant Analysis) shows
that three out of the nine descriptors provide the 98.63% of the necessary information to carry out
the classification, which are eccentricity, extent and solidity. A finite mixture model approach shows
the presence of three clusters using these descriptors, which correspond with low, medium and high
wear level. A monitoring approach is performed using the tool wear evolution for each insert along
machining and the discriminant analysis. Another work in which computer vision is employed for
tool wear monitoring is the one developed by Chethan et al. (Chethan et al. 2014) in which a
methodology to calculate the tool area based on the drill image thresholding is presented. This
helps to select optimal drilling parameters in relation to tool wear. Datta et al. proposed a method
based on texture analysis and Voronoi tessellation in order to measure progressive tool wear (Datta
et al. 2013). Another method based on textures is explained in (Kassim, Mannan, and Zhu 2007).
Some works attempt to describe the wear taking into account the wear contour (Garćıa-Ordás
et al. 2014; Garćıa-Ordás et al. 2016). Both methods are based on the ZMEG contour descriptor
(Anuar, Setchi, and kun Lai 2013) obtaining promising results in the tool wear monitoring field.
B-ORCHIZ is a contour descriptor which combines global and local description.

Changes on the shape of a cutting tool depend on different types of wear (Zhang et al. 2011).
A cutting tool experiences a very complex pattern of wear as it cuts the material and some parts
of the cutting tool can loose material due to wear mechanisms. The wear shape is also different
depending on the machining process type. For example, in milling processes the wear shape is
distributed uniformly along the insert while in lathe processes the wear occurs over the same area
concavely.

In this study, we explore to merge features that describe contour and features with shape in-
formation to yield a more powerful description. Both descriptors provide very useful information
about the images but each one focuses on different characteristics. The possibility of using both
to determine the the tool wear offers a new chance of improvement in this field. In particular, a
new shape descriptor called ShapeFeat, that characterizes the wear based on the region properties
is presented. It is also combined with the best contour descriptor found in the literature with this
same purpose using three different fusion techniques.

This proposal has been assessed using images acquired in a laboratory under controlled conditions
but it can be easily implemented in a real industrial environment. Fig. 1 shows the milling machine
used in this study, the TECOI TRF milling machine and a close-up of the milling head tool, which
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is used to manufacture metal poles of wind towers. The monitoring process of the milling head tool
is carried out during the period of time when it is parked, which lasts for at least five minutes,
sometimes up to 20 minutes, before the processing of the next metallic plate. These machines use
an aggressive edge milling in a single pass for the machining of thick plates, what makes tool wear
appear even with low machining time. The acquisition would be carried out with a fixed camera
and an illumination system composed by two led bars. A cover will enclose the system in order
to attenuate the external illumination and, thus, to avoid light changes in the acquired images. A
diagram depicting the whole acquisition system is shown in Figure 2. The location of the inserts
may be obtained using the method explained in (Fernández-Robles et al. 2017). The whole process
takes less than 1.5 minutes on a personal computer with a 2GHz processor and 8GB RAM. That
includes the time since the image acquisition takes place until the cutting edges of the inserts are
classified. Therefore, the inspection does not require to stop the machining longer than its normal
resting time and it provides information about the state of each insert. In this way, the operator
can replace the worn inserts and, therefore, make sure that the next metallic plate is processed
under optimal conditions.

(a) (b)

Figure 1. (a) Overview of the TECOI TRF milling machine and (b) detail of the milling head tool that we used in the

experiments carried out in this work.

Figure 2. Diagram depicting an example of an acquisition system in a real environment.

The rest of the paper is organized as follows. In Section 2, the wear description methodology
based on shape and contour features is presented. The combinational methods (early, intermediate
and late fusion strategies) are introduced in Section 3. In Section 4, the dataset creation is described
and the experimental setup and results for contour, shape and both features are discussed. Finally,
we present the conclusions of our work in Section 5.

2. Methodology. Wear description with contour and shape features.

In this section, two image description methods are presented. The first one, ShapeFeat, is a new
shape descriptor proposed in this work. The other one, B-ORCHIZ (Garćıa-Ordás et al. 2016), is

3



a contour descriptor that provides the best performance in the literature up to this moment.

2.1 Shape Descriptor: ShapeFeat

In this paper, we propose a shape descriptor called ShapeFeat that takes into account ten different
shape features extracted from the binary region of an image. This descriptor provides useful infor-
mation about the image which is not usually obtained with descriptors based on moments, such as
Hu (Hu 1962), Flusser (Flusser 1992) or Zernike (Zernike 1934), which are focused on the shape
information, but avoid relevant information like the area of the region or its homogeneity.

The ten different features for describing the binary regions that we have considered are: Convex
Area, Eccentricity, Perimeter, Equivalent Diameter, Extent, Filled Area, Minor Axis Length, Major
Axis Length, R and Solidity. Next, we give a brief description of each one.

• Convex Area: It is computed as the number of pixels of the smallest con-
vex polygon that contains the region. The coordinates of such polygon (i.e.,
(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)) are arranged in the determinant form shown below. The
coordinates are taken in counterclockwise order around the polygon, beginning and ending
at the same point.

Area =
1

2

∣∣∣∣∣∣∣∣∣∣
x1 y1

x2 y2

... ...
xn yn
x1 y1

∣∣∣∣∣∣∣∣∣∣
=

1

2
[(x1y2 + x2y3 + x3y4 + ... + xny1)−

(y1x2 + y2x3 + y3x4 + ... + ynx1)]

(1)

• Eccentricity: It is a scalar that specifies the eccentricity of the ellipse that has the same
second central moments as the region (see Figure 3). The eccentricity is the ratio of the
distance between the foci of the ellipse and its major axis length. Its value is between 0 and 1
(i.e., 0 and 1 are degenerate cases: an ellipse whose eccentricity is 0 is actually a circle, while
an ellipse whose eccentricity is 1 is a line segment).

Figure 3. Ellipse with centre O. The foci coordinates are F2(−c, 0) and F1(0, c)

The eccentricity of the ellipse is calculated as:√
1− b2

a2
(2)
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• Perimeter: This is the number of points in the contour.
• Equivalent diameter: Scalar that specifies the diameter of a circle with the same area as

the region. It is computed as
√

4A
π , where A is the area of the region.

• Extent: This feature specifies the ratio of the pixels of the region to the pixels in the bounding
box around the region.

• Filled Area: It refers to the number of pixels belonging to the region after filling its possible
holes.

• Minor Axis Length: Length of the segment BB′ (see Figure 3 (2b)) of the ellipse that has
the same normalized second central moments as the region.
• Major Axis Length: Length of the segment AA′ (see Figure 3 (2a)) of the ellipse that has

the same normalized second central moments as the region.
• R = 2b

2a , where 2b and 2a stands for the lengths of the minor and the major axis, respectively,
of the ellipse that has the same normalized second central moments as the region.
• Solidity: This feature indicates the proportion of the pixels in the smallest convex polygon

that can contain the region, that are also in the region. Thus, this scalar is computed as
Area

ConvexArea .

Figure 4. Two examples of the ShapeFeat features extraction. With the information shown in the first column, we can extract

the eccentricity and R. With the information shown in (b), we can extract the extent. Finally, the smallest convex polygon
shown in the third column (c) is necessary to extract the Convex Area and the Solidity.

Figure 4 depicts some of the relevant information used in this description method. In (a), the
semi-minor and semi-major axes of the ellipse that has the same second central moments as the
region are shown. This information is also taken into account to extract the eccentricity and R.
In (b) the bounding box image crop is depicted, which is used to get the Extent property just
calculating the ratio between the number of pixels in that image and the number of white pixels
(region pixels). In (c), the smallest convex polygon is shown. That polygon is necessary to extract
the Convex area value and the Solidity, which is the ratio between the number of white pixels in
(b) and the number of white pixels in (c).
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2.2 Contour Descriptor: B-ORCHIZ

B-ORCHIZ descriptor (Garćıa-Ordás et al. 2016) is based on the one developed by Anuar et al.,
called Zernike Moment Edge Gradient technique (ZMEG) (Anuar, Setchi, and kun Lai 2013).

It combines a global and a local descriptor taking advantage of both. A local descriptor describes
a small area of the image around a point of interest: multiple local descriptors are used to match
an image and make this process more robust for the comparison to be made. On the other hand,
a global descriptor describes the characteristics of the whole image. Global descriptors are not
as robust as local ones because any change in a small part of the image may cause the retrieval
method to fail but it gives global information about the image. Combining them, i.e., global and
local descriptors, the advantages of both strategies are kept.

Unlike ZMEG, B-ORCHIZ achieves invariance using Zernike moments’ module up to the tenth
order (i.e., 36 values) as global descriptor and the authors also proposed the Invariant Boundary
Descriptor (IBD), composed by Invariant Edge Gradient Co-occurrence Matrix (IEGCM) and
Boundary Orientations Chain (BOC), as local ones. The proposal is applied using the images
resized to 128×128 pixels and interpolating the binary images between 0 and 255 allowing Zernike
moments to be applied on a wider range of integer values. We address the reader interested in
further information to (Garćıa-Ordás et al. 2016).

3. Combination of Shape and Contour descriptors

Humans usually take into account different combinations of image features to interpret them or to
identify people, animals or objects. For example, the yellow color can be very useful to identify a
banana in a image, but if shape properties are not taken into account too, it can be mistaken with
a lemon or with the sun. This basic idea can be used in computer vision to increase the chance
of success in image classification problems. In our work, we explore the combination of shape and
contour features to improve our tool wear monitoring system. There are three well-known ways
to merge descriptors: early fusion, intermediate fusion and late fusion (see Figure 5). Next, we
describe with more detail each of them.

(a) (b) (c)

Figure 5. (a) Early fusion of the contour and shape descriptors.(b) Intermediate fusion using co-transduction method. (c) Late
fusion carried out by means of Bayes Average.

3.1 Early fusion

Early fusion combines the features obtained using different techniques and produces a single feature
vector to be used for the classification stage. The process inherently increases the size of the feature
vector but it is one of the fastest fusion methods. In our case, we have used the simple concatenation
of feature vectors. Thus, our input descriptor will be composed of all the B-ORCHIZ and ShapeFeat
features.
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3.2 Intermediate fusion: Co-transduction method

The Co-transduction method was originally proposed by Xiang Bai et al. (Bai et al. 2012) as a
retrieval system. Their goal was to develop an algorithm to fuse different similarity measures for
robust shape retrieval through a semi-supervised learning framework. The method was named Co-
transduction, which was inspired by the Co-training algorithm (Blum and Mitchell 1998). In our
case, the method has been adapted to deal with classification instead of retrieval using a k-Nearest
Neighbors approach with the top-k retrieved images. Furthermore, we have combined two different
descriptors instead of two different similarity measures to take advantage of all the information
extracted by ShapeFeat and B-ORCHIZ. Given a query shape, the algorithm iteratively retrieves
the most similar shapes using one description similarity matrix and assigns them to a pool for the
other one to do a re-ranking, and vice versa.

Basically, the Co-transduction algorithm works as we can see in Algorithm 1. The reader inter-
ested in more details is addressed to (Bai et al. 2012).

input : a query object x1, the database objects X = x2, ..., xn.
output: p nearest neighbors

1 Process:;
2 Create( n× n probabilistic transition matrix P1 based on one type of contour similarity

(B-ORCHIZ));
3 Create( n× n probabilistic transition matrix P2 based on one type of shape similarity

(ShapeFeat));
4 Y1 ← x1;
5 Y2 ← x1;
6 Create( two sets X1, X2 such that X1 = X2 = X)

7 ; for j ← 1 to m do

8 Use( P1 to learn a new similarity simj
1 by graph transduction when Y1 is used as the

query objects // (j = 1, ...,m is the iteration index));

9 Add(p nearest neighbors from X1 to Y1 based on the similarity simj
1 to Y2);

10 Add(p nearest neighbors from X2 to Y2 based on the similarity simj
2 to Y1)

11 X1 ← X1 − Y1

12 X2 ← X2 − Y2 // (Then, X1 and X2 will be unlabeled data for graph transduction in
the next iteration).

13 end

Algorithm 1: Co-transduction algorithm

3.3 Late fusion

The late fusion approaches use multiple classifiers to determine the output instead of just one
as early fusion does. These methods try to combine the prediction score, i.e., the confidence of
classifying the sample as positive, of all classifiers. Although it is very simple, this method has
proved to be effective in improving performance of each individual classifier.

In this paper we have used the simple Bayes average (Ruta and Gabrys 2000; Bostrom 2007)
as a method for obtaining a class probability distribution from the fused classifiers trained using
contour (B-ORCHIZ) and shape (ShapeFeat) descriptors:

PLATEFUSION (x ∈ Ci|x) =
PSHAPEFEAT (x ∈ Ci|x) + PBORCHIZ(x ∈ Ci|x)

2
, (3)
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where x is one image and Ci stands for one of all the possible classes it may belong to. PSHAPEFEAT
and PBORCHIZ are the probability distributions for the different classifications carried out.

This method takes into account the information provided by all the classifiers and determine a
decision based on the average of all of them, which avoid problems derived from a possible not fair
classification.

4. Experimental results

The aim of this work is to characterize the insert state based on the wear region shape and explore
whether or not adding more information, such as contour information, improves the categorization
performance.

4.1 Dataset

In order to assess experimentally the proposed method, we have created an Insert dataset processing
the images of 53 tools. The images were captured in a laboratory using a monochrome camera,
model Genie M1280 1/3” with a 25mm optic AZURE and manual focus and aperture. The sensor
has a resolution of 1280x960 pixels.

In order to improve the contrast in grey level images, we have used two lighting bars of red LEDs
(BDBL-R82/16H). Images have been taken on the inserts disassembled from the cutting head and
placed on a uniform background. Fig. 6 shows an example of the segmented inserts acquired under
these conditions.

(a) (b) (c)

Figure 6. Examples of segmented inserts acquired under these experimental conditions. (a) Insert with low wear, (b) Insert

with medium wear and (c) Insert that presents high wear.

Since the goal is to assess the wear level of each worn region, two preprocessing steps were carried
out: the cropping of cutting edges and the wear region extraction.

From each insert, four cutting edge images have been extracted. This process starts by removing
first the central portion of the insert after locating a circle whose center is in the centroid of the
insert region and whose radius is R = D/4.92, where D is the length of the major diagonal of the
insert. The value 4.92 has been set empirically, based on the geometry of the insert. Thereafter, the
cutting edges are detected using border detection filters and mathematical morphology operations,
and extracted by cropping the subregion where they were located. Finally, the extracted cutting
edges are rotated to place them in a horizontal position, as shown in Figure 7.

Subsequently, the wear region is extracted. Some examples of segmented wear regions are de-
picted in Figure 8.

Since the wear in the adjacent edges (i.e., the edges that do not appear in the horizontal axes
in Fig. 7) may have an impact on the global wear of the insert, we have distinguished the wear
in the two types of edges, so we have divided the dataset of wear regions into two: the “Complete
edges” and the “Incomplete edges” (Insert-C and Insert-I, respectively). An example both kind of
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(a) (b)

(c) (d)

Figure 7. Examples of the North (a), South (b), East (c) and West (d) cutting edges cropped from the insert shown in Fig.

6(a).

(a) (b)

(c) (d)

Figure 8. Examples of segmented wear regions of the North (a), South (b), East (c) and West (d) edges shown in Fig. 6(a)

images is shown in Figure 9. The reader interested in more details is addressed to (Garćıa-Ordás
et al. 2016).

(a)

(b) (c)

Figure 9. Examples of the types of inserts of a segmented image (a). In (b), the complete edge is depicted, whereas in (c) the

incomplete edges are shown.

We followed a supervised learning approach to train the categorization model. An expert labelled
the wear regions included in the dataset to generate the ground truth, carrying out two types of
ratings depending on how many wear classes were taken into account. In the first one, three classes
were assigned – Low (L), Medium (M) and High (H) wear – and two classes in the second one
– Low (L) and High (H) wear –. In the three-class problem there were 126 edges with low wear,
260 with medium wear and 187 with high wear, whereas in the two-class problem, there were 260
edges with Low wear and 313 with high wear. The expert carried out the labelling process by
means of a visual assessment, relying on his previous knowledge and experience. The decision of
the expert depends on some considerations, like the shape, size and the distribution of the wear
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area, its location or how deep it is.
This labelling was carried out according to the three different stages identified in the well-known

tool wear curve vs. time. In the three-class scenario (see Fig. 10(a)), the low class (L) corresponds
to the rapid initial wear that occurs within the first machining minutes (break-in period). This is
followed by a period with a uniform wear rate in a controlled way (steady state wear region) that
was identified as medium (M) wear. Finally, the high wear label (H) refers to the stage with high
wear that grows exponentially, in an uncontrolled way and with high risk of tool fracture. When we
are dealing with only two wear levels, the short break-in period and the steady state wear region
are included together in the low (L) wear class while the accelerated wear state where the tool is
damaged is assigned to the high (H) wear class (Fig. 10(b)).

(a)

(b)

Figure 10. Tool wear vs. operating time. Correspondence between wear levels and the wear categories considered in this study:
(a) Low / Medium / High categories and (b) Low / High Wear categories.

4.2 Experimental setup

As we commented previously, to determine the wear of the complete edge by itself and also how it
is influenced by the incomplete edges, we divided the whole Insert dataset into two: (a) Insert-C
subset with the complete edges that correspond with the horizontal wear in the cropped images,
and (b) Insert-I subset with the incomplete ones which orientations are vertical in the images.

To carry out the classification for these datasets with all the descriptors evaluated, we used a
Support Vector Machine (SVM) classifier with intersection kernel. The validation has been carried

10



out by means of stratified Monte Carlo cross-validation, which randomly splits the dataset into
training and test data, both of them following the same distribution as the original dataset. For
each split, the model is fit to the training data and the predictive accuracy is assessed using the test
subset, that is, with images not seen during the calibration phase. The advantage of this method
over k-fold cross validation is that the proportion of the training/test split is not dependent on the
number of iterations. In this work, we have extracted 75% of the data for the training subset and
the remaining 25% for the test subset. This process has been repeated 20 times and the final result
is the accuracy averaged over these 20 runs.

Results are shown in terms of the accuracy achieved in the classification, which is the number
of correctly classified cutting tools over the total number of cutting tools seen by the system, that,
for the binary case is computed as shown in Equation (4).

accuracy =
TP + TN

TP + FP + FN + TN
, (4)

where TP (true positives) represents the number of samples of the high wear class classified as
high wear; TN (true negatives), number of samples of the low wear class classified as low wear;
FP (false positives), samples classified as high wear when they belong to the low wear class and
FN (false negatives) are samples classified as low wear when they actually show high wear.

We combined the two best descriptors (B-ORCHIZ and ShapeFeat) using early, intermediate
(i.e., co-transduction) and late fusion techniques. The results were compared among each other
and also with other classical descriptors. Co-transduction classifier uses k-NN. We assessed values
of k equal to 3, 7, 9 and 11 obtaining the best results for k = 3 in all cases.

4.3 Results

In this section, we present the results obtained in all of our experiments divided in two main
categories: Results achieved by each descriptor on its own (i.e., without combining them) and
results combining both of them using different fusion techniques: early fusion, intermediate fusion
and late fusion.

4.3.1 Results without fusion

The first step consists of assessing the descriptor based on shape presented in this paper (ShapeFeat)
and other proposals based on contour features: B-ORCHIZ, ZMEG and aZIBO. Table 1 shows the
performance in terms of accuracy.

Table 1. Classification accuracy (in %) of ZMEG, aZIBO, B-ORCHIZ and ShapeFeat using SVM with Intersection kernel for

the complete, Insert-C, Insert-I dataset (from left to right) for two and three wear levels.

Complete Insert-C Insert-I
L-H L-M-H L-H L-M-H L-H L-M-H

ZMEG 83.74 75.87 85.58 76.44 83.52 79.40
aZIBO 84.44 78.85 87.02 76.92 84.89 82.14
B-ORCHIZ 87.06 80.24 87.02 81.25 88.46 82.69
ShapeFeat 88.70 80.67 93.37 81.35 88.41 84.12

It is clear that B-ORCHIZ achieves in all the datasets and all the classifications better results
than ZMEG and aZIBO descriptors. The improvement for the complete dataset was more than a
3% in the binary classification and almost a 2% in the ternary one with respect the best descrip-
tor of the state of the art (aZIBO). However, these results were outperformed by our proposed
shape descriptor (ShapeFeat) in almost all the experiments. As it is shown in Table 1, the highest
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improvement was achieved with the Insert-C dataset, with an increment of more than a 7.29%
of accuracy. In all the other cases, its behavior was very similar in comparison with the contour
descriptors.

Feature ranking techniques play an important role to gain knowledge of data and identify the
most relevant features. The ShapeFeat descriptor proposed in this paper includes interpretable
shape features whose discriminant power has been analyzed. In order to identify the most rele-
vant features, we performed a feature-ranking analysis following the well-known wrapper approach
(Bolón-Canedo, Sánchez-Maroño, and Alonso-Betanzos 2013; Guyon et al. 2006). Wrapper meth-
ods use the performance of a learning algorithm (in this analysis, a Support Vector Machine (SVM)
classifier) to assess the usefulness of a feature set. It iteratively discards features with the least dis-
criminant power according to the classifier performance. Model performance was estimated by the
Area under the ROC (Receiver Operating Characteristic) curve, where the ROC curve plots the
true positive rate against the false positive rate. The ranking procedure was run on the Complete
dataset and the following top-3 most relevant features were found: R (i.e., the ratio between the
minor and major axis), the major axis length and the extent.

4.3.2 Results with fusion of contour and shape descriptors

B-ORCHIZ, i.e., contour descriptor, and the proposed ShapeFeat, i.e., shape descriptor, are, to
the best of our knowledge, the methods that achieve the best performance in the application of
computer vision for tool wear monitoring so far. The big difference in the way both methods are
built is very interesting because it makes possible to explore different fusion techniques to combine
both of them.

In this section, we show the results of the three different fusion techniques applied over these
two methods: early, intermediate and late fusion.

Early fusion was performed by concatenating B-ORCHIZ and ShapeFeat to create a new feature
vector used as input for the SVM classifier. Intermediate fusion was carried out using the method
Co-Transduction explained in Section 3.2. Late fusion was implemented combining the scores of
the SVM classifier for B-ORCHIZ and ShapeFeat in order to determine the final response of the
learner.

In Figure 11, results for each fusion method are shown. In order to compare the results with the
original methods, we have also included B-ORCHIZ and ShapeFeat. Early fusion method achieves
a very similar result to the B-ORCHIZ method on its own. This can be explained due to the high
difference in size between both descriptors, which makes B-ORCHIZ to have more weight than
ShapeFeat. Co-Transduction and Late fusion are invariant to the number of features because the
fusion is carried out after the classification step has taken place. In almost all the experiments
late fusion achieves a higher performance than the rest of the description techniques used on
their own. However, in the binary classification using the Insert-C dataset, the high difference in
accuracy between shape and contour descriptors conditions the result of the early and late fusion
methods. The good performance of the Co-transduction method for this experiment is obtained
because of the fusion algorithm. Whereas late fusion and early fusion are averagely influenced by
both performances, in the Co-transduction method each descriptor is improved by the other. For
this reason, although B-ORCHIZ does not show good results, it also improves the performance of
ShapeFeat instead of decreasing it in the fusion step.

4.3.3 Descriptor fusion vs baseline descriptors

We also compare our proposal with other classical descriptors like Bag of contour fragments (BCF)
(Wang et al. 2014b), Histogram of oriented gradients (HOG) (Dalal and Triggs 2005) and Shape
Context (SC) (Belongie, J.Malik, and Puzicha 2002). As it is shown in Table 2, our combined
method outperforms the state of the art methods in all cases, achieving improvements of more
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(a)

(b)

Figure 11. Results for binary (a) and ternary (b) classification using fusion methodology with B-ORCHIZ and ShapeFeat.

Furthermore, results achieved by the descriptors on their own are represented as straight lines over the graphs.

than 82%, 35% and 31% with respect to SC, HOG and BCF methods, respectively, in all the cases
evaluating the L-M-H classification performance for the complete dataset.

It is noteworthy that the tool assessment we propose takes place when the head tool is in the
parking position, between the machining of two consecutive plates, ensuring that the tool state
is suitable for the next operation because it is not in the High wear category. The resting time
of milling head tools lies between 5 and 20 minutes, what makes our approach appropriate to be
implemented in this real production environment.
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Table 2. Classification accuracy in % of the combination of ShapeFeat with BORCHIZ and other descriptors like Bag of
contour fragments (BCF), Histogram of oriented gradients (HOG) and Shape Context (SC).

Complete Insert-C Insert-I
L-H L-M-H L-H L-M-H L-H L-M-H

Late fusion 91.44 82.90 90.67 82.79 90.05 85.27
BCF 76.76 63.11 77.88 49.52 80.77 74.45
HOG 76.80 60.35 80.19 51.06 76.65 66.15
SC 54.58 45.45 68.75 41.83 69.51 48.08

5. Conclusion

In this work we present a new approach to conduct an automatic assessment of the wear level in
milling inserts. Evaluating the most recent studies connected with this field following a computer
vision based approach, the best technique developed so far for evaluating the status of the inserts
is the B-ORCHIZ descriptor. This method is based on the description of the contour. There are,
however, many potential features that can be used to represent an image. In order to evaluate
other possibilities, in this work we proposed ShapeFeat, ten features that describe the shape of
the binary images. Experimental results showed that this descriptor based on shape outperformed
previous proposals. Additionally, a feature-ranking analysis with a wrapper approach revealed that
the most relevant shape features are: R (the ratio between the minor and major axis), the major
axis length and the extent.

Taking into account the good performance of contour and shape descriptors and, bearing in
mind that humans combine different characteristics for image recognition tasks, we explored the
combination of these two approaches. The combination was carried out using three fusion methods:
early, intermediate (which combines the similarity matrices of each method to improve the classifier
of the other one) and late fusion. The accuracy achieved using late fusion of both descriptors
outperformed individual performance: accuracy was 91.44% for binary classification using the whole
dataset and 82.90% in the low-medium-high one. These empirical results provide evidence that this
approach is a very promising opportunity for developing an automatic wear monitoring system in
edge profile milling processes, saving time in the insert review process, its associated costs and
avoiding the possible errors due to the subjectivity of the human evaluation.

The proposed methodology has been assessed on a specific type of inserts, whereas a huge variety
of situations may be found in real industrial environments, i.e., inserts with different shapes or
different materials being machined. Despite of being assessed for specific inserts, our proposal can be
extended to any other tool or material. For example, transferring this proposal to other production
environment with other materials being machined, requires the collection of a representative tool
image dataset labelled by experts in terms of the wear degree, for the subsequent training of the
categorization module. When the tool changes, the image preprocessing should be adapted. The
features proposed in this paper can thereafter be extracted from the wear region and used to create
the model that automatically classifies the wear level of new unseen tools.

Addressing the problem of automatically detecting the type of tool wear by means of a similar
framework based on computer vision is part of our future research.
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Based in Shape Moments and Rotational Invariant Features.” In Pattern Recognition (ICPR), 2014 22nd
International Conference on, Aug, 2395–2400.

Guyon, Isabelle, Steve Gunn, Masoud Nikravesh, and Lotfi A. Zadeh. 2006. Feature Extraction: Foundations
and Applications (Studies in Fuzziness and Soft Computing). Secaucus, NJ, USA: Springer-Verlag New
York, Inc.

Hu, Ming-Kuei. 1962. “Visual pattern recognition by moment invariants.” IRE Transactions on Information
Theory 8 (2): 179–187.

J., Karandikar, T. McLeay, S. Turner, and T. Schmitz. 2015. “Tool wear monitoring using näıve Bayes
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