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Abstract

This paper reports the usage of the occurrence vector provided by the

PAELLA algorithm in the context of robust regression. PAELLA was origi-

nally conceived as an outlier detection and data cleaning technique. A novel

approach is to use this algorithm not for discarding outliers but to gener-

ate information related to the reliability of the observations recorded in the

dataset. This approach proves to provide successful results when compared

to traditional common practice such as outlier removal. A set of experiments

using a contrived difficult artificial dataset are described using both neural

networks and classical polynomial fitting. Finally, a successful comparison of

our approach to two state-of-the-art algorithms proves the benefits of using
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the PAELLA algorithm in the context of robust regression.
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1. Introduction

Experimental sciences rely on data to progress. Either to prove hypothe-

ses or to build new models, datasets are the cornerstone on which to build

the foundations of modern science. During centuries, now considered small

datasets supported the development of scientific descriptions of the observed

phenomena. Such datasets were carefully handcrafted by scientist in exper-

iments under controlled conditions. In such scenario, perturbations, noise,

and outliers had a limited presence due to the efforts of those designing and

running the experiments.

The advent of computers and the availability of huge raw data sources

have proven to be game changers. Last decade has witnessed the growth of a

subtly different approach in science. The size of the datasets has exploded in

many fields and scientists are getting more and more accustomed to analyzing

huge datasets of observations from real world processes not constrained to

controlled conditions. In other words, scientists are becoming familiar with

studying the real processes in the wild instead of designing a laboratory

replica.

Such huge datasets from the wild differ substantially from their traditional

laboratory counterparts in the reliability of the samples. Leaving out the

controlled conditions and the attentive measurement procedures, all that is

left is the unknown origin of the samples. In raw datasets the researchers
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always have to question on the truthfulness of the data as each observation

might have been originated by the process under study, or can be the result of

foreign perturbations: an outdoors humidity sensor easily gets saturated for

hours by morning dew, turning on high power electrical machines produces

spike signals in nearby circuitry, lack of proper calibration and maintenance

of thermal cameras produce biased images to process, or just human beings

making mistakes while annotating information, are just a few examples of

perturbation sources that cause outliers to appear in the datasets [1].

In this new world, researchers strive to handle the complexity added by

these unfiltered data sources in fields as different as environmental mod-

eling [2–5], multimedia mobile health applications [6], or factories’ process

optimization [7–9]. The main strategies for coping with this complexity are

filtering the data on a preprocessing stage [10], and applying robust tech-

niques capable of providing satisfactory results no matter whether the data

was partially corrupted [11]. An important advantage of the latter is that

it takes advantage of all the information collected, which is crucial in the

context of not so big datasets.

This paper reports the successful experience of using PAELLA [12], an

algorithm that was originally intended for outlier identification and filtering,

but that will prove useful as well as a predictive tool in the context of robust

regression.
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1.1. Experiments that lead to our current proposal

Previous work [13] reported the first attempt to take advantage of the

extra information contained in the occurrence vector1 of PAELLA algo-

rithm [12]. For such purpose, a contrived difficult dataset was tested on

a set of different experiments, described below.

First, Castejon et al. [13] reported a reference regression discarding those

samples marked as outliers by using PAELLA as an outlier identification tech-

nique; that is, using the standard binary vector obtained after thresholding

the occurrence vector. This experiments serves the purpose of providing a

baseline to measure the benefits obtained by the competing approaches.

The second experiment reported the results from a natural extension of

the first experiment. Instead of classifying the samples in two categories by

comparing the values in the occurrence vector to an established threshold,

multiple categories can be defined just by using several thresholds, slicing

the occurrence vector into several bins. For a particular number of bins

N , the paper reported the results from fitting a battery of models, each

of which used a different training dataset comprising some of the bins in an

exhaustive manner so that the 2N different possibilities were used. It is clear,

then, that as the bins get narrower, the computational cost of this approach

makes it unfeasible for relatively low number of categories. Interestingly, the

conclusion provided by the experiment was that the higher the number of

bins, the better the results. Thus, an abstraction of this approach is required

1This vector is a result from applying the PAELLA algorithm. It represents the rate

in which the observations from the dataset were considered outliers along the number of

runs performed by PAELLA.
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in order to enlarge the number of bins while keeping computational costs

restrained.

The third experiment reported one possible such abstraction. The sam-

ples then played the role of the bins, as in the limit the bins would be so

narrow as to contain a single sample. The model was fitted with a random

sample of the dataset, the sampling likelihood was equal to the correspond-

ing value of the occurrence vector for each observation. The conclusion of

this experiment was that results similar to those provided by the baseline

experiment could be obtained by following this approach, with the benefit of

not discarding any sample out of the experiment.

In what follows we describe another different abstraction that extends

the concepts used in that third experiment: using the occurrence vector as

an input to sample weighted regression, both in classical regression and in

neural networks.

1.2. Structure of the paper

The rest of the paper is structured as follows. In Section 2 the methods

used along the paper are described. Section 3 elaborates on the core of the

experiments reported in this paper with the aim of comparing the results of

using PAELLA boosted weighted regression to common practice and state-of-

the-art methods. In Section 3.1 we report the experiments performed using

a noisy dataset and three different methods to cope with outliers: outlier

removal, macro sampling and weighted regression using linear models. In

Sections 3.2 and 3.3 we compare the suggested approach now using multilayer

perceptron and linear models to two state-of-the-art methods. Finally, we

draw the conclusions of our work in Section 4.
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2. Methods

2.1. PAELLA algorithm background

PAELLA was originally conceived as a preprocessor filter for cleaning the

raw datasets. In such operating mode, PAELLA was capable of identifying

which the observations following a common behavior were, and which showed

distinctive features. That is, each observation was labeled as belonging to the

common pattern, or as an outlier. Thus, the main results from the PAELLA

algorithm could originally be expressed as a binary vector with the resulting

classification.

Each of these groups from the PAELLA identification were then subjected

to different treatments: the regular samples were used in subsequent stages

of analysis such as modeling; while outliers ought to be further analyzed

to discover the causes of their occurrence. This kind of exercise provided

interesting results: on one hand a predictive model obtained from clean data,

thus mitigating the interference of outliers in the estimation of the model’s

parameters; on the other hand, curated samples from abnormal behaviors

that helped in spotting critical parts of the process that were producing

undesired consequences.

An interesting feature of PAELLA in the outlier identification arena is

that it works with both normal and non-normal multivariate data, which

makes it specially useful for real datasets. In order to produce its results, the

dataset might first be divided in a given number of groups using a cluster-

ing technique. This previous clustering is optional, but in many situations

it improves the final results. After this previous clustering, the PAELLA

algorithm follows three phases as described as pseudocode in the algorithms
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Phase 1, Phase 2, and Phase 3. In Phase 1 the dataset is coated by a set

of hypersurfaces similarly to a collection of tiles covering the observations.

This phase spots potential outliers as those foreign to the hypersurfaces col-

lection. Phase 2 delivers a list of potential outliers. Phase 3 delivers a list of

the samples that were annotated as outliers most often.

Phase 1 Sample coating using a collection of hypersurfaces
Require: A dataset, and optionally a classification vector from a clustering

algorithm

Ensure: A collection of hypersurfaces coating the dataset

1: A single sample from each cluster is randomly chosen as a seed point

2: The rest of the samples in a particular subset are classified in accordance

to their Mahalanobis distance to the seed point

3: The closest samples are added to a set of samples, Gi, that conform to

the model and are used to fit a model

4: The sample points not used for fitting the model are used to calculate

their residual and; those with smallest residuals are regarded as compliant

with the model and added to the Gi subset.

5: repeat

6: steps 1, 2, 3 and 4 using those samples not yet in Gi

7: until Time permits

As originally presented, PAELLA delivers a binary classification. Nev-

ertheless, as stated in the algorithm, this binary classification is the trans-

formation of the frequency of being annotated as outlier when compared to

a specific threshold. Previous research [13, 14] explored the potential bene-

fits of using the occurrence vector instead of the binary classification. Next

7



Phase 2 Iterative outlier detection
Require: A collection of hypersurfaces coating the dataset

Ensure: List of potential outliers

1: The observations are confronted versus the collection of models

2: The smallest residuals of the samples are used to associate the samples

to the models

3: The samples with the biggest residuals are annotated

Phase 3 Reduce previous iterations
Require: A list of potential outliers in a particular iteration

Ensure: A list of potential outliers

1: repeat

2: Phases 1 and 2

3: Reduce the results from previous iterations summarizing in a vector

the frequencies of outlierness for all samples. This vector is named

occurrence vector v.

4: until As time permits

5: Those samples that were annotated as outliers above a frequency thresh-

old t are considered as outliers and separated for further analysis.
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subsections present the methods considered in this work based on PAELLA

algorithm.

2.2. Outlier removal and neural network regression

This method consists of using the PAELLA algorithm for outlier identi-

fication and removal as initially designed in [12]. The samples in the dataset

identified as outliers are not taken into account for predicting the model. The

training set is split into two categories: outliers and the rest, accordingly to

a given value of the frequency threshold.

We train a set of multilayer perceptron (MLP) models with the training

samples that are not identified as outliers. The training strategy used for

adjusting the parameters is the stochastic gradient descent (SGD) with mo-

mentum method [15]. In order to avoid overfitting of the MLP models we

use the early stopping method, splitting the training set into training and

validation subsets following 66%, 34% proportions, respectively. We choose

the set of optimal hyperparameters by means of an exhaustive grid search.

2.3. Outlier removal and linear regression

Similarly as in Section 2.2, the outliers are identified and set aside. As

regressors, in this method we train a set of linear models (LM) using the

samples in the training set that are not identified as outliers and a given

degree polynomial. The fitting process is done with a weighted least squares

function, in which the weights are obtained by applying a likelihood function

to the occurrence vector.
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2.4. Probabilistic macro sampling

As opposed to the former methods detailed in Sections 2.2 and 2.3, no

samples of the training set are discarded but rather they are assigned a

likelihood of participation for training the model as a function of the occur-

rence vector v. We perform a random sampling with replacement with size

equals to the size of elements in the training set, and the vector of probabil-

ity weights for obtaining the elements of the sampled training set equals to

the corresponding likelihood function. The new sampled set is used to build

predictive models. We use neural networks as regressors considering the min-

imum mean squared error (MSE) in a number of replicates for each sampled

set. This process is repeated due to the random nature of the method in

order to assess the stability of the results.

2.5. Weighted regression linear model via PAELLA

In this method we fit a set of LM using all samples in the training set

and a given degree polynomial. In this case, we use a traditional weighted

regression and, as a novelty, we obtain the sample weights by applying a

likelihood function to the occurrence vector of PAELLA algorithm without

discarding outliers.

2.6. Weighted regression multilayer perceptron via PAELLA

In this method we train MLP models with the complete set of training

samples using weighted regression. MSE error is optimized using as sample

weights the values obtained by applying a likelihood function to the occur-

rence vector. The MLP models are trained using a SGD with momentum
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method as training strategy and an early stopping method. An exhaustive

grid search is performed in order to choose the optimal hyperparameters.

3. Experimental survey

3.1. Weighted regression via PAELLA vs. outlier removal and macro sam-

pling

In this section, we compare the traditional use of PAELLA for outlier

removal, and two novel approaches in which we use the information provided

by PAELLA through the occurrence vector in order to perform probabilistic

macro sampling regression, as well as weighted regression. We initially ex-

perimented with the dataset in [13] for training purposes and created a new

test set for evaluation of the methods.

The artificial training set X of 1000 samples follows a sinusoidal function

altered by some normal noise as shown in Fig. 1a. We created 500 samples

using the formula in Eq. 1, and the rest using a uniform random distribution.

We also created a test set of 500 samples that follows the equation in Eq. 1

as it is shown using red circles in Fig. 1a.

x2 = sin (x1) + ε (1)

where ε ∼ N (µ = 0, σ = 0.1) and each sample is featured with two variables

(x1, x2). The dataset is highly noisy, hence a challenge for predicting a model.

We applied the PAELLA algorithm to the training set in order to obtain

the values in the occurrence vector v, see Phase 3. Then, we computed

some models on the training set for each of the three experiments performed.
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(b)

Figure 1: (a) Artificial dataset. The samples of the training set are represented with ‘+’

symbols. The test set appears overlaid with red circles. (b) Outlier identification of the

samples in the training set using PAELLA for a threshold of 99%. The red circles mark

the samples identified as outliers while the blue ‘+’ symbols show the samples that are

not considered as outliers.

Finally, we evaluated the results on the test set by means of the MSE defined

in Eq. 2.

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2)

where yi is the actual value of a sample in the dataset of n samples that follows

the formula without noise and ŷi is the corresponding predicted value. In this

case, the actual values yi are given by the pure signal of the artificial test set

and the predicted values ŷi by the output of the proposed models.
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3.1.1. First experiment: outlier removal

In the first experiment, we obtained the list of potential outliers by com-

paring the occurrence vector v to a frequency threshold t = 0.99. Fig. 1b

shows the result of applying PAELLA to the training set for a threshold of

t = 0.99. It can be seen that the samples that were not identified as outliers

mainly belong to the fuzzy sinusoidal function.

We considered both methods for outlier removal, using as regressors neu-

ral networks (Section 2.2) and linear models (Section 2.3).

For the neural networks, we performed the exhaustive grid search using

all possible combinations of the following parameters: [2, 3, 4, 5, 6] for the

number of hidden neurons, [0.001, 0.005, 0.010] for the learning rates, and

[0.001, 0.005, 0.010] for momentum. Thirty replicates were taken in order to

evaluate the performance for different values of the initial weights and biases.

This resulted in a total of 1350 neural networks. The best MLP model yielded

a MSE equals to 0.0192.

For the linear models, a fifth degree polynomial was used. As a simple

choice for the likelihood function, we considered a power function vp where

v is the occurrence vector and p a given power. This choice permits different

degrees of penalization to the outlying samples in a simple manner by just

varying the variable p.

We considered as powers, p, the set of {p|p 6 100, p ∈ N}, where N is

the set of natural numbers. Results on the test set are presented in Table 1

under outlier removal column and Fig. 2 marked with red crosses. The best

result was achieved for a power p = 34 with a MSE equals to 0.0157.

13



Table 1: Results from weighted regression vs. macro sampling vs. outlier removal using

linear models.

Likelihood MSE

function weighted regression macro sampling outlier removal

v1 0.1051 0.0798 0.0203

v2 0.0645 0.0653 0.0202

v3 0.0458 0.0497 0.0182

v4 0.0349 0.0267 0.0187

v5 0.0277 0.0312 0.0185

v10 0.0131 0.0237 0.0168

+

+

+

+

+

+
+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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Power of the likelihood function f (x) = vx

M
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x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Figure 2: Mean squared error (MSE) obtained using linear models for the likelihood

functions with powers in the set of natural numbers less or equal than 100. The red

crosses represent the MSE for outlier removal method and the blue ‘+’ signs indicate the

MSE for weighted regression method.
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3.1.2. Second experiment: probabilistic macro sampling

As for this second experiment, we followed the procedure of the method

described in Section 2.4 and considered the following powers p of the occur-

rence vector as likelihood functions, vp: p = [1, 2, 3, 4, 5, 10].

For the neural networks, we chose 3 hidden neurons, 0.001 for the learning

rates, and 0.001 for momentum, which proved to work successfully in the

first experiment. Again, thirty replicates were taken in order to evaluate

the performance for different values of the initial weights and biases. We

performed 1000 repetitions considering the models that produced minimum

MSEs and obtained the results on the test set shown in Table 1 under macro

sampling column. The best result, MSE equals to 0.0237, was achieved for

p = 10.

3.1.3. Third experiment: weighted regression via PAELLA

Regarding the third experiment, we followed the method in Section 2.5

using a fifth degree polynomial to fit the LM. We considered the powers, p,

in the set {p|p 6 100, p ∈ N}. Table 1 partially shows the results on the

test set under weighted regression column. The predicted outputs with this

method are represented with blue circles in Fig. 3. Fig. 4 shows the MSE of

the weighted regression method for the first 40 powers with blue ‘+’ signs in

comparison with outlier removal using MLP, and Fig. 2 illustrates the MSE

of the weighted regression method in comparison with outlier removal using

LM. The best result was achieved for a power p = 13 with a MSE equals to

0.0119.
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Figure 3: Prediction applying the weighted regression method. The samples of the training

set are represented with ‘+’ symbols. The test set appears overlaid with red circles. The

predicted outputs with weighted regression method are overlaid with blue circles.

3.1.4. Comparison of the three experiments

As it can be seen in Table 1, Fig. 2 and Fig. 4, for small values of the

power of the likelihood function up to p = 9, the outlier removal method

outperformed the rest. However, for greater values of the power and up to

p = 28, the weighted regression method yields the best results in comparison

with the rest. The best overall performance was achieved using weighted re-

gression with p = 13, obtaining a MSE equals to 0.0119. Therefore, weighted

regression based on PAELLA, which allows the participation of all samples

for building the model, is able to outperform the models fitted using only

clean data and the macro sampling strategy presented in [13].
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Figure 4: The bars of the barplot represent the MSE using the weighted regression LM

method and likelihood functions with powers in the set of natural numbers less or equal

than 100. The horizontal red line at height 0.0192 shows the MSE obtained by using the

outlier removal method with MLP and threshold 0.99.

3.2. Weighted regression via PAELLA vs. state-of-the-art ε-tsvr

In this section, we compare the weighted regression via PAELLA using

LM and MLP models, as described in Sections 2.5 and 2.6 respectively, to a

state-of-the-art method presented by Shao et al. [16]. We describe the dataset

used in the original work [16] and that we used as well for the comparison.

We also provide details about the error metrics and results.

3.2.1. Dataset

Shao et al. [16] presented this dataset and an efficient support vector

machine regression technique, named ε-tsvr. We used the publicly available
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Figure 5: Artificial dataset presented in [16] to evaluate ε-tsvr state-of-the-art regression

technique. (a) Training set. (b) Test set.

dataset2 published in [16]. The samples (xi, yi) of the dataset follow a cardinal

sine (sinc) function polluted by Gaussian noise with 0 and 0.2 mean and

standard deviation, respectively, see Eq. 3. The dataset is made of 252

training and 503 test samples that are shown in Fig. 5.

yi =
sin(xi)

xi
+ ξi, x ∼ U [−4π, 4π], ξi ∼ N(0, 0.22) (3)

3.2.2. Error metrics

We evaluated the method by means of the normalized mean square error

(NMSE), mean absolute percentage error (MAPE), symmetric mean absolute

percentage error (sMAPE) –Eq. 8–, and mean absolute scaled error (MASE)

–Eq. 9–. We chose these metrics due to their popular use and because they

2Code available in http://www.optimal-group.org/Resource/WLETSVR.html
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were employed to evaluate the original methods of reference ε-tsvr [16] and

wl-ε-tsvr [17].

NMSE =
1

n

n∑
i=1

(yi − ŷi)2

yŷ
(4)

where

y =
1

n

n∑
i=1

yi (5)

ŷ =
1

n

n∑
i=1

ŷi (6)

yi is the actual value of a sample in the dataset of n samples that follows the

formula without noise and ŷi is the corresponding predicted value. The same

notation is kept for the rest of formulae in the paper.

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

· 100 (7)

sMAPE =
2

n

n∑
i=1

|yi − ŷi|
yi + ŷi

(8)

MASE =
1

n

n∑
i=1

(
|yi − ŷi|

1
n−1

∑n
i=2 |yi − yi−1|

)
(9)

3.2.3. Experimental setup

On the one hand, the set of linear models were configured with a fifth

degree polynomial. On the other hand, we configured the MLP with one

hidden layer using a hyperbolic tangent as activation function of the hidden

neurons and the linear function as activation for the output layer. The ex-

haustive grid search was performed using the hyperparameters described in

Table 2.

19



Table 2: Hyperparameters considered for exhaustive grid search for MLP weighted regres-

sion.

Parameter Values

learning rate [1, 2, . . . , 10]

momentum [0.9, 0.09, 0.009]

Nesterov [True, False]

epochs [500, 1000, 5000]

p [1, 2, . . . , 10]

Table 3: Results of the proposed weighted regression LM and MLP models vs. ε-tsvr

state-of-the-art technique. In bold, the best results per error metric are highlighted.

Experiment NMSE MAPE sMAPE MASE

Weighted regression LM 0.002967 2.197 0.908 0.094

Weighted regression MLP 0.003049 0.883 0.643 0.058

ε-tsvr [16] 0.003044 2.557 0.931 0.100

3.2.4. Results

Results obtained with our proposed method using weighted regression

with LM and MLP models and with ε-tsvr are presented in Table 3. Our

method achieved better results for all considered metrics. MLP models out-

performed LM for all but NMSE metric. We illustrate the predicted values

using weighted regression with MLP models on top of the test samples in

Fig. 6.

3.3. Weighted regression via PAELLA vs. state-of-the-art wl-ε-tsvr

In this section, we compare the weighted regression via PAELLA using

LM and MLP models to a state-of-the-art method presented by Ye et al. [17].
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Figure 6: Prediction of weighted regression MLP using PAELLA for obtaining the sample

weights on the dataset in [16]. The samples of the test set are shown with a red triangle

marker. The predicted values are shown as blue ‘+’ symbols.

We used the same error metrics and experimental setup as in the comparison

with Shao et al. [16] for ε-tsvr in Section 3.2. Below, we describe the dataset

used in the original work [17] and that we used as well for the comparison

and we provide the results obtained.

3.3.1. Dataset

Ye et al. [17] proposed an improved version of the ε-tsvr method, named

wl-ε-tsvr, that is based on weighted Lagrange support vector regression.

The dataset at hand was also introduced in this work in order to evaluate

the method.

We generated 1000 training samples following Eq. 10 and polluted by

Gaussian noise with mean 0 and standard deviation 0.1, and one outlier with

deviation of -1, as in the referred paper [17]. Similarly, 1000 test samples
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Figure 7: Prediction of weighted regression MLP models using PAELLA for obtaining

the sample weights on the dataset in [17]. The samples of the test set are shown with

a red triangle marker. The predicted values are shown as blue circles which look like a

continuous curve.

were created following the same procedure, they are shown with red triangle

markers in Fig. 7.

y = 0.2 sin (2πx) + 0.2x2 + 0.3, x ∈ [0, 2] (10)

3.3.2. Results

The results using weighted regression via PAELLA with LM and MLP

models and with wl-ε-tsvr are presented in Table 4. Our method achieved

better results for all considered metrics. MLP models outperformed LM for

all but MASE metric. The proposed methods yielded better results than

wl-ε-tsvr for every considered metric. The predicted values using weighted

regression with MLP models are overlaid with blue circles on top of the test
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Table 4: Results of the proposed weighted regression (WR) model using linear models

(LM) and multilayer perceptron models (MLP) vs. wl-ε-tsvr state-of-the-art technique.

The time is shown as mean and standard deviation in a sufficient number of loops. In

bold, the best results per error metric are highlighted.

Experiment NMSE MAPE sMAPE MASE Time (ms)

WR LM 0.000116 0.017 0.016 0.009 0.0193 ± 0.0000882

WR MLP 0.000030 0.010 0.010 0.010 5.9 ± 0.0285

wl-ε-tsvr [17] 0.2211 - 0.1855 2.1766 448.1 ± 19.2

samples in Fig. 7.

In order to provide an analysis of the execution time, we computed the

times required for predicting the output of the test set in terms of mean and

standard deviation on a sufficient number of loops and repetitions. No less

than 70 runs were considered for the averaged results. The available code for

wl-ε-tsvr is provided in MATLAB and thus the time was computed using

MatLab R2016a, whereas the time for both weighted regressions methods was

computed using Python 3.6. It can be observed that the proposed methods,

weighted regression MLP and weighted regression LM, are around 75 and

23000 times faster with respect to wl-ε-tsvr, respectively.

Considering performance both in terms of accuracy and execution times,

weighted regression MLP should be used in occasions in which the accuracy

is essential, whereas weighted regression LM should be used when a low

execution time is required at the cost of losing a bit of accuracy.
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4. Conclusions

The PAELLA algorithm for outlier identification and data cleaning has

proven to be versatile enough to be useful as well in the context of robust

regression. The results reported in this paper confirm that the occurrence

vector provided by the PAELLA algorithm can boost the fitting of predic-

tive models with an improvement rate in some experiments measured in tens

of thousands. Moreover, this improvement is achieved without the need of

discarding those samples otherwise marked as outliers. Among the different

strategies reported, using the occurrence vector values —or a transformation

of those through a custom function— as sample weights in weighted regres-

sion showed promising results both against common practice techniques such

as outlier removal and state-of-the-art algorithms. Specifically, the proposed

methods achieved a reduction of at least 2.53% and 94.61% for all error met-

rics in regard to ε-tsvr and wl-ε-tsvr, respectively. Moreover, weighted

regression linear models and weighted regression multilayer perceptron mod-

els are about 23000 and 75 times faster than wl-ε-tsvr, respectively. The

use of weighted regression multilayer perceptron is recommended when ac-

curacy is critical whereas weighted regression linear models can be used to

get a good compromise between accuracy and execution time.
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