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Abstract.	 [Purpose] To verify the identification of the anaerobic threshold through the double product breakpoint 
(DPBP) method for individuals with type 2 diabetes. [Subjects and Methods] Nine individuals with T2D (7 females; 
age=63.2 ± 8.9 y) and 10 non-diabetic (ND) (7 females; age=58.3 ± 7.8 y) performed an incremental exercise test on 
a cycle ergometer. Heart rate (HR), blood pressure (BP) and expired gas were measured at the end of each stage. The 
ventilatory threshold (VT) and DPBP were considered as the exercise intensities above which an over proportional 
increases in VE and DP were observed in relation to increasing workload. [Results] No differences were observed 
between the workloads, HR and VO2 corresponding to the AT identified respectively by VT and DPBP. For the 
T2D, strong correlations between VT and DBPB workloads (r=0.853), HR (r=0.714), and VO2 (r=0.863) were found. 
These relationships were similar to those found for the control group (r=0.923; r=0.881; and r=0.863, respectively). 
[Conclusion] These results demonstrate that the DPBP enables for the prediction of AT and correlated well the VT 
in both the T2D and ND participants.
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INTRODUCTION

The anaerobic threshold (AT) is a hallmark of the aerobic fitness of athletes1), physically active individuals3) and on a 
minor scale for special populations, such as individuals with type 2 diabetes (T2D)2, 4, 5). AT has been considered the gold 
standard along with maximum oxygen consumption (VO2max) for the evaluation of aerobic fitness and the subsequent 
prescription of aerobic exercise6–9). Moreover, monitoring of aerobic training adaptations through AT determination may 
be especially interesting because no maximal effort is needed, and could be safer for individuals with pathologies such as 
hypertension and diabetes10, 11).

The AT can be identified using several markers representing different physiological systems. For instance, the AT has 
been determined through the analysis of heart rate variability (HRV)2), blood catecholamines12), blood glucose and lactate3), 
ventilation and respiratory equivalents13, 14), and the double product (DP)15–22).

Identification of AT through different indices, such as the double product (DP), has been widely utilized for healthy 
individuals16, 17, 19), athletes20) and individuals with cardiovascular diseases15, 16, 18). However, few studies have identified the 
AT of individuals with T2D through different methods2, 23), while the exercise recommendations for T2D24) indicate that these 
patients should be encouraged to undertake an exercise test before being submitted to physical training. For instance, the AT 
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of T2D individuals is often observed to be between 60–70% of VO2max6, 8, 25), which is an exercise intensity that has been 
widely recommended for this population for better blood glucose and cardiovascular control24).

Further, previous studies have shown that aerobic exercises performed around AT intensities significantly reduced the 
blood pressure (BP) of individuals with T2D in the post-exercise period6–8, 25, 26), and none of these previous studies reported 
complications during the experimental sessions, suggesting the desirability of AT identification for this population, since 
inadequate physical exertion can be a powerful triggering factor of myocardial infarction27).

Individuals with T2D often present autonomic dysfunction28–30). Compared to healthy individuals, it is therefore likely 
that they would show a different hemodynamic reaction [heart rate (HR) and BP, and in turn DP] during exercise, such as 
an exaggerated exercise blood pressure response31). This would make AT identification through cardiovascular responses 
difficult or even impossible. In addition, hypertension and T2D very frequently coexist, since 20% of hypertensive patients 
have T2D, and 80% of people with T2D are hypertensive32). Hypertensiveness, could also affect the hemodynamic responses 
during exercise, which may in turn complicate AT detection through cardiovascular responses. Sales et al. have presented the 
feasibility of AT identification for T2D individuals through HRV analyses2) and Kumagai et al. identified the double product 
breakpoint (DPBP) in T2D individuals, but did not compared with any other anaerobic threshold identification method23). 
Thus, we hypothesized that AT could be predicted through the DPBP during exercise performed by T2D individuals, similar 
to healthy individuals16). Moreover, identification of AT through the DPBP would be relevant since the DP can provide 
information that correlates with myocardial oxygen consumption, which is recognized as a non-invasive indicator of cardiac 
overload33, 34) as well as cardiac ischemic events including acute myocardial infarction35). Further, the determination of AT 
through the DPBP is a simple method that does not depend on the use of complex equipment such as gas analyzers, which 
are expensive and require the use of specialized technicians to operate them.

The validity of the DPBP in estimating the AT using a sphygmomanometer and stethoscope has not been investigated yet. 
Experiments have used either automated blood pressure monitor15–17, 19, 20, 23) or a cannula inserted into the brachial artery18). 
These procedures are not accessible to most practioners because they require costly equipment as well as highly invasive 
procedures. In addition, to the best of our knowledge, no study has examined the DPBP as an estimate of the AT in individuals 
with T2D.

Thus, the purpose of this study was to verify whether or not the AT of T2D individuals can be predicted through the DP 
method, and to analyze the relationships between the workload (Watts), oxygen consumption (VO2) and HR obtained by the 
DPBP and the ventilatory threshold (VT) methods.

SUBJECTS AND METHODS

After approval from the local human research ethics committee (Universidade Católica de Brasília: 011/2011), and 
obtaining the written informed consent of the volunteers, 11 T2D individuals (8 females), and 10 controls (7 females) were 
initially selected to participate in this study. Exclusion criteria for participation in this study included previous diagnosis of 
peripheral neuropathy or retinopathy, as well as diabetic foot ulcerations osteomioarticular complications, the endogenous 
use of insulin, and/or use of medicines that could have directly affected HR or BP. All the individuals were recruited at a pub-
lic hospital, and all had been previously assessed using standard tests conducted by endocrinologists and cardiologists. Two 
participants with T2D were excluded from the analysis because it was not possible to detect their VT and/or DPBP (Table 1). 
Therefore, the statistical power a priori conferred on this sample (n=19) was 82% (power=0.82). The T2D individuals were 
receiving medical treatments of oral hypoglycemiants (Metformin, Metformin + Glibenclamide). The general characteristics 
of the volunteers are presented in Table 2.

All experimental sessions were carried out at the Laboratory of Physical Evaluation and Training (LAFIT) of the Univer-
sidade Católica de Brasília 2 h after volunteers eaten a standardized breakfast of a moderate glycemic index meal without 
any substances that could have directly affected the HR and/or the BP. The participants were given a physical evaluation 
including anthropometric measurements (body mass, height and body fat percentage) and then performed an incremental 

Table 1.	The number of cases in which the ventilatory threshold (VT) and the double prod-
uct breakpoint (DPBP) were detected by all observers

Parameter T2D (n) ND (n) TOTAL
Participants initially screened 11 10 21
VT detected 10 10 20
DPBP detected 9 10 19
HR primarily responsible for DPBP 1 1 2
SBP responsible for DPBP 5 4 9
Participants included in the analysis 9 10 19
T2D: individuals with type 2 diabetes; ND: individuals without T2D; VT: ventilatory 
threshold; DPBP: double product breakpoint; HR: heart rate; SBP: systolic blood pressure
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exercise test (IT). During the IT, measurements of HR, BP and ventilatory variables were continuously monitored. To carry 
out the measurement of body fat percentage by bipolar bioimpedance, the individuals were told to: avoid caffeine and alcohol 
for 24 hours before the test; not perform physical activity or eat a heavy meal for at least 4 hours before the test; and suspend 
diuretic medication 24 hours before the test36).

The IT was performed on a cycle ergometer (Monark, 828 E, Valburg/Sweden) at 60 rpm, and began one minute at zero 
Watt (W) load, followed by increments of 15 W every 3 minutes until voluntary exhaustion. The cardiologist of the labora-
tory monitored the electrocardiogram (ECG) of the volunteers throughout the test in order to identify any abnormality.

During the period before the exercise, as well as during the last 30 seconds of each stage, blood pressure (BP) was 
measured non-invasively by the auscultatory method using a mercury column sphygmomanometer (Tycos Instrumentos 
Hospitalares, São Paulo, Brazil). Expired gases were measured during the IT through a gas analyzer (Metalyzer 3B, Cortex 
Biophysik, Leipzig, Germany) that was previously calibrated with a 3-L syringe (flow calibration) and a standard mixed gas 
containing 4.9% CO2 and 17% O2 (gas calibration). The values of ventilation (VE) and oxygen uptake (VO2) were recorded 
breath-by-breath, but, they only were analyzed every 20 s in each 3-min stage.

The ventilation (VE) kinetics during the IT stages were used to identify the occurrence of VT by two experienced re-
searchers. This was considered to be the exercise intensity above which an over proportional increase in VE was observed in 
relation to increasing workload37).

Systolic blood pressure (SBP) and HR were collected in the final minute of each stage. The DPBP was considered to be 
the exercise intensity at which an over proportional increase in DP was observed in relation to increasing workload. Two 
experienced researchers determined DPBP, and when a discrepancy between them occurred, a third researcher was consulted. 
All the plots were blinded, therefore the researchers did not know the identity of the subjects or the conditions of the test. 
It is noteworthy that the same evaluator, which did not participated in the determination of DPBP and VT, carried out all 
collections of BP and HR. These procedures were carried out to ensure that researchers remained ‘blinded’ to the analysis.

After assessing the normality and homogeneity of data through the Shapiro-Wilk and Levene’s test, respectively, the data 
were presented as means (±) standard deviation. In order to compare the characteristics of the groups, the Student’s t-test 
for independent samples was conducted. Between and within groups comparisons were carried out using Split-Plot ANOVA 
(Mixed ANOVA). When any of the dependent variables did not show sphericity in Mauchly’s test, the epsilon of Greenhouse-
Geisser was used to analyze the F statistic. Since there were only two groups, the post hoc is unable to locate the differences, 
therefore, it was necessary to apply parallel test, named: pairwise comparisons. Thus, the paired Student’s t-test was used 
to compare the anaerobic threshold identification methods within groups (VT and DPBP). The Effect size within (VT and 
DPBP) and between groups (T2D and ND) was evaluated using Cohen’s d38). Pearson’s correlation coefficients were used to 
verify the relationships between the studied methods used to determine anaerobic threshold. For the sample size calculation, 
the statistical power (1-β) was used a priori, using comparison analysis applied (ANOVA for repeated measures), an effect 
size of f=0.35 and an alpha of 5%. Furthermore, the Bland and Altman technique was used to verify the level of agreement 
between the different methods39). A significance level of 5% (p<0.05) was used. All the procedures were carried out using the 
Statistical Package for the Social Sciences (SPSS 20.0) and G*Power (version 3.1.9.2).

RESULTS

The DPBP was identified in all 11 ND individuals and in 9 from 11 T2D individuals (81.8%), with SBP being primarily 
responsible for the DPBP in almost half of all cases (Table 1).

The results presented in Table 3 show no there were no significant differences between the workloads (watts), HR (bpm) 

Table 2.	Characteristics of the individuals with type 2 diabetes 
(T2D) and non-diabetic (ND) controls

 T2D (n=9) ND (n=10)
Age (yrs) 63.2 ± 8.9 58.3 ± 7.8
Body mass (kg) 70.2 ± 14.1 72.5 ± 19.2
Height (m) 1.59 ± 0.1 1.61 ± 0.11
BMI (kg·m−2) 26.3 ± 5.0 27.1 ± 4.1
Body Fat (%) 37.4 ± 5.6 34.5 ± 7.0
HbA1c (%) 6.8 ± 1.3 5.2 ± 0.2*
VO2peak (ml·kg−1·min−1) 21.4 ± 3.5 22.6 ± 5.1
Maximal heart rate (bpm) 150.2 ± 24.6 155.2 ± 12.6
Data expressed as mean  ± standard deviation.
T2D: individuals with type 2 diabetes; ND: individuals without 
T2D; BMI: body mass index; HbA1c: glycated hemoglobin; *sig-
nificant difference (p<0.05)

Table 3.	Workload (watts), heart rate (bpm) and oxygen uptake 
(ml·kg−1·min−1) measurements at VT and DBPB of the 
T2D and ND groups

Parameter T2D (n=9) ND (n=10)
Workload  
(watts)

DPBP 45 ± 21.2 60 ± 29.2
VT 40 ± 24.9 63 ± 30.6

Heart rate
(bpm)

DPBP 124.7 ± 13.6 119.1 ± 17.4
VT 122.1 ± 14.6 121.4 ± 19.1

VO2 
(mL·kg−1·min−1)

DPBP 14.6 ± 2.4 15.1 ± 2.9
VT 14.1 ± 3.4 15.3 ± 3.6

Data expressed as mean  ± standard deviation.
T2D: individuals with type 2 diabetes; ND: individuals without 
T2D; DPBP: double product breakpoint; VT: ventilatory thresh-
old
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and VO2 corresponding to the AT identified by the VT and DPBP methods. Further, for the T2D group, strong and significant 
correlations (p<0.01) between workloads at VT and DBPB (r=0.853), HR (r=0.714), and VO2 (r=0.863) were found. Strong 
and significant correlations (p<0.001) were also found in the ND group for all parameters investigated; they were r=0.923 for 
the workload at VT and DPBP, r=0.881 for HR, and r=0.863 for VO2.

The Bland and Altman analyses indicate there was good agreement for the VO2 (L·min−1) corresponding to VT and DPBP 
based on the low bias and narrows limits of agreement [Bias (± 95% of confidence interval)] for VT and DPBP [0.03 (0.11) 
LO2·min−1] for the T2D group, and VT and DPBP [−0.02 (0.13) LO2·min−1] for the ND group.

DISCUSSION

The main finding of this research is that the DPBP can be used to estimate the AT of T2D and ND individuals, since 
there were no significant (p<0.05) differences between the workloads (Watts), HR and VO2 of the VT and DPBP methods. 
Furthermore, the effect size analyses also demonstrated that the visual differences of the variables mentioned above, had little 
(small) or no effect, according to Cohen’s d38).

From a physiological point of view, it is presumed that the DP could be a marker of AT determination, to the extent that, 
when performing an incremental exercise test, there is a gradual reduction in the vagal activity and consequent increase in 
sympathetic nervous activity. However, at a certain intensity, a complete vagal withdrawal is expected and this presents as 
a persistent depression of the autonomic nervous system until the end of the tests, featuring the HRV threshold2, 40, 41). Ac-
cordingly, there is a marked increase in sympathetic nerve activity, which results in a significant elevation of catecholamines, 
which is known as the catecholamines threshold12). The increased levels of catecholamines, in turn, result in a marked 
increase in BP and HR, and thus on DP, and as a result the DPBP15–19). Furthermore, increased levels of catecholamines also 
produce a significant increase in glycolytic activity42), enabling for the identification of the glycemic and lactate thresholds3). 
This increased glycolysis also contributes to a sharp increase in CO2 production which causes hyperventilation and results 
in the appearance of the VT43).

Consequently, it is reasonable to infer that, similar to other markers (HRV, catecholamines, glucose, lactate and ventila-
tion), the DP can also be used to determine the AT, with the advantage of it being a non-invasive and low cost method. 
Exercise tests involving blood collection and biochemical measures, and the use of expensive apparatus for expired gases 
analysis, as well as trained professionals who know protocols are high-priced, and thus inaccessible to a major portion of the 
T2D population.

Interestingly, although there was no significant difference of the workloads (Watts) between the groups (T2D and ND), 
the effect size of the difference was considered medium (d=0.588) for DPBP and large (d=0.824) for VT. From a practical 
point of view, it is noteworthy that the effect size is considered the main finding of a quantitative study, with the statistical 
significance (p) being the least important44, 45), since the relevant point is the magnitude of differences45).

With regard to the internal load variables (HR and VO2), these did not present significant differences (p>0.05) between 
the groups (T2D and ND), while the effect sizes of the differences were small or even null. Additionally, intra-group differ-
ences were always null. Moreover, the fact that significant differences (p>0.05) were not observed between the internal load 
variables (HR and VO2) of T2D and ND groups, may be partly explained by the higher cardiorespiratory capacity of the 
healthy individuals, as they reached an absolute external load (Watts), but with a similar cardiorespiratory responses (HR and 
VO2). Additionally, another aspect that should be considered regarding the absence of significant differences between the 
T2D and ND groups, is that they presented quite similar characteristics (Table 2), since the only variable that was different 
between the groups was glycated hemoglobin (HbA1c).

It is noteworthy that the statistics reveal there were strong and significant correlations between workloads (Watts), HR 
and VO2, and also a good agreement in both the T2D and ND groups. This is in agreement with the study of Riley et al., 
who reported a strong and significant correlation between VO2 at the lactate threshold (LT) and DPBP (r=0.86; p<0.01)16). 
Likewise Tanaka et al. also observed a strong and significant correlation between the DPBP and the LT (r=0.90; p<0.01) in a 
sample of 90 patients17). Additionally, Kumagai et al. identified the DPBP in 63 T2D individuals in a submaximal ramp test 
(rating of perceived exertion of 15) performed on a cycle ergometer23). However, it is noteworthy that in that study the DPBP 
was not compared with any other AT identification method.

Regarding the comparison of DPBP and VT, Brubaker et al. previously demonstrated a strong and significant correla-
tion between the methods (r=0.81, p<0.01) in a progressive test on a treadmill, and suggested that DPBP could be a valid 
alternative to VT for individuals with coronary artery disease15). Also Omiya et al. reported a high and significant association 
between workloads (Watts) (r=0.95; p=0.01) of both the DPBP and VT of 15 patients with cardiovascular diseases18).

Similarly, Hargens et al. conducted an elegant longitudinal study in order to evaluate the effect of eight weeks of aerobic 
training at vigorous intensity on DPBP and VT. They evaluated 7 men and 11 sedentary women, using a ramp protocol on a 
cycle ergometer, and observed that HR and VO2 at baseline and at the end of the training period were similar (p>0.05) and 
showed good agreement19). The fact that this previous study reported an increase of DPBP after training, confirms it is a 
reliable and sensitive method of identifing AT adaptations to training.

One limitation of the present study was that the intensity of the maximum lactate steady state (MLSS) was not determined 
for comparison with the investigated protocols of DPBP and VT. The determination of MLSS is considered the gold standard 
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among the exercise assessment methods1). Nevertheless, Denadai et al. and van Schuylenbergh indicate that this parameter is 
not different from the lactate threshold and VT46–48). Thus, it is reasonable to infer that the methods investigated in this study, 
DPBP and VT, which did not differ between themselves, may also represent the MLSS intensity.

The present study demonstrated that the DPBP can be easily determined during incremental exercise in both T2D and ND 
controls. Additionally, the DPBP happened at exercise intensities related to the VT in both the populations studied, suggesting 
that DPBP can be a useful marker of exercise intensity associated with AT.
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