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Linear systems over vector spaces and feedback morphisms form an additive category taking into account the parallel gathering of
linear systems. Tis additive category has a minimal exact structure and thus a notion of simple systems as those systems have no
subsystems apart from zero and themselves. Te so-called single-input systems are proven to be exactly the simple systems in the
category of reachable systems over vector spaces. Te category is also proven to be semisimple in objects because every reachable
linear system is decomposed in a fnite parallel gathering of simple systems. Hence, decomposition result is fulflled for linear
systems and feedbackmorphisms, but category of reachable linear systems is not abelian semisimple because it is not balanced and
hence fails to be abelian. Finally, it is conjectured that the category of linear systems and feedback actions is in fact semiabelian;
some threads to fnd the result and consequences are also given.

1. Introduction

Mathematical study of control systems arises from engi-
neering after seminal work of Maxwell [1] on fyball gov-
ernors of steam engines. Linear systems are found almost
everywhere in control theory [2] both as linear models or as
linearizations. In particular, the algebraic study of linear
systems in the state-space approach [3] deals with linear
systems defned on algebras and modules over a commu-
tative ring [4, 5]. Tis approach has been used recently in the
feld of convolutional codes [6–10]. Convolutional codes are
in fact error-correcting codes over a fnite feld F defned as
vector subspaces of F(z)n, where F(z) is the feld of rationals
which are realized as linear control systems over F .

Feedback is the main tool in the state-space approach
[11]: two linear systems are feedback equivalent if one can be
transformed in the other by means of a feedback action. Te
feedback equivalence relation has been studied for decades
from many diferent perspectives: Kronecker invariants
associated to a linear system were found in [12] to char-
acterize when two reachable linear systems (scalars in a feld
K) are feedback equivalent; diferential geometric tools were
applied in [13] to study feedback equivalence of

holomorphic pairs of matrices; linear systems over fnitely
generated R-modules were suggested as algebraic tool to
study parametric systems and integer valued systems [4, 5];
and later R-module invariants were found [14–16]. On the
other hand, if K � C, then (see [4], p. 276) a linear system
gives rise to a vector bundle over the Riemann sphere CP1

and equivalence of linear systems is characterized by the
isomorphism of their associated vector bundles. Te reader
can see Lomadze’s article [17] as one main reference in the
use of vector bundle decomposition results (mainly Gro-
thendieck’s Teorem) in order to classify linear systems over
C-vector spaces.

Several algebraic [18, 19] and geometric objects have
been employed to study linear systems. Casti [4] (p. 292)
quotes that each gadget, whether it be a K[z]-module,
a vector bundle, or a Grassmann variety, illuminates a dif-
ferent aspect of the overall category called linear systems.
However, Casti defned the category of realizations of be-
haviours [4], p. 304, but not the category of linear systems
itself. Another topic was studied using categories: Brewer
and Klingler [20] proved that if R is a commutative ring
containing a nonzero fnitely generated maximal ideal m
containing its annihilator, such that every unit of R/m lifts to
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a unit of R, then the category of reachable systems over R is
“wild” in the sense of classical representation theory. From
this it follows that a canonical form for a reachable system
over a principal ideal domain is not likely to be found. More
specifcally, canonical forms are unlikely to be found for
systems over Z and K[t]. Precisely, the impossibility of
fnding out canonical forms for arbitrary linear systems over
rings is one of the main motivations of introducing cate-
gories of linear systems as a way to detect feedback invariants
of linear systems.

Category SR of linear systems and feedback morphisms
was defned in [21] as the category whose objects are linear
systems over a fxed commutative ring R and whose mor-
phisms are the feedback morphisms. A feedback morphism
is a linear map between state spaces preserving the dynamics
up to feedback actions. From this point of view, feedback
actions are exactly the isomorphisms in the category (no
matter the scalar ring R). Moreover a collection of feedback
invariants is found in [12]. Tis set of invariants generalizes
both Kronecker’s invariants over felds and R-module in-
variants found in [14] to a complete set of feedback in-
variants, not in the case of arbitrary linear systems but in the
case of regular systems [12]. Hence, an answer to Brewer and
Klingler’s negative result would be as follows: though trying
to classify all reachable linear systems is a wild problem, the
classifcation of all regular linear systems is given over any
commutative ring [21]. Moreover, both feedback equiva-
lence and so-called dynamic feedback equivalence [22, 23]
can be studied by taking into account the K-theory groups of
the symmetric monoidal category of regular systems [21].

Te notion of feedbackmorphismwas introduced in [21]
to circumscribe the problem of feedback classifcation of
linear systems over R-modules as a linear map preserving
both the dynamics and controls of systems (see [24] as an
early article in the use of dynamorphisms). But the notion of
feedback morphism is interesting by itself in terms of linear
systems over K-vector spaces [25]. Kernels and cokernels of
feedback morphisms of linear systems were introduced in
[25] and showed that the category SK has all cokernels. It was
conjectured that the category has all kernels as well, and
hence SK will be preabelian. But despite this conjecture, it is
proved that SK is not abelian because it is not balanced (i.e.,
there are bimorphisms that are not isomorphisms).

Tis article focuses exact structures [26, 27] onto the
additive category (SK, ⊕ ) of linear systems over vector
spaces and parallel gathering (biproduct) of linear systems.
Te goal of this article is to fnd out the simple objects in that
category. Te results are that the simple objects, for the
minimal exact structure [27], are exactly the classical ca-
nonical controller forms [2] adapted to this framework. On
the other hand, the category is semisimple in objects because
Brunovsky’s theorem [12] states, in our framework, that
every reachable linear system is parallel gathering
(biproduct) of a fnite number of simple systems. Hence,
a solution of decomposition problems [24] is given in terms
of feedback actions instead only for dynamorphisms. Finally,
note that the category itself fails to be semisimple because SK
is not abelian and Schur’s lemma does not hold in this
category [28].

Te article is structured as follows. Main defnitions:
linear system, feedbackmorphism, reachable system, parallel
gathering, and decomposition are found in the second
section “categories of linear systems”. Ten, third section
“simple systems over vector spaces” is devoted to give the
main results, the characterization of simple systems over
a vector space, and that every reachable system decomposes
as fnite parallel gathering of simple systems. Minimal exact
structure is introduced as well. Canonical controller forms
and Brunovsky’s theorem are stated in our categorical
framework. Finally, we give some concluding remarks,
where some results are highlighted and some threads to
develop our results are given.

2. Categories of Linear Systems

A linear system is a triple σ � (V, f, B) where V is a fnite-
dimensional K-vector space, f: V⟶ V is a linear map,
and B≤V is a vector subspace (we will use≤ to denote vector
subspace). Te category of K-vector spaces and linear maps
is denoted by VK. Te category SK of linear systems over
fnite dimensional K-vector spaces gathers linear systems
σ � (V, f, B) as objects in the category and feedback
morphisms a: (V, f, B)⟶ (V′, f′, B′) as morphisms in
the category.

Defnition 1. (see [21], Defntion 3.2.) A feedback morphism
a: σ � (V, f, B)⟶ (V′, f′, B′) � σ′ is given by a linear
map F(a) � a: V⟶ V′ satisfying the following properties:

(i) a(B)⊆B′

(ii) im(f′
°
a − a°f) ⊂ B′.

Te pair SK � (linear systems, feedb ackmorphisms) is
a category. In fact, it is a K-linear category (i.e., enriched on
the category VK of K-vector spaces and linear maps). Te
functor forget-the-dynamics F: SK⟶ VK given by
F(V, f, B) � V in objects and by F(a) � a in morphisms is
obviously injective on morphisms, hence F is a faithful
functor. F is also a dense functor because every vector space
V occurs as V � F(V, 0, 0). But functor F is not full because
not every linear map arises as a feedback morphism, i.e., the
induced map Fσ,σ′ : homSK

(σ, σ′)⟶ homK(F(σ), F(σ′)) is
injective, but it is not surjective in general. A linear com-
bination of feedback morphisms is a feedback morphism
hence the set of feedback morphisms between two linear
systems is a vector subspace of linear maps between state
spaces. Feedback morphisms generalize the notion of
feedback equivalence ([21], Proposition 3.3.). In fact, two
linear systems σ and σ′ are feedback equivalent (in the
classical sense) exactly when they are isomorphic in SK, i.e.,
when there exists a feedback morphism a: σ⟶ σ′ such
that its inverse a− 1: σ′ ⟶ σ is also a feedback morphism.
Note that the inverse of a feedback morphism is not
a feedback morphism in general even in the case of un-
derlying linear map happens to be invertible: the morphism
f: (K, 0, 0)⟶ (K, 0,K) given by F(f) � (1) does not
admit an inverse as feedback morphism [25], and hence f is
not an isomorphism in SK, but however f is both monic and
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epic in the category, and thus a bimorphism in SK, while
F(f) is a isomorphism in VK.

2.1. Linear System Decomposition. Categories of linear sys-
tems are additive. Te parallel gathering of systems (V, f, B)

and (W, g, D) given by the following equation:

(V, f, B)⊕ (W, g, D) � V⊕W, f⊕g �
f 0

0 g
􏼠 􏼡, B ⊕ D􏼠 􏼡,

(1)

is a biproduct (both product and coproduct) in SK ([21],
Lemma 3.5.). Hence, the category is additive, in fact sym-
metric monoidal. Te zero object is linear system
0 � (0, 0, 0).

A linear system σ is indecomposable if whenever one has
σ � σ′ ⊕ σ″, then one has that either σ′ � 0 or σ″ � 0. Next
section is devoted to prove the main result of this article
which is the canonical decomposition of reachable linear
systems over vector spaces. First of all, we recall the def-
nition and some key properties of reachable systems.

Consider a linear system σ � (V, f, B) and the subspaces
of V given recursively by Nσ

0 � 0, and in general
Nσ

k � B + f(Nσ
k− 1). Tis sequence of subspaces is an as-

cending chain (i.e., Nσ
k ≤Nσ

k+1). Te chain is strict up to an
index (the degree of the linear system) s � deg(σ)≤ dimV,
and from this index, the chain stabilizes forever
N0 <N1 < · · · <Ns− 1 <Ns � Ns+1 � · · ·

Since V is fnite dimensional, it follows that
deg (V, f, B)≤ dimV. We will often use the notation f∗(B)

to denote f∗(B) � B + f(B) + f2(B) + · · · + fk(B) + · · ·

� B + f(B) + f2(B) + · · · + f(dimV− 1)(B)≤V. Linear system
σ � (V, f, B) is called reachable if Nσ

deg σ � f∗(B) � V. Note
that the zero system 0 � (0, 0, 0) is reachable of degree 0.

Denote by AK the full subcategory of SK collecting all
reachable linear systems and all feedback morphisms in SK
between them. If linear systems σ, σ′ are reachable then parallel
gathering system σ ⊕ σ′ is also reachable. Hence, ⊕ is internal to
AK and reachable systems is also an additive category, in fact it is
also symmetric monoidal. Consider the restriction of forget-the-
dynamics functor F to reachable systems G: AK⟶ VK.
Functor G is newly injective on morphisms, hence G is faithful.
Functor G is also dense because every vector space V occurs as
V � G(V, 0, V), and (V, 0, V) is trivially a reachable linear
system. But G is not full because the induced liner map between
K-vector spaces Gσ,σ′ : homAK

(σ, σ′)⟶ homK

(G(σ), G(σ′)) is not surjective in general.

3. Simple Systems over Vector Spaces

Tis section contains the main result of this article
(Teorem 5), which states that simple reachable linear
systems over a vector space are exactly those linear sys-
tems (V, f, B), where dimB � 1. Tis result will be proven
by using exact structures on the category of reachable
linear systems. Finally, simple systems will arise as those
nonzero reachable linear systems have no strict
subsystems.

3.1. Exact Structure on the Category of Linear Systems.
Bühler’s systematic elementary expository article [26] is
followed in the sequel in order to recall exact categories from
additive ones and to state the minimal exact structure E �

Emin on additive category AK. Te exact structureE, though
minimal, will be enough to fnd out simple linear systems.

Defnition 2. (see [26], Defnition 2.1.) A kernel-cokernel pair
in AK is a pair of composable feedback morphisms (i, p) such
that i is the kernel of p, and p is the cokernel of i. Tis fact is
denoted by σ′ ⟶i σ↠ σ″. If a classE of kernel-cokernel pairs
is fxed, an admissible monic is a morphism i such that there
exists a morphism p such that (i, p) ∈ E. An admissible epic is
defned dually. An exact structure is a classE of kernel-cokernel
pairs which is closed under isomorphisms of linear systems and
satisfes the following axioms:

(i) Te identity of the zero object 1(0,0,0) is an
admissible epic.

(ii) Te class of admissible monics and the class of
admissible epics are closed under composition.

(iii) Te push-out of admissible monic σ⟶i τ along
feedback map σ⟶a σ′ yields an admissible monic.

(2)

(iv) Te pull-back of admissible epic σ↠ τ along feed-
back map τ′ ⟶a τ yields an admissible epic.

(3)

Tere would be several exact structures on AK. Te
next result remarks that we have at least a minimal
exact structure which gathers all kernel-cokernel
feedback pairs isomorphic to a splitting pair.

Theorem 3. Te kernel-cokernel pairs isomorphic to

σ⟶

1
0􏼠 􏼡

σ ⊕ τ ↠
0 1( 􏼁

τ form a exact structure Emin, and
every other exact structure contains Emin.

Proof (see [27], Proposition 2.12). □

3.2. Simple Linear Systems. In the sequel, we consider the
exact structure Emin � E and the exact category (AK,E).
Next, we defne the admissible subsystem in terms of the
concept of admissible subobject in an exact category.

Defnition 4. [27], 3.1.). System σ′ is an admissible sub-
system of σ (denoted by σ′ ⊂ Eσ) if there exists an admissible
section σ′ ⟶i σ or equivalently if one has σ′ ⟶i σ↠σ″ for
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some σ″ in AK. A nonzero system σ is E-simple if every
subsystem σ′ ⊂ Eσ verifes either σ′ � 0 or σ′ � σ.

Now, we are ready to deal with the main result of the
article.

Theorem 5. Simple reachable systems are exactly those linear
systems σ � (V, f, B) such that dimB � 1

Proof. Te proof involves the categorical version of some
classical results which we will prove later (Lemmas 7 and 9)
together with a dimension computation result Lemma 8.Te
proof of Teorem 5, up to these results, works as follows:

Set a feldK and consider the exact category of reachable
linear systems (AK,Emin). Consider a reachable linear
system σ � (V, f, B), then by Lemma 9, we have that σ �

Σk1 ⊕ · · · ⊕Σks where s � dimB, and systems
Σki � (Vi, fi, Bi)≠ (0, 0, 0) are not zero, and dimBi � 1. It
follows that Σk1⟶(1,0,...,0) t (Σk1 ⊕ · · · ⊕Σks ) � σ is an ad-
missible section, hence Σk1 is a nonzero subsystem of σ.
Terefore, in order to σ being simple, it is necessary that
s � 1, σ � Σk1 , and dimB � 1.

Conversely, consider σ � (V, f, B) a reachable sub-
system where dim B � 1 and let us prove that σ is simple.
Te proof is performed by contradiction. Assume that
dim B � 1 and that σ is not simple. Ten, there exists
a nonzero subsystem σ′, that is to say, there exists an ad-
missible section σ′ ⟶i σ. Newly by Lemma 9, we can
suppose that σ′ � Σk1 ⊕ · · · ⊕Σks , where s � dim B,
Σki � (Vi, fi, Bi)≠ (0, 0, 0), and dimBi � 1. Put
Σk1⟶(1,0,...,0) t σ′ ⟶i σ, then j � (1, 0, . . . , 0)t° i is also an
admissible section, and therefore, we may assume without
loss that σ′ � Σk1 . On the other hand, σ � (V, f, B) verifes
itself that dim B � 1 and hence, by Lemma 7, one has
σ � ΣdimV.

Terefore, the situation we have reached is that
Σk1⟶j ΣdimV is an admissible section. Since j≠ 0, it
follows by Lemma 8 that k1 ≥ dimV. On the other hand,

every functor preserves sections, then G(j): V1⟶ V is
a section and therefore k1 � dimV1 ≤ dimV. Consequently,
k1 � dimV and newly by Lemma 8, because of j≠ 0, one has
that σ′ � Σk1 � ΣdimV � σ and that σ is simple because every
nonzero subsystem of σ must be isomorphic to σ

Now, the next paragraphs are devoted to prove the re-
sults we used above. □

Defnition 6. (canonical controller form). A linear system
σ � (V, f, B), where dimB � 1 is called a single-input sys-
tem. Te linear system Σn � (Kn, Jn(0), [e1]), where Jn(0) is
the Jordan block of size n and eigenvalue 0, and [e1] � 〈e1〉

is the subspace spanned by the frst vector of standard basis
of Kn will be called canonical controller form of size n. In
other words,

Σn � K
n
,

0 . . . . . . . . . 0

1 ⋱ ⋮

0 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 . . . 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

0

⋮

⋮

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

A classical result in control theory shows that feedback
classifcation is trivial for single-input reachable systems.
Next, we state this result in our categorical framework:

Lemma 7. Let σ � (V, f, B) be a reachable system and
dim B � 1, then σ � ΣdimV

Proof. Let B � [b]. Since σ is reachable, it follows that
V � f∗(B) � b + fb + · · · + fn− 1b, and hence
b, fb, . . . , fn− 1b􏼈 􏼉 is a basis of Kn. Let
α0 + α1z + · · · + αn− 1z

n− 1 + zn be the characteristic poly-
nomial of f. Now, consider the basis of V given by the
following equation:

B � b, fb − αn− 1b, f
2
b − αn− 1fb − αn− 2b . . . , f

n− 1
b − αn− 1f

n− 2
b − · · · − α1b􏽮 􏽯. (5)

Ten, linear system σ is written in above basis B as
follows:

σ′ � K
n
, A
′
, e1􏼂 􏼃􏼒 􏼓 � K

n
,

− a1 − a2 · · · − an− 1 − an

1 0 · · · 0

0 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 · · · 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

0

⋮

⋮

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

which is feedback isomorphic to Σn by means of identity
morphism because im(A′ − Jn(0))⊆[e1].
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Morphisms between single-input reachable systems are
studied in [29]. Te dimension of the vector space of
feedback morphisms between two single-input reachable
systems is computed as follows: □

Lemma 8 (see [29], 6.3.). Te dimension of the space of
feedback morphisms between canonical controller forms is as
follows:

dim hom Σn,Σm( 􏼁( 􏼁 �

0 if n<m,

1 if n � m,

n − m + 1 if n>m.

⎧⎪⎪⎨

⎪⎪⎩
(7)

Proof. Let a: Σn � (Kn, Jn(0), [e1])⟶ (Km, Jm(0), [ε1]) �

Σm be any feedback morphism. Consider A � (aij) ∈ Km×n

the matrix of G(a) in the standard bases ej􏽮 􏽯 and εi􏼈 􏼉. Since
a is a feedback morphism, it follows:

(1) Ae1 ∈ [ε1] and therefore a21 � · · · � am1 � 0
(2) AJn(0) − Jm(0)A ⊂ [ε1] and therefore

(i) aij � ai+1,j+1 for all 1≤ i≤m − 1 and all
1≤ j≤ n − 1

(ii) a1n � · · · � am− 1,n � 0

Now consider the abovementioned restrictions in the
three cases:

(n>m): from (i), we have that A is on the form

A �

a11 am,m+1 am,m+2 . . . amn am− 1,n . . . a1n

a21 a11 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ am− 1,n

am1 . . . a21 a11 am,m+1 am,m+2 . . . amn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8)

Now, from (i) and (ii), we have that matrix

A �

a11 am,m+1 am,m+2 . . . amn 0 . . . 0

0 a11 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . 0 a11 am,m+1 am,m+2 . . . amn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(9)

depends exactly on n − m + 1 free parameters (n � m).
In these case restrictions, (i) and (ii) yield that A is on the

form

A �

a11 0 . . . 0

0 a11 ⋱ ⋮

⋮ ⋱ ⋱ 0

0 . . . 0 a11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

(n<m). Finally in this case, the restrictions yield that the
only possibility is A � (0).

Te standard decomposition result on reachable linear
systems is the Brunovsky’s theorem [12]. Te result in our
categorical setting is as follows. □

Lemma 9. (Brunovsky’s theorem). Let σ � (V, f, B) be
a reachable linear system (in AK) and set n � dimV. Ten,
there exists a partition κ1 + · · · + κp � n of integer n such that
σ � Σκ1 ⊕ · · · ⊕Σκp

Proof. By recursion in n, consider a nonzero vector v1 ∈ B

and linear system σ1 � (f∗([v1]), f, [v1]). Natural inclusion
ι1: f∗([v1])⟶ V gives raise to an exact sequence in AK

σ1 � f
∗

v
→

1􏽨 􏽩􏼐 􏼑, f, v
→

1􏽨 􏽩􏼐 􏼑⟶
i

σ⟶
p V

f
∗

v1􏼂 􏼃( 􏼁
, f, G(p)(B)􏼠 􏼡.

(11)

Now, σ � σ1 ⊕ (V/f∗([v1]), f, G(p)(B)). System
(V/f∗([v1]), f, G(p)(B)) is reachable, and note that
dim(V/f∗([v1]))< n. Hence, by recursion, σ � σ1 ⊕ · · · ⊕ σp

where all σi are in AK.
Because dim[vi] � 1, it follows by Lemma 7 that every

system σi � (Vi, f, [vi]) is isomorphic to a system on the
form Σκi . Tis concludes the proof. □

4. Conclusion

Te category AK of linear systems over vector spaces and
feedback actions is studied. Te parallel gathering ⊕ of
linear systems is biproduct and thus category (AK, ⊕ ) is
additive and has the minimal natural exact structure Emin
given by split exact sequences. Single-input systems are
shown to be the simple objects in (AK,Emin), and on the
other hand, every object is a parallel gathering of simple
objects. Tus, the following result is obtained.

Corollary 1 . Category AK is object semisimple, i.e., every
nonzero object is isomorphic to a fnite biproduct of simple
objects.

Because category AK is not balanced, it follows that it
is not abelian and a fortiori and it is not abelian semi-
simple, that is to say, though simple systems are bricks in
the sense of Enomoto’s article ([28], Defnition 2.1), the
second statement of Schur’s lemma does not hold in AK

because morphisms between nonisomorphic bricks are
not zero. Note for instance that dim  homAK

(Σ2,Σ1) � 2,
thus we do not have a matrix-like representation for
morphisms of linear systems, at least in the sense of
Schur’s lemma.

To conclude, we would like to point out some lines of
further work. It is known that categories of linear systems
have cokernels ([29], Teorem 3.4.) and that it is con-
jectured that categories of linear systems have kernels as
well. First task is to compute efectively kernels of feed-
back morphisms. Once this is fulflled, the category would
be proven to be preabelian ([27], Defnition 2.5.), and
because every feedback morphism would have kernel and
cokernel, it follows that image and coimage of every
feedback morphism are obtained.

Te second task is to check that canonical morphism
from the coimage to the image of a feedback morphism is
always a bimorphism. We conjecture that this is true and
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hence categories of linear systems are semiabelian ([27],
Defnition 2.5.) ([26], 4.10).

Even more, we conjectured that kernels and cokernels
are stable ([26], Defnition 4.1.). Hence, because kernels and
cokernels are stable in AK, it would follow by Schneiders’
result ([26], Proposition 4.4.) ([30], 1.1.7.) that the class of all
kernel-cokernel pairs is the maximal and thus the natural,
exact structure on AK. Te third task is to prove the former
and to show that our decomposition results are also the
decomposition results taking the natural exact structure.
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M. V. Carriegos, “On the state approach representations of
convolutional codes over rings of modular integers,” Math-
ematics, vol. 9, no. 22, p. 2962, 2021.

[8] J. M. Muñoz Porras and J. I. Iglesias Curto, “Classifcation of
convolutional codes,” Linear Algebra and Its Applications,
vol. 432, no. 10, pp. 2701–2725, 2010.

[9] V. Herranz, D. Napp, and C. Perea, “Serial concatenation of
a block code and a 2d convolutional code,” Multidimensional
Systems and Signal Processing, vol. 30, no. 3, pp. 1113–1127,
2019.

[10] D. Napp, R. Pinto, and C. Rocha, “State representations of
convolutional codes over a fnite ring,” Linear Algebra and Its
Applications, vol. 640, pp. 48–66, 2022.

[11] R. E. Kalman, “Kronecker invariants and feedback,” in Or-
dinary Diferential EquationsAcademic Press, Cambridge,
MA, USA, 1972.

[12] P. A. Brunovsky, “A classifcation of linear controllable sys-
tems,” Kibernetika, vol. 3, 1970.
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