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Cyber-attacks are a major problem for users, businesses, and institutions. Classical anomaly detection 
techniques can detect malicious traffic generated in a cyber-attack by analyzing individual network 
packets. However, routers that manage large traffic loads can only examine some packets. These 
devices often use lightweight flow-based protocols to collect network statistics. Analyzing flow 
data also allows for detecting malicious network traffic. But even gathering flow data has a high 
computational cost, so routers usually apply a sampling rate to generate flows. This sampling reduces 
the computational load on routers, but much information is lost. This work aims to demonstrate that 
malicious traffic can be detected even on flow data collected with a sampling rate of 1 out of 1,000 
packets. To do so, we evaluate anomaly-detection-based models using synthetic sampled flow data 
and actual sampled flow data from RedCAYLE, the Castilla y León regional subnet of the Spanish 
academic and research network. The results presented show that detection of malicious traffic on 
sampled flow data is possible using novelty-detection-based models with a high accuracy score and a 
low false alarm rate.

Cyberattacks on enterprises, organizations, and users have increased in recent years. In addition, the methods 
used by attackers are also very diverse, making it difficult to detect specific attacks. A promising solution is 
analyzing network traffic to detect anomalies.

Anomalies are patterns in the data that do not fit a known habitual pattern1. We can distinguish between two 
types of machine learning models to detect anomalies: supervised and unsupervised. Supervised models use 
previously labeled datasets, while unsupervised models use unlabeled data. There are two types of supervised 
algorithms for anomaly detection depending on their tolerance. Novelty detection is less tolerant. Novelty detec-
tion algorithms expect to receive as input only normal-regular data during training. However, there are more 
tolerant supervised algorithms. These algorithms can obtain good results even when the dataset contains a small 
percentage of anomalous data. Outlier detection is the unsupervised technique for anomaly detection. Outlier 
detection uses regular data with a small ratio of abnormal data to train the models2, 3. Models based on anomaly 
detection have a fundamental advantage over classical supervised learning-based models since their training is 
based mainly on benign traffic. As a result, these models can detect different network attacks as anomalies with 
respect to the usual traffic that the model has learned.

Detecting malicious traffic using anomaly models based on machine learning is a problem already solved 
using network packets. For instance, in4, the authors proposed outlier detection algorithms to detect various 
network attacks. The distance-based outlier detection algorithm obtains an 83.80% accuracy with probing attacks 
and an 82.21% accuracy with Denial of Service (DoS) attacks. The research in5 analyses the use of Local Outlier 
Factor (LOF) to detect novelties in the NSL-KDD dataset. The authors obtained an 84.00% accuracy score. Finally, 
in6, the authors compared the precision of the Support Vector Machine (SVM) for anomaly detection versus the 
same model after applying a Principal Component Analysis (PCA) to reduce the dimensionality of the features 
of the dataset KDD99. The result shows that the SVM applying PCA obtained an accuracy score of 93.75% versus 
77.08% obtained without applying PCA.
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Studying packets’ payload is an ideal but unrealistic scenario in core routers since studying packets’ payload 
in real-time is highly CPU-demanding. Therefore, routers that route large volumes of packets cannot analyze all 
of them in real-time. Usually, routers use flow data instead of packets to analyze network traffic. A flow collects 
statistics of network-layer datagrams during a specific time interval. All datagrams in a flow have a common set 
of features, namely source and destination IP address and port7. One of the most popular flow-based protocols 
is NetFlow, developed by Cisco Systems8. Flow-based technologies were conceived with the main objective of 
collecting network statistics and avoiding router saturation. The main objective of their development was not 
threat detection per se. However, in cases where networks are faced with significant volumes of traffic, and which 
make an exhaustive analysis of entire network packets unfeasible, these technologies serve as the only recourse 
to try to identify network-based attacks.

However, some routers manage such a significant volume of network traffic that even collecting flow data 
is too CPU-intensive. To avoid overloading, these routers process just one out of X packets to gather flow data. 
This gathering method is known as sampling. While packet sampling alleviates router saturation, also involves 
a substantial loss of information about network activities9.

The number of networks that handle a large amount of traffic and are forced to use packet sampling when 
generating network flows is increasing. For example, the 5G network, which according to its standard10, 11 is 
expected to manage the traffic of 5.1 billion mobile subscribers and 10 billion IoT subscribers. At a lower order 
of magnitude, in Spain, RedIRIS – the national network connecting computer resources of universities and 
research centers – employs NetFlow technology with a sampling rate of 1 packet out of every 1,000 packets to 
analyze the traffic it handles.

The primary objective of this study is to detect network anomalies, specifically identifying malicious traffic, 
in networks that utilize network flows and implement sampling of 1 packet out of every 1,000 packets. This spe-
cific sampling threshold aligns with the approach utilized in RedCAYLE production routers and has undergone 
comprehensive analysis in several research papers as can be seen in "Related work" section below. The algorithms 
employed in this study are founded on the principle of novelty detection. This method has been chosen due to 
its suitability in scenarios where only a limited quantity of anomalous data is accessible. In networks that use 
flow data, obtaining accurately labeled malicious flows is a highly intricate task12.

Research motivation.  Detecting malicious traffic in networks that use flow-based protocols with packet 
sampling is a growing requirement in large networks. In particular, our primary motivation is to provide the 
regional academic network of Castilla y León (RedCAYLE) managers with a solution to detect malicious traffic.

Our proposal aims to identify malicious traffic as network anomalies using flow data with a sampling rate 
of 1 out of 1,000 packets – The sampling threshold used by Juniper routers that manage RedCAYLE’s traffic –. 
Additionally, we seek to provide evidence about our results by providing public datasets and tools for replicating 
or improving them.

This paper also intends to demonstrate that detecting multiple network attacks in sampled network flows 
using anomaly detection-based techniques is possible. Finally, this work shows that the DOROTHEA tool13 can 
generate NetFlow datasets with high sampling thresholds that can be used to train anomaly detection algorithms 
for their use on real traffic.

In summary, this paper poses three main contributions: 

1.	 We empirically demonstrate that it is possible to identify malicious traffic as anomalies in network infra-
structures collecting flow data with a sampling threshold of 1 out of 1,000 packets. The above has yet to be 
demonstrated in the literature so far.

2.	 We experimentally demonstrate that systems trained with datasets generated with DOROTHEA can be 
successfully used to detect different types of malicious traffic.

3.	 We provide four datasets with packet-sampled flow data published under a free-use license.

The remainder of the paper is organized as follows: state-the-art of malicious traffic detection with anomaly 
detection-based methods is posed in "Related work" section; "Materials and methods" section depicts the tools 
used in our experiments, the data gathering and post-processing, and the optimizing of our detection models 
as well as the methodology used to evaluate them; results are shown and discussed in "Results and discussion" 
section; finally, "Conclusions" section pose our conclusions.

Related work
The identification of malicious traffic as anomalies through the analysis of network packets has been effectively 
addressed, as previously mentioned. Nevertheless, in networks with high traffic volume, packet analysis becomes 
impossible, requiring the adoption of flow-based protocols to alleviate the computational burden on routers. 
Fortunately, in the literature, there have been encouraging outcomes in anomaly detection through the utiliza-
tion of flow-based datasets.

Ordered from modern to oldest in14, the authors propose a hybrid semi-supervised model based on the use 
of Denoising Auto-Encoder (DAE) and Gate Recurrent Unit (GRU) to detect anomalies in network flows. The 
results obtained, after evaluating the proposed system with the NSL-KDD dataset, showed an accuracy of 90.21%. 
In the research carried out in15, the authors undertook the task of detecting Distributed Denial of Service (DDoS) 
attacks in Software Defined Networking (SDN) by leveraging ten distinct features extracted from the CICIDS2017 
flow-based dataset. Their approach involved employing anomaly detection techniques, specifically Long Short 
Term Memory (LSTM) and autoencoder models. The authors achieved an accuracy score of 99.5%. In16, the 
authors demonstrated that the use of the machine learning technique Restricted Boltzmann Machine (RBM) is 
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valid to differentiate between benign and malicious NetFlow traffic when RBM is trained using a balanced dataset. 
Similarly, the authors in17 propose an evolution of the Micro-Clustering Outlier Detection (MCOD) algorithm to 
detect malicious traffic in NetFlow data. The model used various time series windows and correlations between 
cluster densities to outline and investigate possible malicious activity in the network, successfully detecting both 
known and unknown anomalies. The research carried out in18 proposes a clustering-based method to detect 
anomalies in NetFlow traffic. The authors obtained a 96.00% accuracy score in botnet detection. Finally, the 
research in19 presents an approach that leverages SVMs to analyze large volumes of NetFlow records. The results 
of this work show an average accuracy score in the attack classes studied of around 92.00%.

Previous works used network flows collected without sampling. Networks that handle a very large amount 
of traffic are forced to sample packets when generating flows. There are some works in the literature that have 
attempted to detect malicious traffic in network flows collected with different sampling thresholds using machine 
learning.

In20, the researchers investigated the performance of a Decision Tree (DT)-based model designed for detecting 
malicious traffic using a packet-based and a NetFlow-based dataset. Their study revealed that the adapted DT 
model achieved comparable accuracy levels when applied to both network packets and flow-based data without 
any packet sampling. However, a notable decline in accuracy was observed when implementing a sampling rate. 
With a sampling rate of 1/100, the authors achieved an overall accuracy of 85%. However, when using a more 
aggressive sampling threshold of 1 packet out of 1,000, the authors found a significant reduction in the capability 
of the model to detect malicious traffic, resulting in an accuracy score of 50%. Authors in21 investigate the influ-
ence of packet sampling on the performance of machine learning-based network intrusion systems. They explore 
three different sampling rates: 1/10, 1/100, and 1/1,000. To conduct their experiments, the authors employ three 
distinct machine learning algorithms: Convolutional Neural Network (CNN), DT, and Random Forest (RF). The 
datasets used in their experiments consist of instances of DoS and brute-force attacks. Results show that 50% of 
the malicious flows are not detected even with a 1/10 sampling rate. In22 the authors present a CNN approach 
for detecting port scans in sampled NetFlow version 5 data. They utilize a graphical representation of flow data 
to train and evaluate the performance of their system. When using a sampling rate of 1/500, the CNN model 
achieves an accuracy of 94.15%. However, the authors observe a significant drop in accuracy when employing a 
more aggressive sampling rate of 1/1,000. Under this condition, the accuracy decreases to 50%

Previous works used approaches based on supervised algorithms. Not many works have been found in the 
literature using an anomaly detection approach with sampled network flows.

The study carried out in23 presents a comprehensive study on whether existing sampling techniques distort 
traffic features critical for effective anomaly detection. The authors used the sampled data as input to detect 
two common classes of anomalies: volume anomalies and port scans. The authors used a wavelet-based volume 
anomaly detection and two hypothesis testing-based port detection algorithms. The experiments were performed 
with a sampling threshold of 1/10, 1/100, and 1/1,000. The results showed that packet sampling deteriorated 
the detection capability of the algorithms. At a sampling threshold of 1/1,000, all algorithms lost their detection 
capability regardless of the sampling technique used.

As mentioned above, the detection of malicious traffic in flow data is possible without packet sampling. 
However, the situation changes when attempting to apply sampling thresholds similar to those commonly used 
in production networks, such as RedCAYLE. At the time of writing, there is no existing work that effectively 
detects malicious traffic as network anomalies when employing such sampling thresholds.

Materials and methods
This section describes the experiments performed to evaluate our proposal. First, we propose guidelines for 
gathering flow datasets. Specifically, we depict NetFlow, the protocol used to build flow data. Next, we propose the 
2-step data gathering method. On the one hand, we build synthetic flow datasets for fitting our detection models. 
On the other hand, we collect actual flow data from RedCAYLE to double-check it. Following, we describe the 
data preprocessing method to prepare the data. Next, we depict the novelty detection algorithms used to build 
our detection models. Finally, we point out the evaluation method.

NetFlow.  NetFlow24 is a lightweight protocol to collect statistical data from network traffic. Cisco Systems 
released the first version of NetFlow in 1996. NetFlow is popular in gateways that route many network data-
grams. In addition, other switches than Cisco’s, such as Juniper’s or Enterasys’, support NetFlow. It provides 
sufficient information to network administrators to have a high-level understanding of network behavior and 
possible events occurring on the network. NetFlow supports several versions: V1, V5, and V9. For instance, 
RedCAYLE uses NetFlow V5. For this version, the collected features are listed in Table 1.

DOROTHEA.  Docker-based framework for gathering NetFlow data (DOROTHEA) is a tool that uses 
Docker as a base13. DOROTHEA26 allows the creation of virtual networks with multiple machines and different 
structures to gather stream data. DOROTHEA uses a NetFlow sensor to generate streams from network-layer 
datagrams. The framework consists of two operations. First, the tool allows simulating the generation of benign 
traffic. Benign traffic generators simulate the network traffic generated by users sending emails, establishing 
SSH connections, and performing search tasks in web browsers. Then, the traffic goes through the gateway, 
which performs two main tasks. (1) It routes packets to the Internet, and (2) it sends one out of X packets to the 
NetFlow Generator. X is the sampling threshold. NetFlow Generator forges NetFlow data from network-layer 
datagrams. Finally, flows are sent to a NetFlow Warehouse every 2 minutes.

The second operation allows the simulation of network attacks. It uses an architecture similar to benign 
traffic generation. This operation is isolated from the Internet, ensuring that all generated flows are malicious. 
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The attacks are carried out in a distributed way using Celery27. Celery is a queue-based Python library. The user 
can define the number of attacker and victim nodes. The attack and benign traffic generator scripts are devel-
oped in Python. DOROTHEA allows the user to add new scripts or modify existing ones. Once DOROTHEA 
has finished, it returns a CSV file containing the generated network flow data. The framework’s architecture is 
depicted in Fig. 1.

Data collection from DOROTHEA.  We gathered two datasets using DOROTHEA for fitting and testing novelty 
detection models. These datasets have been collected using NetFlow with a sampling rate of 1 out of 1,000 pack-
ets, simulating the conditions of RedCAYLE’s routers.

The first one (aka D1 ) only contains benign traffic; this dataset is used to train the models. D1 has been com-
piled by running three Python scripts available online28. The first uses the SMTP protocol to send emails. The 
second script performs SSH connections as a real user would. Finally, the third script mimics the behavior of a 
user browsing the Internet. To do this, the script performs queries on various search engines, generating both 
HTTP and HTTPS traffic. D1 is openly available online29.

Table 1.   NetFlow V5 features25.

Feature Description

System uptime Number of milliseconds since the export device started

Unix-timestamp seconds Number of seconds since January 1st, 1970 at UTC​

Unix-timestamp nanoseconds Residual nanoseconds since January 1st, 1970 at UTC​

Engine type Flow switching engine type

Engine id. Slot number switching engine flow

Exporter IP Flow exporter IP address

Source IP Source IP address

Destination IP Destination IP address

Nexthop Next hop router’s IP address

Input interface Input interface’s SNMP index

Output interface Exit interface’s SNMP index

Packets Number of packets in the flow

Bytes Sum of bytes of the packets in the flow

First System uptime of the first packet in the flow

Last System uptime of the last packet in the flow

Source port Source port

Destination port Destination port

Flags TCP flags

Protocol IP type of protocol

ToS IP type of service

Autonomous system source Autonomous system number of the source, either source or pair

Autonomous system destination Autonomous system number of the destination, either source or pair

Source mask Source address prefix mask bits

Destination mask Destination address prefix mask bits

Figure 1.   Flow data generation framework.
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The second dataset generated (aka D2 ) contains benign and malicious traffic; this dataset is used to test the 
models. The malicious traffic corresponds to port scanning attacks and SQL injections. These attacks differ 
significantly in their structure and nature. SQL injections are classified as application-level attacks, whereas 
port scanning attacks primarily target the network layer. By incorporating such diverse anomalies, we aim to 
evaluate the model’s ability to detect a wide range of attacks. Consequently, if the model successfully identifies 
and classifies these distinct anomalies, it can be inferred that it possesses the capability to detect a multitude of 
different attacks effectively. Unlike D1 , D2 contains approximately 50% benign traffic and 50% malicious traffic. 
The traffic that simulates a legitimate user has been generated using the same scripts that were used in D1 . The 
generated flows have been labeled as “0”. The malicious flows contained in D2 have been labeled as “1”. The test 
dataset is also openly available online30.

Some of the malicious traffic in the D2 dataset was generated by performing port scanning attacks with the 
Nmap tool31. Specifically, slow port scans have been performed. For this purpose, requests have been launched 
with a random delay of between 5 and 10 seconds between each request. Attacks were launched on both TCP 
and UDP protocols. The attacks launched were: TCP SYN scanning; TCP Connect scanning; UDP scanning; 
TCP NULL; FIN; Xmas scanning; TCP ACK scanning; TCP Window scanning; and TCP Maimon scanning32. 
The attacks were performed from 100 nodes that sent requests to the 65,536 ports of the 200 victim machines.

The remainder of malicious traffic corresponds to SQL injection attacks. To generate these flows, we have 
deployed web servers in DOROTHEA’s environment that use SQLServer, MySQL, and PostgreSQL as database 
engines. These servers have been deployed in 200 victim nodes on ports 80, 443, and 8080. The attacks are SQL 
injection for Union Query and Blind SQL injection. Union Query attack uses Union Operators while inserting 
the SQL Query. The two SQL queries are joined with the Union Operator. The first statement is a benign query, 
followed by a malicious query appended with the union operator.

To exploit a Blind SQL injection vulnerability, the attacker launches true or false queries against the database 
and sets the response based on the response received from the vulnerable application. This attack is performed 
when the web application is configured to display generic errors without having previously mitigated the SQL 
injection vulnerability33. To generate the flows corresponding to SQL injections, 16 machines have been used to 
launch attacks against 200 victim nodes.

SQLmap has been used to perform the attacks34. The Python scripts are openly available online35.

RedCAYLE.  RedCAYLE provides educational centers, university hospitals, scientific infrastructures, and 
technological facilities with a high-capacity communications backbone network infrastructure, thus allowing 
access to research network resources and the Internet. In the educational community alone, the network sup-
ports more than 380,000 students and teachers from Castilla y León.

RedCAYLE provides several services: 10 Gbps point-to-point transport service, Internet connection, IP 
addressing, and incident management. Besides, RedCAYLE monitors the affiliated institutions to analyze and 
diagnose the status of their services. To do so, RedCAYLE uses NetFlow version 5. Using NetFlow allows for 
a statistics-based analysis since it is impossible to analyze every packet in the network due to computational 
constraints. However, more than NetFlow is required to avoid overloading RedCAYLE’s routers. Therefore, it is 
necessary to apply a sampling rate. Specifically, the Juniper MX480 router manufacturer that RedCAYLE uses 
recommends a sampling threshold of 1 out of 1,000 packets36. If this sampling rate is reduced, the manufacturer 
claims no responsibility for possible breakdowns and problems with the device.

Data collection from RedCAYLE.  As with the datasets generated with DOROTHEA, two datasets have been 
gathered from the flows collected in RedCAYLE. The first dataset (aka D3 ) contains only benign traffic and was 
used to train the models. However, unlike the traffic collected in DOROTHEA, we cannot claim that the traffic 
obtained is strictly benign since it does not come from a controlled environment.

A second dataset with malicious and benign traffic has been gathered (aka D4 ) to test models. To generate 
the malicious traffic, we carried out new port scanning attacks against nodes within the network range of Red-
CAYLE. To identify the related flows – and label them as malicious (1) –, the attacks are made from a known IP 
address range, so all the flows that have an IP address from that range are matched to port scans. Moreover, flows 
corresponding to benign traffic – label “0” – were selected randomly from the flow data gathered in RedCAYLE. 
SQL injection attacks have not been included in D4 . RedCAYLE is a production network infrastructure and these 
types of attacks are very intrusive and, therefore, can generate a real risk on a production server.

Data curation.  NetFlow V5 has 24 features. Before training our models, we applied dimensionality reduc-
tion. First, we initiate the process by calculating the variance of the features. Variance, as a statistical metric, 
quantifies the extent of dispersion or variability inherent in a given dataset concerning its arithmetic mean. 
When a specific feature exhibits a variance of 0, it signifies that the data associated with both malicious and 
benign traffic for that particular feature are similar and, as a result, do not provide any distinctive information 
to aid the model’s predictive capabilities. After computing the variance, we removed Exporter IP, Engine type, 
Engine id, Autonomous system source and destination, and Source and Destination mask features – see Table 1 
–. Besides, we removed the Unix-timestamp seconds, and the System uptime of the device, the First and the Last 
packets in the flow, since the RedCAYLE’s Juniper routers do not send them. In addition, the Unix timestamp 
seconds has been removed to prevent the models from being affected by the timestamp when the flows were 
collected. Finally, we removed the Nexthop router’s IP address, according to the conclusion of37. In that work, 
we demonstrated that in a production environment, the Nexthop feature negatively affects the detection of mali-
cious traffic and needs to be removed.
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As a result of the above operations, the number of features remaining was 11 – Source IP, Destination IP, Input 
interface, Output interface, Packets, Bytes, Source port, Destination port, Flags, Protocol, ToS –. To further reduce 
the dimensionality of the datasets, we applied a PCA. We want to choose the minimum number of dimensions 
while preserving 95 % of the variance in the dataset. For D1–D4 , the minimum number of dimensions is 5. As a 
result, our datasets have five features – computed as a combination of the prior 11 features –.

Classification model fitting.  The models used in the experiment were OC-SVM and iForest. We chose 
these models because, as seen in "Related work" section, support vector machine-based models and decision 
tree-based models have demonstrated promising results in malicious traffic detection using both network pack-
ets and network flows6, 19. Furthermore, these two approaches have also shown promising results when used as 
supervised algorithms in detecting malicious traffic in sampled flow data20, 21. Hence, it is plausible to assume 
that these models may also yield favorable outcomes in detecting malicious traffic using an anomaly detection-
based approach in network flows collected with packet sampling.

OC-SVM is the One-class SVM approach proposed in38. The authors proposed adapting the SVM algorithm 
methodology to the single-class classification problem. After modifying the feature by applying a kernel, they 
treat the origin as the single member of the second class. The image of a class is separated from the origin using 
relaxation parameters. Then, standard two-class SVM techniques are employed.

iForest, Isolation Forest is an algorithm inspired by the classification and regression algorithm Random For-
est. However, iForest identifies anomalies or outliers. The algorithm isolates observations by selecting a feature 
and setting the value of the division between the maximum and minimum values of that feature. The division 
depends on the time it takes to separate the two points. Random partitioning generates significantly shorter 
trajectories for data that are considered outliers39.

The hyperparameters of the models are different when the models are trained on synthetic datasets or on 
datasets collected from RedCAYLE. This is because anomaly detection models must be fitted with data as close 
as possible to the data they will find when deployed. Our hyperparameters are shown in Table 2. For the OC-
SVM, the value of ν is both a lower bound for the number of support vector samples and an upper bound for 
the number of samples on the wrong side of the hyperplane; γ specifies the coefficient of the kernel function. 
For the iForest model, Contamination is the amount of pollution in the dataset, and Trees specifies the number 
of base estimators in the ensemble.

We use Model Evaluator (MoEv) to prepare our detection models. MoEv is a general-purpose Scikit-learn40 
wrapper for building classification models from labeled datasets. MoEv is developed in Python41 and provides 
the following functionalities: data-cleaning, normalization, dimensionality-reduction, and hyperparameter opti-
mization. This optimization is created through GridSearchCV and DASK. DASK provides advanced parallelism, 
especially useful when using MoEv on a parallel cluster42. MoEv trains, evaluates, and gets a report of supervised, 
semi-supervised, and unsupervised learning-based models. The report includes relevant information such as 
Accuracy, Precision, Recall, and F1-Score.

MoEv has been used in many different research areas, such as in43, where the tool was used to detect jam-
ming attacks in real-time location systems, and in44 where the authors predicted academic success in educational 
institutions. Furthermore, in13, MoEV has been validated and used to detect network attacks. To validate the 
tool, the researchers replicated the work presented in45, obtaining similar results.

Evaluation.  To fit and test the iForest and OC-SVM models, we have used the datasets collected with 
DOTORHEA ( D1 for training and D2 for testing), and the datasets gathered from RedCAYLE ( D3 for training 
and D4 for testing).

To evaluate the experiment, several KPIs were calculated from the confusion matrix generated by each model. 
First, the accuracy score of the models was calculated as shown in Eq. (1), where TP is the number of malicious 
samples correctly identified as malicious. TN points to the number of harmless or benign samples correctly 
identified as benign traffic. FP is the number of benign flows misclassified as malicious. Finally, FN points to the 
number of malicious flows misclassified as benign traffic.

Besides the accuracy, we considered the following KPIs obtained through the confusion matrix: False Alarm 
Rate (FAR), Precision ( P ), Recall ( R ), and F1-score ( F1).

FAR is calculated as shown in Eq. (2). FAR is the ratio of false positives and the total number of negative 
events (regardless of how they were classified).

(1)Accuracy =
TP + TN

TP + FP + TN + FN

Table 2.   Parameters OC-SVM and iForest models.

Dataset Classifier ν Kernel γ Contamination Trees

D1

OC-SVM 0.042 Polynomial 0.4 None None

iForest None None None 0.024 120

D3

OC-SVM 0.0029 Polynomial 0.4 None None

iForest None None None 0.357 120
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P computes as shown in Eq. (3). It measures the accuracy of the positive predictions.

R computes as shown in Eq. (4). It is also called the true positive rate and measures the rate of positive cases 
correctly identified by the algorithm.

F1 score computes as shown in Eq. (5). It relates Recall and Precision, being the harmonic mean of both values. 
While the regular mean treats all values equally, the harmonic mean gives much more weight to low values.

Results and discussion
Firstly, we would like to point out that we have produced a Jupyter notebook available online that allows replicat-
ing the experiment performed46.

Table 3 shows the volumetry of the datasets. As shown in the table, the number of flows is higher in the train-
ing datasets than in the test sets. This is due to the fact that models based on anomaly detection require a large 
volume of benign traffic to establish regular patterns. Furthermore, the test datasets are balanced with a malicious 
traffic percentage of 50% and a benign traffic percentage of 50%. A production network handles far less than 50% 
of malicious traffic. However, we have used this percentage of traffic to improve the visualization of the results.

The models predict flow by flow, and each prediction is made independently of the others. The balance of the 
dataset does not exert an influence on the model’s quality. To assert that the balanced dataset exerts no influence, 
we have conducted experiments employing an imbalanced dataset with a distribution of 99% benign and 1% 
malicious samples that shows similar results. These tests have not been included in the text for clarity, but can 
be found in the Jupyter project available. Finally, it is important to note that when a sampling rate of 1 in 1,000 
packets is applied, most of the information is lost, and therefore fewer flows are generated.

Figures 2 and 3 show the confusion matrices for the OC-SVM and iForest models trained with D1 and D3 and 
next tested with D2 and D4 , respectively. Besides, Tables  4 and 5 show the accuracy, FAR, P , R , and F1 scores.

According to Fig. 2 and Table 4, the best model to detect slow port scanning and SQL injection attacks is the 
OC-SVM with a 93.6% accuracy score and a low FAR score (0.082). iForest just gets accuracy and FAR scores 
of 49.5% and 0.574.

(2)FAR =
FP

TN + FP

(3)P =
TP

TP + FP

(4)R =
TP

TP + FN

(5)F1 = 2
P ×R

P +R

Table 3.   Dataset volumetry.

Dataset Source Aim Samples Traffic type

D1 DOROTHEA Train 113,195 Benign

D2 DOROTHEA Test 15,409 Benign-Malicious

D3 RedCAYLE Train 311,936 Benign

D4 RedCAYLE Test 921 Benign-Malicious

Figure 2.   Confusion matrix for OC-SVM (a), and iForest (b) classifiers tested using D2.
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Another important KPI in our research is Recall. R shows the rate of positive cases correctly identified by the 
algorithm, allowing us to know if the algorithm is suitable for detecting malicious traffic, benign traffic, or both. 
Analyzing R , we can observe that the OC-SVM is a balanced model. It detects 95.7% of malicious flow traffic 
and 91.5% of benign flow traffic. In contrast, R of the iForest models show that these models detect 95.9% of the 
benign traffic but fail to detect only 3% of the malicious flow traffic.

F1 and P follow the same trend as the previous indicators. OC-SVM performs well on both indicators. 
However, the iForest does not score higher than 50% in either of the two indicators.

Figure 3 and Table 5 show similar results. OC-SVM has the best accuracy score, R , P and F1 (higher than 
91.6%). In addition, OC-SVM demonstrates a low FAR score (0.139). As with the datasets generated in DORO-
THEA, the iForest model is not valid for detecting anomalies in RedCAYLE’s traffic. The model showed an 
accuracy score of 50.9% and a high FAR score (0.496). R , P and F1 do not show good results either.

The above results demonstrated that the OC-SVM model could detect anomalies in networks that gather flow 
data with a high sampling rate. For example, in our research, 1 out of 1,000 packets. Furthermore, this model has 
been trained only with benign flow traffic and can detect network attacks that are very different from each other. 
This fact allows us to speculate that these models could see other network-layer attacks or even 0-day attacks, 
which means an improvement in the security of this type of network.

Furthermore, looking at Tables  4 and  5, OC-SVM and iForest models obtain similar results both using the 
synthetic dataset and the dataset collected from RedCAYLE. From this fact, we can state that models based on 
anomaly detection that provide good results with synthetic datasets generated in DOROTHEA will also provide 
good results with data coming from production network infrastructures. It is important to keep in mind that on 
the vast majority of occasions, it is not possible to obtain correctly labeled datasets from production networks 

Figure 3.   Confusion matrix for OC-SVM (a), and iForest (b) classifiers tested with D4.

Table 4.   Accuracy, FAR, Precision, Recall and F1-score obtained after testing with D2 the models trained with 
D1. (1) Benign flow data is labeled as ‘0’, malicious flow data as ‘1’.

Classifier Accuracy FAR Class (1) P R F1

OC-SVM 0.936 0.082

0 0.955 0.915 0.935

1 0.918 0.957 0.937

Avg. 0.937 0.936 0.936

iForest 0.495 0.574

0 0.497 0.959 0.655

1 0.426 0.029 0.056

Avg. 0.462 0.495 0.355

Table 5.   Accuracy, FAR, Precision, Recall and F1-score obtained after testing with D4 the models trained with 
D3. (1) Benign flow data is labeled as ‘0’, malicious flow data as ‘1’.

Classifier Accuracy FAR Class (1) P R F1

OC-SVM 0.916 0.139

0 0.992 0.839 0.909

1 0.861 0.993 0.992

Avg. 0.927 0.916 0.916

iForest 0.509 0.495

0 0.846 0.024 0.047

1 0.505 0.996 0.670

Avg. 0.676 0.509 0.358
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to train models. Therefore, the above results validate DOROTHEA as a suitable tool for collecting sampled flow 
datasets. This is a good starting point for future research aimed at improving security in networks with high 
traffic loads.

Conclusions
Anomaly detection has shown promising results in detecting malicious traffic using complete network packets. 
Nevertheless, networks with a high traffic load can only carry out a partial packet analysis. Such networks often 
use a flow-based protocol such as NetFlow. However, even using NetFlow, the traffic load handled by some rout-
ers is so high that they have to sample packets to generate flow data.

In this work, the OC-SVM and iForest models have been trained and tested with NetFlow-based datasets 
with a sampling rate of 1 out of 1,000 packets to detect network anomalies.

The novelty detection technique was employed, so the training datasets only contained benign traffic. We 
used several datasets. On the one hand, synthetic flow datasets were gathered with DOROTHEA. On the other 
hand, flow datasets were gathered from RedCAYLE. The test datasets were balanced, containing benign and 
malicious flow data. Experiments showed that the OC-SVM model has high malicious traffic detection power, 
with an accuracy score above 91.5% and a FAR score below 1.4% in both networks.

Two conclusions can be drawn from the experiments carried out. 

1.	 First, OC-SVN has a high novelty detection rate with a low false alarm rate. Consequently, it is possible to 
detect anomalies using novelty detection in NetFlow data with a sample rate of 1 out of 1,000 packets. There-
fore, we can confirm that it is possible to see malicious traffic in production networks such as RedCAYLE 
and similar networks, improving their security.

2.	 On the other hand, the results obtained with the synthetic datasets collected with DOROTHEA are similar 
to those obtained with the datasets from RedCAYLE. Therefore, we affirm that DOROTHEA’s datasets are 
valid for training models for anomaly detection. Furthermore, generating datasets with DOROTHEA can 
be a starting point for other researchers to continue improving the security of networks with a high traffic 
load since it is often not possible to gather labeled flow datasets from such a realistic scenario.

In future work, we intend to experiment with deep learning-based models to try to improve the results obtained 
by the OC-SVN model and thus further improve the security of networks such as RedCAYLE.

Data availibility
The datasets generated and analyzed during the current study are available in the RoboticsGroup repository: 
https://​github.​com/​ulero​botic​sgroup/​MoEv/​tree/​Anoma​lies.
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