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Abstract

Cryptic relatedness is a confounding factor in genetic diversity and genetic associa-

tion studies. Development of strategies to reduce cryptic relatedness in a sample is

a crucial step for downstream genetic analyses. This study uses a node selection

algorithm, based on network degrees of centrality, to evaluate its applicability and

impact on evaluation of genetic diversity and population stratification. 1,036 Guzer�a

(Bos indicus) females were genotyped using Illumina Bovine SNP50 v2 BeadChip.

Four strategies were compared. The first and second strategies consist on a iterative

exclusion of most related individuals based on PLINK kinship coefficient (φij) and

VanRaden’s φij, respectively. The third and fourth strategies were based on a node

selection algorithm. The fourth strategy, Network G matrix, preserved the larger

number of individuals with a better diversity and representation from the initial

sample. Determining the most probable number of populations was directly affected

by the kinship metric. Network G matrix was the better strategy for reducing relat-

edness due to producing a larger sample, with more distant individuals, a more simi-

lar distribution when compared with the full data set in the MDS plots and keeping

a better representation of the population structure. Resampling strategies using

VanRaden’s φij as a relationship metric was better to infer the relationships among

individuals. Moreover, the resampling strategies directly impact the genomic infla-

tion values in genomewide association studies. The use of the node selection algo-

rithm also implies better selection of the most central individuals to be removed,

providing a more representative sample.

K E YWORD S

bovine, cryptic relatedness, genetic diversity, inbreeding, population genetic structure

1 | INTRODUCTION

Recently, the problems to obtain a truly random sample from a natural

population and the consequences of this problem in the downstream

genetic analyses have been highlighted (Peterman, Brocato, Semlitsch,

& Eggert, 2016). Natural populations are composed of networks of

individuals that are characterized by differences in gene flow. The

presence of population stratification or cryptic relatedness in a sample

used for genetic diversity estimates or genetic association studies can

result in spurious results. Cryptic relatedness is an important
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confounding factor in genetic diversity studies, resulting in false bot-

tleneck signals and erroneous estimates of the effective population

size (Chikhi, Sousa, Luisi, Goossens, & Beaumont, 2010). In genetic

association studies, cryptic relatedness is a problem for populations

which have grown rapidly and recently from founder populations with

small effective population sizes (Voight & Pritchard, 2005). For bovine

populations, this is a common problem to be considered. Moreover,

the presence of cryptic relatedness in a sample used for Genome-

Wide Association Study (GWAS) violates the assumption of indepen-

dence among the genetic variants observed in individuals that com-

pose the sample. In recent years, some methodologies have been

developed to correct the problem of cryptic relatedness in genetic

association studies, mainly for GWAS (Astle & Balding, 2009; Hoff-

man, 2013; Kirkpatrick & Bouchard-Côt�e, 2016; Morrison, 2013; Price,

Zaitlen, Reich, & Patterson, 2010; Tucker, Price, & Berger, 2014;

Wang, Hu, & Peng, 2013). However, eliminating the effect of cryptic

relatedness in a sample is not a simple process (Sillanp€a€a, 2011). For

example, the use of principal components in linear models, a very com-

mon strategy to correct the effect of population stratification, does

not correct for the presence of cryptic relatedness (Price et al., 2006).

In addition, most methodologies used to estimate genetic diversity in

populations do not correct for cryptic relatedness.

Several studies have already described that SNPS used for geno-

mic selection can, in addition to capturing the linkage disequilibrium

(LD) between SNPS and quantitative trait loci (QTL), also capture

family relationships among individuals (Clark, Hickey, Daetwyler, &

van der Werf, 2012; Habier, Tetens, Seefried, Lichtner, & Thaller,

2010; Yee, Rogell, Lemos, & Dowling, 2015). It has also been

demonstrated that the reliability of genomic predictions is subject

more to effects of the level of family relationship in the sample than

to LD (Wientjes, Veerkamp, & Calus, 2013). Therefore, developing

strategies to reduce relatedness levels in samples, particularly when

extracted from inbred populations, becomes important for reducing

spurious results in the genomic selection. However, it is important to

highlight that the level of relatedness of the individuals excluded is

directly related to the genetic architecture of the trait and the popu-

lation genetic structure.

Cattle offer an interesting model for evaluating methods for

reducing relatedness in a sample. Bovine breeding programmes are

based on the extensive use of specific animals. Frequently, sires in

one generation descend from the most important sires in the previ-

ous generations. However, many bulls in one generation do not con-

tribute to the next. Paternal half-sibs are common, and the

population genetic structure resembles that of harens3 . Usually, cows

have a much smaller number of progenies. Due to artificial selection,

bovine pedigrees are usually highly complex and the impacts depend

on the size of the breed and the selection intensity. In addition,

reproductive life is long in both sexes and there is generation over-

lapping. Conservation efforts have been taken to preserve genetic

diversity in commercial herds by the inclusion of less related bulls in

the reproduction schemes. However, as breeding values evolve, it is

increasingly difficult to insert animals that are not related to top

ranked bulls, without losing breeding values.

For example, milk selection programmes are frequently based on

the evaluation of the larger number of daughters or granddaughters

of specific sires. In systems based on multiple ovulation and embryo

transfer (MOET), an even smaller number of animals are selected to

contribute to the next generation (Nicholas & Smith, 1983; Pedersen

et al., 2012; Peixoto, Verneque, Teodoro, Penna, & Martinez, 2006).

In 1994, a nation-wide breeding programme for the Guzer�a (Bos indi-

cus), based on progeny testing and a MOET selection nucleus

scheme, was implemented in Brazil to improve milk production (Peix-

oto, Verneque, Pereira, Machado, & Carvalho, 2009; Somashekar,

Selvaraju, Parthipan, & Ravindra, 2015; Speizer & Lance, 2015). The

breed was subjected to an intense selection process that could

potentially have resulted in inbreeding. Indeed, the breed had

already been subjected to a series of bottlenecks, including its

importation to Brazil in the 19th century, the extensive use of the

breed to produce cross-breds in the 1930s and the closure of the

registry books in the 1980s. Therefore, the Guzer�a provides an inter-

esting model for genetic diversity and population stratification stud-

ies due to their recent history of genetic diversity. In this context,

obtaining an unrelated, or at least distantly related, sample is a hard

task.

The selection of the individuals that will reproduce is a sampling

process itself. In this context, methodologies such as best linear unbi-

ased predictor (BLUP), which is based on the best linear unbiased esti-

mator (BLUE), are used and may result in an increase of the

inbreeding For example, it has been shown that using BLUP, without

a correction for inbreeding levels, may increase the inbreeding in an

intensity which is inversely proportional to the heritability of the

trait (Khaw, Ponzoni, & Bijma, 2014). Alternative strategies for evalu-

ating and reducing relatedness levels in the sample are needed.

In this study, we evaluate four strategies for selecting least

related individuals in a sample. The final samples obtained using each

strategy were compared to each other and to the initial sample, in

order to evaluate the impact of these strategies on genetic diversity

estimates. Moreover, the samples were also compared to each other

to identify the strategy which best represents the genetic structure

of the initial sample, however, with no significant relatedness among

individuals. The heuristic strategy proposed by (Kehdy et al., 2015),

based on the exclusion of the most central individuals present in a

kinship coefficients network, provided the best resampling strategy.

This strategy helps to identify the most endogamic individuals pre-

sent in the sample and to select the individuals which retain the

greatest part of the genetic variability. Furthermore, resampling

allows the development of breeding strategies to reduce inbreeding

and, consequently, decreases the effects of inbreeding depression

observed in populations subjected to intensive artificial selection.

2 | MATERIAL AND METHODS

2.1 | Ethics statement

This study was performed following approval by the Embrapa Dairy

Cattle Ethical Committee of Animal Use (CEUA-EGL), under Protocol
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Number 09/2014. In addition, all experimental procedures were con-

ducted in accordance with the recommendations of the Embrapa

Dairy Cattle Ethical Committee of Animal Use.

2.2 | Sample and genotyping

One thousand and thirty-six (1,036) cows, the full data set, from the

six main herds of the Guzer�a Progeny Test and MOET MILK Selection

Programs, were included in this sample. These animals are part of a

selection scheme using the granddaughter design, in which a bull is

mated to several cows. Therefore, the most frequents relationships

are half-sisters, half-aunts, half-nieces, granddaughters and cousins.

As some of the bulls descend from common ancestors, relatedness is

even more complex. The animals were genotyped using the Illumina

Bovine SNP50 v2 BeadChip (Illumina Inc., San Diego, CA). The

bovine genome is distributed in 31 chromosomes (29 autosomes and

the sexual pair). A detailed description on the structure of the bovine

genome can be found in the NCBI genome ID:82 (https://www.ncbi.

nlm.nih.gov/genome/?term=82).

2.3 | Identity by descent (IBD) estimates

To calculate the IBD estimates for the full data set, markers were

excluded from the analyses when: the map position was unknown or

nonautosomal, MAF < 0.01, Call Rate < 0.95 and they presented

linkage disequilibrium (r²) > .2 with any other marker from the whole

data set. After this filtering for the 1,036 individuals, full data set

sample, 11,264 markers were kept. This subset of markers was used

in the IBD estimates, using the function in PLINK v1.07 (Purcell

et al., 2007) and the methodology proposed by (VanRaden, 2008).

2.4 | Relatedness analyses

After the IBD was estimated, four different strategies were com-

pared in the assessment of family structure in the sample. These

strategies were chosen to reduce the level of family structure in the

data and to eliminate the smallest possible number of individuals.

The first and second strategies were based on the pairwise kin-

ship coefficients (φij) estimated using PLINK v1.07 (Purcell et al.,

2007) and VanRaden’s formula (VanRaden, 2008), respectively. For

both strategies, a threshold of φij ≥ 0.1 was assumed as a criterion

for considering pairs of individuals to be closely related. This thresh-

old allows identification, from the full data set, of pairs of first-, sec-

ond- and third-degree relatives. Individuals were excluded in an

iterative way, where individuals with higher numbers of φij ≥ 0.1 val-

ues with other subjects in the sample were eliminated in each step

(adapted from: Reed et al., 2015). The samples obtained using these

strategies were named Threshold IBD and Threshold G matrix.

The third and fourth strategies for reducing family structure in

the sample were based on a network approach shown by (Kehdy

et al., 2015) and implemented in the NATORA software (unpublished).

The approach used in the third and fourth strategies works in a mul-

tistep process. First, the relationship among the individuals of the

sample is represented in a network, where each node is an individual

and each edge is the relationship metric between two individuals.

Second, the degree of centrality (a metric that represents the num-

ber of nodes connected to this node) of each node in the network is

calculated and the node with the highest degree of centrality is

excluded. At this point, we randomly select the node to be elimi-

nated in those cases where the nodes have the same degree of cen-

trality. Finally, when only pairs of nodes and disconnected nodes

exist, the algorithm returns to the initial network and, for each pair

of nodes, verifies which of the two nodes had more edges initially

and eliminates it. In the end, only unrelated individuals remain in the

sample. The third and fourth strategies are distinct; however, in that

in the third strategy, the families within the sample were modelled

like a network, where each node is an individual connected to the

others by edges, representing PLINK φij > 0.1 (Figure 1a). In the

fourth strategy, the edges between the individuals were based on

the values obtained using VanRaden’s φij (VanRaden, 2008). VanRa-

den’s φij was divided by 2 to facilitate the comparison among the

results obtained from the kinship coefficient estimates in PLINK (0-

0.5). Consequently, similar to the third strategy, a threshold of

φij ≥ 0.1 was stipulated to connect individuals (Figure 1b).

Using the third and fourth strategies, we could eliminate all fam-

ily clusters by successively eliminating higher central nodes. Thus,

third and fourth new samples were generated and named as Network

IBD and Network G matrix, respectively. In the resampling process,

only the 11,264 markers that fulfilled the criteria adopted for IBD

estimates in the All Animals sample were used. In the subsequent

F IGURE 18 Network clustering all individuals in family groups. Nodes represent individuals and edges represent kinship coefficients higher
than .1 for the IBD (a) and G matrix (b) approaches10
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analysis, all markers in the 50k panel were used and specific filtering

was performed for each analysis.

2.5 | Intra- and intersample comparisons

2.5.1 | Similarity among individuals in the full data
set vs. each sample

We calculated the degree of similarity among the individuals based on

a multidimensional scaling (MDS) method (Kruskal, 1964). First, the

number of opposite homozygotes was estimated for each pair of indi-

viduals in the sample matrix. Second, the position of each pair in this

matrix was used to calculate the Euclidean distances between individ-

uals. At the end of this analysis, the matrix with the Euclidean dis-

tance between each pair of individuals was used to plot the MDS

distance among the individuals in the sample. For this analysis, only

markers in autosomes, having MAF > 0.01 and Call Rate > 0.95, were

used (at this moment, no LD pruning for the markers was performed).

The R packages PVCLUST, APE and the R base function hclust (Par-

adis, Claude, & Strimmer, 2004; Suzuki & Shimodaira, 2006) were

used to represent the hierarchical clustering among the animals in

the full data set and in each sample. The number of opposite

homozygotes was also used to construct this clustering. The most

probable number of clusters for each sample was defined as the step

with the largest increase in height values.

2.5.2 | Linkage disequilibrium decay and effective
population size (Ne) in the full data set vs. each
sample

The r2 fast algorithm in the GENABEL package (Aulchenko, Ripke,

Isaacs, & Van Duijn, 2007) was used to estimate linkage disequilib-

rium (LD) by the r² statistic (Hill & Robertson, 1968). Moreover, the

patterns of LD decay in the full data set and in each sample were

calculated using the following distance intervals between markers (in

Kb): 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-40, 40-50, 50-75,

75-100, >100. In these analyses, only syntenic markers were evalu-

ated. Additionally, the portions of markers in strong LD (r² > .3) were

measured in the full data set and in each sample for each distance

interval between markers. The subset of markers used for this analy-

sis was composed by markers with autosomal positions, MAF > 0.01

and Call Rate > 0.95 (All Animals: 32,194 markers; Threshold IBD:

32,802 markers; Threshold G matrix: 32,680 markers; Network IBD:

32,809 markers; Network G matrix 32,022 markers). Additionally, the

effective population size (Ne) was estimated for each sample from

five to 30 generations ago using the relationship between the dis-

tance c, r2 and Ne, assuming absence of mutation (Sved, 1971).

2.5.3 | Detection of population structure and
influence of relatedness level

The software ADMIXTURE 1.23 (Alexander, Novembre, & Lange, 2009)

was used to evaluate the genetic structure of the samples, using

fivefold cross-validation to identify the most likely number of com-

ponents. The most probable number of populations (K) was defined

by the smallest cross-validation error value. For each sample, the

subset of markers used for this analysis was composed by markers

with autosomal positions, MAF > 0.01, Call Rate > 0.95 and that

presented linkage disequilibrium (r²) < .2 with any other marker in

the whole data set.

2.5.4 | Genomewide association study (GWAS)
simulation

The impact of the relatedness level on the GWAS results was esti-

mated using a simulation approach. Thirty QTLs were simulated

across the 30 chromosomes in the bovine genome for one thousand

replications using two heritability values, h2 = 0.2 and h2 = 0.5, sep-

arately. The simulation was performed twice. In the first approach,

the simulated phenotypic values were obtained only for the All Ani-

mals sample (one thousand phenotypes with h2 = 0.2 and one thou-

sand phenotypes with h2 = 0.5). After this step, the correspondent

phenotypic value for each simulation was extracted for the animals

present in each of the resampling samples (Threshold IBD, Threshold

G matrix, Network IBD and Network G matrix). In the second

approach, the simulation was performed independently for each of

the samples to verify biases caused by the different sampling strate-

gies tested. Furthermore, for each of the five samples, two thousand

more groups of simulated phenotypes (one thousand phenotypes

with h² = 0.2 and one thousand phenotypes with h2 = 0.5) were also

obtained. A schematic representation of the two simulation scenarios

is shown in Figures S1 and S2, respectively. The additive allelic

effect of each QTL was sampled from a standard Gaussian distribu-

tion, and the sum of all QTL effects was rescaled to generate an

additive genetic variance, adjusted to each simulated h2 (Casellas &

Piedrafita, 2015). Phenotypic records were obtained by adding a

residual from a normal distribution with mean of 0 and variance

equal to the environmental variance (Ve) of the QTL effects.

The GWAS was performed for each replicate in each group using

the –assoc function implemented in PLINK v.1.07. At this moment,

the markers present in the 30 simulated QTLs were removed from

the GWAS to estimate the GWAS inflation value (lambda) created

by secondary associated signals. The lambda is the ratio between

the observed median of the GWAS p-values and the expected med-

ian of the GWAS p-values. In addition, the descriptive statistic for the

lambda values obtained in each simulated GWAS was calculated for

the first simulation scenario.

3 | RESULTS

3.1 | Identity by descendent estimates

After IBD estimation of the All Animals sample, 536,130 pairwise

combinations were obtained, of which 14,207 had a φij ≥ 0.1. Using

the Threshold IBD strategy, after eliminating individuals having

φij ≥ 0.1, only 203 of the 1,036 individuals in the All Animals sample
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were retained in the Threshold IBD sample. For the Threshold G

matrix strategy, the final sample had 286 individuals.

Network centrality analysis, implemented in the NaTora soft-

ware, resulted in the retention of 210 individuals in the Network IBD

sample and 286 individuals in the Network G matrix sample. The

VanRaden’s φij obtained for the All Animals sample showed that, for

all combinations among individuals, 9,743 had a φij ≥ 0.1.

The individuals remaining in each sample were compared to eval-

uate the final composition obtained using each approach. Regarding

the individuals of the four new samples, results of this comparison

indicated that only 22 cows were the same in the four samples (Fig-

ure 2). In addition, the higher number of shared individuals was

observed between the samples obtained using the same kinship met-

ric (Threshold IBD Region and Network IBD: 68 individuals; Threshold

G matrix and Network G matrix: 121 individuals). Furthermore, in the

All Animals sample, the mean of φij = 0.0187 � 0.028. As expected,

a decrease in the mean of φij was observed in the four filtered sam-

ples, as shown in Table 1.

3.2 | Intra- and intersample comparisons

The MDS plots show that the Threshold G matrix and Network G

matrix individuals are more widely distributed. These results are

shown in Figure 3, where the number of opposite homozygous

genotypes is evaluated. Hierarchical cluster analysis shows that the

basic structure of the dendrogram is retained independent of the

resampling approach (Figure 4). The numbers of clusters present in

each sample were as follows: All Animals, 8 (largest height

increase = 12982.16); Threshold IBD, 47 (largest height increase =

3066.28); Threshold G matrix, 26 (largest height increase = 4987.06);

Network IBD, 47 (largest height increase = 3156.46); and Network G

matrix, 13 (largest height increase = 6275.18). In Figure 4, the red

lines indicate the point, where the largest increase in the height of

each dendrogram was observed, highlighting the point where the

best separation of the groups was obtained. A similar number of

clusters between the hierarchical cluster analysis and admixture

analysis were observed only for the Network G matrix sample. In

Figure 4, the groups identified by hierarchical cluster analysis in the

All Animals sample were plotted in the MDS plot for each subsample.

This correspondence analysis points that the Network G matrix

sample was the only sample that retained individuals from all eight

clusters. Moreover, the proportion of individuals in each cluster was

similar to the proportion observed in the All Animals sample

(Table 1).

When the linkage disequilibrium (LD) was evaluated, it was noted

that the value of r² at distances between markers>100 Kb reached

0.1. It is important to observe that the Threshold IBD and Network

IBD samples produce very similar effects on r2 and, consequently, on

LD decay (Figure 5). The Threshold G matrix and Network G matrix

samples also produce very similar results. However, in general, the

five samples produce very similar LD decay (Figure 5). For all five

samples, a higher percentage of markers in strong LD (% r² > .3) was

observed in the intervals 0-5, 10-15 and 15-20 Kb. Furthermore,

Figure 5 shows that the % r² > .3 follows the LD decay pattern

across the different distances between markers. Additionally, there

was not observed substantial differences for the Ne across genera-

tions among all the samples.

The most probable number of populations, estimated by the

ADMIXTURE 1.23 software, shows a strong impact of the cryptic relat-

edness in the detection of population stratification. For the All Ani-

mals sample, the most probable number of populations (smallest

value of Cross-validation error) is K = 75. However, for the Threshold

IBD and Network IBD samples, the most probable numbers of popu-

lations are K = 3 and K = 2, respectively. For the Threshold G matrix

and Network G matrix samples, the smallest value of Cross-validation

error is K = 14, but the difference observed among the values from

the 11-16 populations was small. These results are shown in

Figure 6. Therefore, any one of these populations in the Threshold G

matrix and Network G matrix samples have virtually the same proba-

bility to be correct.

3.3 | Impact of the relatedness level on GWAS—
Simulation analysis

The impact of the relatedness level on the GWAS results is shown

in Figure 7. In the GWAS, the expected value of lambda is 1, in the

absence of association. As associated markers were removed, only

secondary effects, such as LD caused by relatedness between indi-

viduals in the sample, would increase lambda values. The highest

lambda values were identified for the All Animals sample for both

heritability values (lambda = 1.57 for h2 = 0.2 and lambda = 2.371

for h2 = 0.5). These results indicate strong inflation of the GWAS

results. This further indicates that this inflation is related to the heri-

tability values. When the heritability of the trait increases, the

lambda also increases. However, for all other samples, there were no

differences between the lambda values obtained for both simulations

(Figure 7a), h2 = 0.2 and h2 = 0.5, in the first approach (Figure S1).

F IGURE 2 Venn diagram showing individuals shared among
samples
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Additionally, the lambda values for the four resampling samples were

close to 1, as expected. The simulations performed in the second

approach (Figure S2) retained the relationship between the lambda

values and the heritability, in the All Animals sample and for the four

resampling strategies (Figure 7b). In addition, the lambda values

obtained in this scenario for all the resampling samples were higher

than the values obtained in the first scenario. In both scenarios, the

smallest lambda values were found for the resampling samples

obtained using the IBD values calculated using PLINK, independently

of the resampling strategy (Threshold IBD and Network G matrix).

4 | DISCUSSION

In cattle, artificial reproduction technologies allow the reduction in

the number of animals needed to produce the next generation and

the reduction in generation intervals. Consequently, the increase in

the relatedness levels in the population is usually a result of the

selection process (Macedo et al., 2014; Panetto, Guti�errez, Ferraz,

Cunha, & Golden, 2010). Samples may capture such phenomena and

association studies, and may be affected by the population genetic

structure. For this reason, it is necessary to evaluate and adjust the

relatedness in samples generated by the intense selection process.

To conduct this study, we selected a particularly complex sample,

composed of large families with large numbers of cousins, half-

nieces, half-sisters and granddaughters.

In the present work, four methodologies were compared with

the aim of reducing the relatedness level in a sample. The first and

second methodologies eliminate, iteratively, the individuals with the

largest number of relationships with a PLINK and VanRaden’s φij

greater than 0.1, respectively. The third and fourth methodologies

use a more elaborate approach and perform a network relationship

analysis that allows the elimination of the more central individuals of

each network formed by a φij ≥ 0.1 and VanRaden’s φij ≥ 0.1. This

was carried out using a node selection algorithm based on a net-

work’s degree centrality statistic. The samples obtained with the

centrality algorithm are expected to be more representative of the

original genetic variability, as compared to the Threshold IBD and

Threshold G matrix approaches. This happens because the more cen-

tral animals, that is, those with more relatives in the sample, which

would have been eliminated from the network, share a portion of

the genome with the remaining animals. Thus, a portion of the

genetic variability of the animals that have been eliminated will

remain in the final sample. The results obtained in this study rein-

force the necessity of adjusting the relatedness level in a sample.

Moreover, it shows that a methodology already demonstrated to be

efficient, for studies with human populations (Kehdy et al., 2015),

works satisfactorily with a structured livestock sample.

The MDS analysis for the four samples shows that the resam-

pling strategies retained individuals with fewer genetic similarities

when compared with the All Animals sample. This result was

expected because, in the four samples, only individuals with a PLINK

φij or a VanRaden’s φij < 0.1 were retained. The higher genetic simi-

larity in the All Animals sample contributes to the higher mean φij

and a higher r2 average at all distances between markers in the All

Animals sample. The MDS plots reflect the Euclidian distances among

individuals calculated using the number of opposite homozygous

markers (Figure 3). The relationship metric strongly affects the dis-

tance among individuals (Figure 3). The samples obtained using the

PLINK φij show similar patterns; the same is observed among the

samples obtained using VanRaden’s φij, independent of the resam-

pling approach. It is important to highlight that, although Threshold G

matrix and Network G matrix samples retaining the same sample size,

only Network G matrix retained individuals for all groups identified in

the hierarchical clustering analysis performed on All animals. These

results suggest that Network G matrix sample retains a more diverse

and representative group of individuals.

The process used to determine the kinship coefficient among

individuals in the Threshold G matrix and Network G matrix

approaches might explain the results shown in Figure 3. Both

approaches use the VanRaden’s φij, which uses allelic frequency as a

weight to estimate the relationship coefficient among individuals

(VanRaden, 2008). Otherwise, the PLINK φij only takes into account

the number of alleles shared among them (Threshold IBD and Net-

work IBD). This way, two pairs of individuals that share the same

number of alleles will have the same kinship coefficient. However,

pairs sharing higher numbers of rare alleles will have higher relation-

ship coefficients, obtained using the Threshold G matrix and Network

G matrix approach, when compared with pairs sharing predominantly

common alleles. These results suggest that the Network G matrix

approach provides a better choice of the most central and most

related individuals in the network.

TABLE 1 Number of animals (and proportion) present in each group (1-8) identified by the hierarchical cluster analysis for the All Animals
sample, in each one of the subsamples

Groups

1 2 3 4 5 6 7 8

All Animals 419 (0.4) 293 (0.28) 48 (0.005) 116 (0.11) 39 (0.04) 110 (0.11) 6 (0.005) 5 (0.005)

Threshold IBD 57 (0.28) 77 (0.38) 14 (0.07) 6 (0.03) 21 (0.1) 24 (0.12) 4 (0.02) 0

Threshold G matrix 117 (0.41) 70 (0.24) 17 (0.06) 42 (0.15) 7 (0.02) 29 (0.10) 4 (0.02) 0

Network IBD 56 (0.27) 83 (0.4) 14 (0.07) 7 (0.03) 21 (0.1) 24 (0.11) 5 (0.2) 0

Network G matrix 108 (0.4) 89 (0.3) 13 (0.04) 30 (0.1) 9 (0.03) 33 (0.12) 3 (0.016) 1 (0.003)
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The differences observed between the MDS plots of Threshold G

matrix and Network G matrix samples, even with the same sample

size and the same relationship metric (VanRaden’s φij), might be

explained by the resampling process. The difference is produced by

the algorithm in the NATORA software. Initially, the NATORA software

identifies the nets of related individuals and sequentially excludes

F IGURE 35 Multidimensional scaling (MDS) plots of individuals for each sample. X and Y coordinates are the output values of the MDS
plots and were calculated using the Euclidian distances among the individuals, obtained through the number of opposite homozygous
genotypes for each locus. (a) Coordinates X and Y for the individuals in the All Animals sample were obtained using 1,036 cows and 32,194
markers; (b) Coordinates X and Y for the individuals in the Threshold IBD sample were obtained using 203 cows and 32,802 markers; (c)
Coordinates X and Y for the individuals in the Threshold G matrix sample were obtained using 286 cows and 32,680 markers; (d) Coordinates X
and Y for the individuals in the Network IBD sample were obtained using 210 cows and 32,809 markers; (e) Coordinates X and Y for the
individuals in the Network G matrix sample were obtained using 286 cows and 32,022 markers. The colours in the plot represent the eight
groups identified in the hierarchical clustering analysis performed on the All Animal sample

L
O
W

R
E
S
O
L
U
T
IO

N
C
O
L
O
R

F
IG

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

FONSECA ET AL. | 7



the most central individuals. When the nets are deconstructed, and

only pairs of related individuals are present in the sample, the algo-

rithm returns to the original network to choose better individuals to

be eliminated based on the initial degree of centrality of each indi-

vidual. This characteristic of NATORA allows better representation of

the initial sample. Differently, the iterative exclusion of individuals

used in the Threshold IBD and Threshold G matrix samples only takes

into account the degree of relatedness among individuals in the cur-

rent step of exclusion. These methodological differences explain why

both samples (Threshold G matrix and Network G matrix) have the

same size, but are composed of different individuals.

LD decay analysis shows that the r² means and the percentages

of markers in strong linkage disequilibrium were very similar for the

All Animals and Network G matrix samples at almost all distances

between pairs of markers. These results suggest a higher similarity

between these two samples in relation to the other samples (Thresh-

old IBD and Network IBD). Thus, they point to better representation

of the original sample in the Network G matrix sample. In addition, it

was possible to observe a similar pattern of LD decay among the

samples obtained after the use of the same kinship metric (Threshold

IBD and Network IBD for PLINK φij; and Threshold G matrix and

Network G matrix for VanRaden’s φij). Moreover, the Venn diagram

in Figure 2 shows that samples obtained using the same kinship

metric share more individuals. Consequently, these samples are more

genetically similar. These results reinforce the impact of the different

kinship metrics on the genetic diversity estimates.

A fivefold, cross-validation analysis was performed using the

ADMIXTURE 1.23 software to identify the more likely numbers of pop-

ulations (K) in each sample. The smallest cross-validation error value

points to K = 75 for the All Animals sample, K = 3 for Threshold IBD

sample, K = 2 for Network IBD sample, and K = 14 (K = 11-16,

equally probable) for both Threshold G matrix and Network G matrix

samples. We hypothesize that K = 75 reflects a macrofamilial struc-

ture because individuals coming from a MOET nucleus are included

in the sample. Indeed, it has been shown that ADMIXTURE 1.23 detects

familial structures in human populations (Kehdy et al., 2015). K = 3

and K = 2, observed for the Threshold IBD and Network IBD samples,

may reflect selection purposes. Originally, Guzer�a was selected only

for meat production. In the last few decades, some of the herds

have begun to be used for dual-purpose selection (milk and meat)

and some lineages have started to be specialized for milk production

(Peixoto et al., 2009). On the other hand, for the Threshold G matrix

F IGURE 46 Dendrograms showing hierarchical clustering of individuals for (a) All Animals, (b) Threshold IBD, (c) Threshold G matrix, (d)
Network IBD and (e) Network G matrix. The red lines indicate the point where the largest increase in the height of each dendrogram was
observed, highlighting the point where the best separation of the groups was obtained. Dendrograms were generated using the number of
opposite homozygous genotypes between individuals in each sample
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and Network G matrix samples, K = 14 (K = 11-16 equally probable)

was the number of populations with the smallest value of cross-vali-

dation error. These values, K = 11-16, are close to the number of

clusters shown in Figure 6. Interestingly, we obtained similar results

for the more likely number of Guzer�a lineages using microsatellite

markers in another sample (15 lineages) (results not shown). These

results reinforce the impact of the kinship metric on the resampling

processes and the representation of the initial population. Threshold

G matrix and Network G matrix, obtained using two different

approaches, resulted in a sample of the same size but with different

individuals. However, the population structure detected was similar

in the two samples (K = 11-16).

The lambda values obtained in the simulation analyses performed

in the present work indicate a strong influence of the relatedness over

the GWAS inflation. For all GWAS simulations, the associated markers

were removed. Therefore, in the absence of secondary signals, a

lambda equals 1 was expected. Additionally, the lambda increase is

stronger when the heritability of the trait is higher. The median lambda

for all the resampling sample is close to the expected lambda

(lambda = 1). This result indicates that, independently of the resam-

pling strategy, the reduction in the relatedness level in the sample

decreases the number of secondary signals obtained in the GWAS.

The strong deviation from lambda = 1, observed for All Animals, could

be explained by a strong LD present in this sample caused by the high

relatedness level. However, the LD comparison performed in the pre-

sent study demonstrated that there are no differences among the LD

patterns among the samples. Additionally, there are no significant dif-

ferences among the Ne across the generations, reinforcing the results

obtained from the LD analysis (Table S1). The impact of LD and heri-

tability over lambda values obtained in GWAS was already evaluated

in the literature and follows the same pattern described here (Powell,

Visscher, & Goddard, 2010; Speed & Balding, 2015). It is important to

highlight that, in the second simulation scheme, where the simulations

were performed independently for each sample, the lambda values

were obtained using higher heritability (h2 = 0.5). This suggests that

the impact of relatedness reduction over the GWAS inflation is not by

chance.

Although there was no significant difference among the lambda

values observed in each resampling strategy, the results obtained in

the present study reinforce the impact of relatedness level over the

GWAS inflation. The Network G matrix sample has one of the largest

sample sizes among the resampling samples and the more distant

individuals, which may be a helpful characteristic for the GWAS

analysis. The largest number of individuals and the genetic distances

among them may influence the presence of less frequent alleles and

increase the association power (Gibson, 2012). The two methodolo-

gies tested here, the iterative exclusion of most related individuals

(Threshold) and the node selection algorithm based on degrees of

F IGURE 57 LD decay for Guzer�a. The left y-axis shows the mean of r² at different distances between pairs of markers for All Animals (red),
Threshold IBD (yellow), Network IBD (green), Threshold IBD (blue) and Network G matrix (purple). The right y-axis shows the percentage of
markers in strong LD (r² > .3) for All Animals and for each sample (grey scale) at each distance between markers
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centrality (Network), in spite of performing very similar processes, are

different. The threshold approaches needed more user time to com-

plete the analysis. The Threshold IBD was obtained after approxi-

mately 391 min, and the Threshold G matrix was obtained after

302 min. Data S1 shows the R script used to perform the threshold

approach. The NATORA approach was more computationally efficient

for our data set. For the Network IBD sample, NATORA needed 17 s

to finish the analysis. For the Network G matrix sample, it took less

F IGURE 69 Cross-validation error values for each sample. For the All Animals sample, (a) the most probable number of populations was
K = 75; for the Network IBD Regions (b) and Threshold IBD Regions, (c) the most probable number was K = 2; for the Network IBD Pointwise, the
most probable number of K = 14
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than 10 s to obtain the final sample. These results reinforce the

higher computational and selection efficiency of the NATORA algo-

rithm. Additionally, the same results also reinforce the impact of the

relationship metric over the resampling processes. Using the G

matrix coefficient (VanRaden, 208), it was possible to obtain a final

sample with a size greater than or equal to all the other samples and

taking less user time. All the analyses were performed using the

same computer: Dell server with 4 Eight-Core Intel processors, 128

GB of RAM memory (16 9 8 GB) and 600 GB hard drive.

The impact of cryptic relatedness in genetic diversity and genetic

association studies has been previously described (Astle & Balding,

2009; Chikhi et al., 2010; Kehdy et al., 2015; Kirkpatrick & Bou-

chard-Côt�e, 2016; Tucker et al., 2014; Wang et al., 2013). Compared

to the other strategies tested here, the Network G matrix is consid-

ered the best due to certain characteristics. First, one of the larger

samples was obtained, composed of 286 animals (same number of

individuals as Threshold G matrix). Second, it preserved the genetic

diversity observed in the initial sample, indicating good representa-

tion of the full data set. Third, this strategy preserved the lineage

connections among the individuals (number of populations identified

K = 11-16) even after excluding closely related individuals. The sam-

ple used in the present study originates from a population which

had been subjected to several recent bottlenecks (de Souza Fonseca

et al., 2016). Guzer�a breed was subjected to a strong founder effect

during importation from India to Brazil. This is the main cause of

these low Ne values in the oldest generations (Table S1). Addition-

ally, an intensive trend to select a small group of sires in population

was observed. This characteristic is observed in several bovine

breeds. The strength of this trend is enhanced by both the intensive

use of artificial insemination and the models applied in the genomic

selection (e.g., BLUP). This is one of the main concerns regarding the

development of new selection strategies to be applied in the genetic

management of herds, or even breeds. These successive reductions

in effective population size in the present study might explain the

strong reduction in the sample size observed after each resampling

strategy was performed. An additional, practical use of this strategy

would be the selection of individuals for breeding programmes to

preserve, as much as possible, the genetic diversity of the original

population. This strategy may help to reduce the impact of inbreed-

ing depression in herds in which genetic diversity levels are low.

Taken together, the results reported here suggest that the node

selection algorithm, based on the degree of centrality of a network

using VanRaden’s φij as the connection among individuals, was the

better strategy for reducing relatedness in a sample enriched by con-

sanguineous individuals. The results obtained in the present study

confirm the efficiency of the node selection algorithm in livestock

F IGURE 7 Results of genomic inflation
(lambda) for each group of 1,000
replications performed by each sample. (a)
Median lambda values for each sample
using the phenotypic information simulated
for the All Animals sample with two
heritability values (h² = 0.2 and h² = 0.5).
(b) Median lambda values for each sample
obtained using the phenotypic information
simulated independently for each sample
with two heritability values (h² = 0.2 and
h² = 0.5)
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populations and reinforce the impact of the level of relatedness in

the sample on the evaluation of population structure and genetic

association studies.
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Brunelli, F. Â. T., Penna, V. M., . . . Peixoto, M. G. C. D. (2016). Retell-

ing the recent evolution of genetic diversity for Guzer�a: Inferences

from LD decay, runs of homozygosity and Ne over the generations.

Livestock Science, 193, 110–117. https://doi.org/10.1016/j.livsci.

2016.10.006

Speed, D., & Balding, D. J. (2015). Relatedness in the post-genomic era:

Is it still useful? Nature Reviews Genetics, 16, 33–44.

Speizer, I. S., & Lance, P. (2015). Fertility desires, family planning use and

pregnancy experience: Longitudinal examination of urban areas in

three African countries. BMC Pregnancy Childbirth, 15, 1.

Suzuki, R., & Shimodaira, H. (2006). Pvclust: An R package for assessing

the uncertainty in hierarchical clustering. Bioinformatics, 22, 1540–

1542. https://doi.org/10.1093/bioinformatics/btl117

Sved, J. A. (1971). Linkage disequilibrium and homozygosity of chromo-

some segments in finite populations. Theoretical Population Biology, 2

(2), 125–141. https://doi.org/10.1016/0040-5809(71)90011-6

Tucker, G., Price, A. L., & Berger, B. (2014). Improving the power of

GWAS and avoiding confounding from population stratification with

PC-Select. Genetics, 197, 1045–1049. https://doi.org/10.1534/gene

tics.114.164285

VanRaden, P. (2008). Efficient methods to compute genomic predictions.

Journal of Dairy Science, 91, 4414–4423. https://doi.org/10.3168/jds.

2007-0980

Voight, B. F., & Pritchard, J. K. (2005). Confounding from cryptic related-

ness in case-control association studies. PLoS Genetics, 1, e32.

https://doi.org/10.1371/journal.pgen.0010032

Wang, K., Hu, X., & Peng, Y. (2013). An analytical comparison of the prin-

cipal component method and the mixed effects model for association

studies in the presence of cryptic relatedness and population stratifi-

cation. Human Heredity, 76, 1–9. https://doi.org/10.1159/000353345

Wientjes, Y. C., Veerkamp, R. F., & Calus, M. P. (2013). The effect of link-

age disequilibrium and family relationships on the reliability of geno-

mic prediction. Genetics, 193, 621–631. https://doi.org/10.1534/gene

tics.112.146290

Yee, W. K., Rogell, B., Lemos, B., & Dowling, D. K. (2015). Intergenomic

interactions between mitochondrial and Y-linked genes shape male

mating patterns and fertility in Drosophila melanogaster. Evolution,

69, 2876–2890. https://doi.org/10.1111/evo.12788

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Fonseca PAS, Leal TP, Santos FC,

et al. Reducing cryptic relatedness in genomic data sets via a

central node exclusion algorithm. Mol Ecol Resour. 2017;00:1–

13. https://doi.org/10.1111/1755-0998.12746

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

FONSECA ET AL. | 13

https://doi.org/10.1111/j.1439-0388.2011.00958.x
https://doi.org/10.1111/j.1439-0388.2011.00958.x
https://doi.org/10.7717/peerj.1813
https://doi.org/10.1038/nrg2865
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/nrg2813
https://doi.org/10.1038/nrg2813
https://doi.org/10.1086/519795
https://doi.org/10.1002/sim.6605
https://doi.org/10.1002/sim.6605
https://doi.org/10.1038/hdy.2010.91
https://doi.org/10.1038/hdy.2010.91
https://doi.org/10.3109/19396368.2015.1094837
https://doi.org/10.1016/j.livsci.2016.10.006
https://doi.org/10.1016/j.livsci.2016.10.006
https://doi.org/10.1093/bioinformatics/btl117
https://doi.org/10.1016/0040-5809(71)90011-6
https://doi.org/10.1534/genetics.114.164285
https://doi.org/10.1534/genetics.114.164285
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1371/journal.pgen.0010032
https://doi.org/10.1159/000353345
https://doi.org/10.1534/genetics.112.146290
https://doi.org/10.1534/genetics.112.146290
https://doi.org/10.1111/evo.12788
https://doi.org/10.1111/1755-0998.12746
pablo
Realce

pablo
Nota
40


	Upload: 
	Complete: 


