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Abstract: Chestnut and chestnut byproducts are of worldwide interest, so there is a constant need to
develop faster and more accurate monitoring techniques. Recent advances in simultaneous localiza-
tion and mapping (SLAM) algorithms and user accessibility have led to increased use of handheld
mobile laser scanning (HHLS) in precision agriculture. We propose a tree growth monitoring method-
ology, based on HHLS point cloud processing, that calculates the length of branches through spatial
discretization of the point cloud for each tree. The methodology was tested by comparing two point
clouds collected almost simultaneously for each of a set of sweet chestnut trees. The results obtained
indicated that our HHLS method was reliable and accurate in efficiently monitoring sweet chestnut
tree growth. The same methodology was used to calculate the growth of the same set of trees over
37 weeks (from spring to winter). Differences in week 0 and week 37 scans showed an approxi-
mate mean growth of 0.22 m, with a standard deviation of around 0.16 m reflecting heterogeneous
tree growth.

Keywords: sweet chestnut; MLS; SLAM; 3-D point cloud; tree growth monitoring

1. Introduction

Sweet chestnut (Castanea sativa Mil.) coppices and orchards have been managed for
their economic value by humans worldwide, and especially in Europe [1,2]. Both wood and
nut products may be affected by abiotic and biotic problems; the most important threats
to chestnut orchards in recent years include the Asian chestnut gall wasp (Dryocosmus
kuriphilus Yasumatsu), ink disease (Phytophthora cinnamomi), and chestnut blight (Cryphonec-
tria parasitica). Climate change also affects the proper development of chestnut trees, as it
accelerates the expansion of pests and the emergence of other pathogens [3,4].

An interest in woody crops and the consolidation of remote sensing techniques as
a non-destructive data collection method have contributed to the development of pre-
cision agriculture [5]. Active and passive remote sensors have been successfully used
for vegetation monitoring, for purposes such as species classification, health status, and
tree allometry assessment. Light detection and ranging (LiDAR) techniques have been
demonstrated to be an efficient and accurate method for distinguishing between trees
and vegetation in urban environments [6,7]. Spectral imaging and LiDAR data have been
combined to identity woody crop species [8] in different kinds of orchards, including sweet
chestnut. Padua et al. [9] used spectral images captured by unmanned aerial vehicles
(UAVs) to assess chestnut health status, while Rivera et al. [5] reviewed the use of LIDAR
data for health monitoring in other woody crops. In the context of agriculture, lands as
habitats for wildlife species, Sdnchez-Diaz et al. [10] have used LiDAR to calculate cocoa
plantation height.
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The use of LiDAR data, especially from ground-based laser scanning
platforms—terrestrial laser scanning (TLS), handheld laser scanning (HHLS), and mo-
bile laser scanning (MLS)—has acquired significant prominence in forestry applications,
particularly in the context of wood production monitoring [11,12]. This technology, by
allowing for the precise and efficient measurement of forest resources, contributes to sus-
tainable forest management practices. Ground-based laser scanning creates detailed and
realistic three-dimensional representations of the forest environment, capturing accurate
data on tree size, structure, and density. This information aids forestry professionals in the
identification of optimal harvesting areas, tree growth patterns, and overall forest health.
There is a large body of research that highlights the advantages of ground-based laser
scanning in comparison to traditional field methods for forest inventory, mensuration,
and monitoring. In providing high-resolution spatially explicit data, ground-based laser
scanning is becoming established in precision forest inventory as a non-destructive but
reliable means of characterizing crop structures and geometry. TLS, in particular, has been
used by Schindler et al. [13] and Wang et al. [14] to analyze walnut tree allometry and fruit
location, respectively, by Schindler et al. [15] to estimate tree parameters in a wild cherry
agroforestry system, and by Torres-Sanchez et al. [16] to estimate tree crown parameters
and characterize pear and peach orchards geometries.

Remote sensing techniques have been specifically tested in chestnut orchards using
different scales and platforms. Alonso et al. [17] used satellite images and low-density
LiDAR to identify trees and estimate their heights. UAV imagery has been used for health
monitoring and nutritional deficiency identification and even to calculate biomass in non-
regular chestnut orchards [9]. High-resolution UAV images have automatically identified
chestnut fruits and estimated production and yield [18]. HHLS has also very recently been
used by Balestra et al. [19] to model monumental chestnut trees. MLS, based on HHLS with
an integrated simultaneous localization and mapping (SLAM) algorithm, offers exceptional
flexibility and mobility, overcoming some problems associated with the use of multi-scan
TLS methods. However, the downside of MLS compared to TLS lies in its limited accuracy
and the presence of noise [20,21].

Some research describes methods for analyzing tree growth from TLS point clouds,
focusing on specific parameters, such as stem diameters [22,23], where the full-potential
geometric coherence and accuracy inherent to TLS point clouds are used. However, mainly
due to the aforementioned lower accuracy and higher presence of noise, as far as we are
aware, there is a research gap in the methods that use MLS point clouds for analyzing
tree growth.

The main objective of this work is to provide an efficient and easy-to-implement
HHLS-based methodology for monitoring individual tree growth in chestnut orchards,
based on comparing point clouds from different epochs. Specifically, the proposed method-
ology simplifies the comparison by using distance images obtained after discretizing the
point clouds.

2. Materials and Methods
2.1. Study Site and MLS Data Acquisition

The methodology was validated in a 1.4 ha sweet chestnut orchard located in north-
western Spain, specifically in Robledo de las Traviesas (El Bierzo, Castilla y Leon; Figure 1a).
Due to infestation, a field campaign, including HHLS measurements, was implemented to
control the health status of 64 trees of the same variety and age.
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Figure 1. (a): Location map of the study area (42°4227.65" N, 6°26/13.54"" W; WGS84); (b): A chestnut
tree in the plantation; (c,d): Data acquisition using the GeoSLAM ZEB Horizon.

Data were collected with a GeoSLAM ZEB Horizon (GeoSLAM Ltd., Nottingham,
UK; Figure 1c,d), which integrates a 16-laser-beam Velodyne Puck LITE sensor (Velodyne
LiDAR Inc., San Jose, CA, USA). Its field of view, 360° x 270°, captures points at a rate
of up to 300,000 points per second. Working over a range of 10 m, the scanner has an
accuracy of 0.01-0.03 m. The horizontal and vertical angular resolutions are 0.2° and 2°,
respectively. These technical characteristics, together with the speed and simplicity in data
collection (the scanner weighs only 1.45 kg), as well as the size of the orchard, make this
equipment ideal for this specific work compared to other systems such TLS or LiDAR
drone. TLS systems provide more accurate measurements but at the cost of more expensive
equipment and much slower data collection. For its part, LIDAR drone systems also require
more expensive equipment, greater experience in data collection, and have limitations in
obtaining points in the lateral and lower areas of the treetops.

The software suite provided with the scanner, GeoSLAM hub 6.2.1 (GeoSLAM Ltd.,
Nottingham, UK), uses a SLAM implementation that allows the generation of coherent point
clouds in a common Cartesian coordinate system. In order to bring extra robustness, data
collection trajectories were defined with the support of ground control points georeferenced
in the field using the Global Navigation Satellite System (GNSS). In addition, to minimize
the drift in the scans associated with SLAM uncertainties, the trajectories were designed
taking into account their length, the duration of the measurement, and the presence of
enough anchor features to create a coherent point cloud.

To assess growth over a complete season (37 weeks), 3 HHLS scans were taken in
leaf-off conditions: Scan 1 and Scan 2 just before the beginning of the growing season (6
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May 2022), and Scan 3 once the trees had shed their leaves in winter (24 January 2023).
Scans 1 and 2, taken the same day, were used to validate our methodology.

Using CloudCompare software 2.12.4 [24], the three point clouds were denoised and
segmented to extract the trees, obtaining point clouds of individual trees. The average
density of these point clouds was ~3200 points/m?.

2.2. Tree Point Cloud Processing

Our method is based on a geometric conception of the studied trees, resembling a
radial spherical structure. In this model, branch growth is simplified by being quantified
longitudinally in the direction the branches diverge from a central point. This allows for
a more streamlined analysis of tree growth, as it focuses on the primary growth vectors
of the branches as they extend outward. By reducing the complex structure of the tree to
a more manageable spherical model, we can more effectively measure and understand
growth patterns, and particularly how the branches evolve over time in relation to the tree’s
central mass. The methodology automatically identifies the branch ends, by calculating, for
each tree, radial distances from a central point C; (i =1, .. ., n), where n is the number of
trees (Figure 2). Those central points correspond to the locations where the trunk begins
to divide into branches. The method was implemented in Python code v 3.9.12 [25], with
individual tree point clouds and their corresponding center points (C;) as inputs.

MLS data acquisition and pre-processing
Scan 1 Scan 2 Scan 3
(T1) (T2~T1) (T3>T1)

Input data
- tree point clouds
- tree centers

1. Coordinate system transformation

XY, Z]> [, 6, ¢]

2. Radial distance calculation
radial distance matrices extremes of branches

3. Growth calculation
difference between radial distance matrices
Scan 3 - Scan 1 = Growth estimation

Figure 2. Tree growth monitoring workflow. HHLS data acquisition and pre-processing (up-
per blue section), where T1, T2, and T3 refer to the time of each scan, and growth monitoring
steps (lower section): 1. Coordinate system transformation; 2. Radial distance calculation; and
3. Growth calculation.

As depicted in the flowchart in Figure 2, the procedure has 3 main steps:

1.  Transformation of the tree point clouds from Cartesian to polar coordinates with an
origin in the center of mass of each tree. As explained above, this transformation
allows to leverage the radial structure of the branches to estimate their length.

2. Point cloud discretization in radial sections to calculate branch length. This discretiza-
tion makes it easier to detect the ends of the branches.

3. Comparison of branch ends measured on two different dates to estimate tree growth
over time. In essence, the comparison is carried out by subtracting matrices whose
elements are distances to the central point.

2.2.1. Radial Distance and Branch End Estimation

For a set of individual tree point clouds and centers (C;), the ends of the branches
were located, and the distances to their corresponding center (C;) were calculated. Using
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Equations (1)—(3), the tree point cloud Cartesian coordinate system (X, Y, Z) was trans-
formed into a spherical coordinate system (7, 6, ¢) centered in C;. In the spherical coordinate
system, the azimuthal angle (f) and zenithal angle (¢) go from 0° to 360° and from 0° to

90°, respectively.
r=VX2+Y24+72 1)

X
0= arctan? (2)

Q= arcsin7 3)

The point cloud of each tree was discretized in solid angles delimited by specific
increments, Af and Ag, of the azimuthal and zenithal angles, respectively (Figure 3a).
Based on this discretization, a matrix was created with as many rows (j) and columns (k) as
resulted from dividing 90° (¢) and 360° (0) by their respective angular increments. After
removing possible outliers based on distance percentiles, the radial distance from C; to the
furthest point in each solid angle was calculated. Those values were stored in the position
[/, k] in the matrix (Figure 3c).

360

Figure 3. Branch ends detection and radial distance calculations. (a). A solid angle over a tree point
cloud (the coordinate system center, Ci, is indicated by the red dot), (b). The denoised point cloud
within the solid angle and its radial distance (broken red line), (c). The radial distance to the furthest
point in cell [j, k] defined by the solid angle (A6, A¢).

2.2.2. Growth Estimation

Angular increments in the azimuthal and zenithal angles (A, A¢) delimited spherical
quadrilaterals in spheres of radius r, whose size decreased with an increasing zenithal
angle (¢), as shown in Figure 4. Thereafter, the corresponding planar quadrilaterals
defining the matrices storing the radial distances were reshaped so that they all covered
the same area regardless of the zenithal angle. The reshaping was performed by joining
quadrilaterals/cells (Figures 3 and 4) in each spherical segment (S;), so the area of each
quadrilateral is equivalent to that on the horizontal segment (Sp), asin Sp = S;r cos ¢.
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Figure 4. Representation of the spherical segments (blue), with the azimuthal angle § and zenithal
angle ¢ delimiting spherical quadrilaterals (red). The spherical segment surfaces Sy and S, depend
on ¢: the surface is greatest when ¢ is close to 0° and thus Sy > S,. Accordingly, the spherical
quadrilaterals also have a surface decreasing with ¢.

As shown in Figure 5, we assume that the growth of each tree can be approximated by
the average difference between the radial distance matrices of Scan 1 and Scan 3.

0° Scan 3 360°  o° Scan 1 360° 0e Difference

O--- [ 'oO...007T...

360°

T 00 00 O
Figure 5. Procedure for calculating the growth of each tree. Growth is calculated as the average
difference between the radial distance matrices corresponding to two different dates (e.g., Scan 3 and

Scan 1). The squares, which represent elements of a matrix, store the maximum distances from the
origin of the coordinates to the ends of the branches.

3. Results and Discussion
3.1. Validation

In our study, as explained in Section 2.1, we employed a specific methodology that
hinges on comparing two scans taken under identical conditions on the same day. This
approach is crucial because it allows us to attribute any observed differences exclusively to
the measurement system. By comparing two identical-condition scans, we aim to evaluate
the precision of our measurement system. Ideally, in a scenario where the scans are perfectly
aligned, the difference should be zero. Consequently, we expect our metrics—mean error
(ME), mean absolute error (MAE), and standard deviation (SD) of the means—to closely
approximate zero, indicating minimal to no differences between scans.

Table 1 presents these metrics: ME represents the bias in our methodology, MAE
quantifies the magnitude of distance errors without considering their direction, and SD
(o) measures the dispersion of tree growth variations within the orchard. These statistics
collectively indicate that the method is unbiased, and that error is negligible, as it falls
within the scanner’s accuracy range (0.01-0.03 m). Furthermore, the fact that the SD of
the differences in radial distances is consistent across various resolutions confirms the
reliability and precision of our measurement technique within the defined accuracy limits.
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Table 1. Analysis of discrepancies between Scans 1 and 2 at different resolutions (angle increments).
Resolution is expressed in degrees. ME and MAE are the mean error and the mean absolute error
of the distances, respectively, and o is the standard deviation of the mean differences in distances
between Scans 1 and 2.

Res‘é};‘“"“ 0.5 1 2 3 5 7.5 10 15 20
ME (m) —0.007 —0.022 —0.027 —0.020 —0.009 0.002 0.005 0.008 0.007
MAE (m) 0.026 0.033 0.034 0.029 0.022 0.021 0.022 0.023 0.022
o (m) 0.033 0.034 0.031 0.027 0.027 0.029 0.027 0.029 0.028

Regarding the effect of the resolution, it can be seen from Table 1 that there are hardly
any differences in the estimates of mean tree growth, indicating no clear criterion for an
optimal resolution value. However, lower resolutions (corresponding to quadrilaterals with
shorter sides) would not be appropriate, and nor would higher resolutions be advisable,
since there could be several branches in the same quadrilateral. Therefore, intermediate
resolutions were considered to be the most appropriate. Thus, for resolutions of 3° or 5°,
the side of the quadrilateral at a distance of 1.5 m (approximately the maximum branch
length) would be about 8 cm and 13 cm, respectively, which would seem to be reasonable
values to estimate branch growth.

3.2. Growth Analysis

The validation analysis confirmed that the proposed methodology was well suited
for estimating tree growth over time, since the analysis of the differences between scans
performed almost simultaneously and under identical conditions, measured by ME, MAE,
and SD statistics, led to consistent growth values very close to zero, as expected. Then, we
can state that our method is able to estimate differences between branches in two scans that
are within the precision of the data and that there is not a significant bias due to systematic
errors that could lead to erroneous estimates of tree growth.

Accordingly, growth from spring to winter (Scan 1 to Scan 3), for the 64 individual trees,
was analyzed at different resolutions. Applying the automatic algorithm, the radial distance
in each angular sector from tree center to the furthest point was calculated (represented
as 18 rows and 72 columns, equal to 1296 cells/pixels), and branch ends were identified
in the point clouds. Figure 6 shows the radial distances calculated for a resolution of 5°
as an image composed of 1296 cells/pixels (18 x 72). As can be seen, for 0° < ¢ > 20°,
it is difficult to find points in the cloud. Progressively darker red tones correspond to
progressively larger branches, a distribution due to tree crown shape repeated in all the
trees (see Figure 6).

D Scan 1 Scan 3 o k&
2 . E
5 80 s 20
g &0 ]
= E
& T |t
N0+ . T ; T ; 1 . . - . : : i g
-0 €0 120 180 240 300 30 0 60 120 180 240 300 360 9
@ M | tos

@ : azimuthal angle (°)
0.0

Figure 6. Radial distance matrices for Scan 1 and Scan 3 displayed as images. Radial distance is
represented in meters, and azimuthal () and zenithal (¢) angles in degrees.
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Figure 7, which depicts the branch extremes for Scan 1 (yellow) and Scan 3 (purple),
clearly indicates tree growth, reflected in Scan 3 branch ends extending further from the
center than Scan 1 branch ends.

7 4

Lox

e

Extremes of branches (Scan 1)
Extremes of branches (Scan 3)

® Tree (Scan 1)

@ Origin of the coordinate system (C;)

Figure 7. Scan 1 and Scan 3 branch ends represented on a tree point cloud (Scan 1 as reference). The
red dot represents the coordinate system center (C;) from where the radial distances were calculated.

Growth was calculated for each tree as the difference between images for Scan 3 and
Scan 1. The result for an individual tree, again for a resolution of 5°, is shown in Figure 8.
The image, composed of 1296 cells/pixels (18 x 72), graphically represents how growth
varies across the spherical coordinate system. For a growth up to 0.5 m, we can see that the
higher growth rates are located below 60° (zenithal angle).

05
> Difference scan 3 — scan 1 04 &
Y o
e 2
03 «

T 60 A

- { . E
=] N Ly 5 - 8 - =
g - “&-‘.' ":‘:: [ \b{ "-\ .‘.?'.. "P > .';;’ - 8 "‘t ‘é
g 2?)..0'-:-"“ e oy 1")L" T ;.—- . 0.2 e
N : - . C ] 3
g 0 60 120 180 240 300 %0 |1y, %
¢ : azimuthal angle (°) ©

0.0

Figure 8. Scan 1 and Scan 3 radial distance differences represented as an image, reflecting tree growth
over 37 weeks (spring to winter).
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Table 2 shows the mean growth for all the trees, as well as the mean SD, calculated as
the difference between the Scan 3 and Scan 1 images. Note that the values of both statistics
are quite similar at different resolutions. The SD is quite high compared to the mean, due

to heterogenous tree/branch growth, ranging between no growth and average growth of
about 50 cm.

Table 2. Mean () and standard deviation (¢) in the entire orchard obtained comparing Scan 1 and
Scan 3 at different resolutions.

Res‘(’f};‘twn 0.5 1 2 3 5 7.5 10 15 20
1 (m) 0.172 0.179 0.205 0.222 0.234 0.226 0.216 0.206 0.227
o (m) 0.130 0.145 0.163 0.161 0.148 0.132 0.121 0.115 0.124

Figure 9 shows probability density functions for the difference in distances between
Scan 2 and Scan 1 (blue curve), and between Scan 3 and Scan 1 (orange curve). The fact
that the blue curve is centered around 0, as expected, while the orange curve is shifted to
the right, indicates tree growth over time. The SD also increased over time, as expected,
given that not all the trees have the same growth rate.

0.08 1

0.06 1

Density

0.04 4

0.02 1

[

h

h

I
, “
[ v
H \
/ \
\

4

4

P

\
{/ \

\\

——————t
T

-1 075 -05 -025 0 025 05 075 1
Difference (m)

Difference Scan 2 — Scan1 (single trees)

Difference Scan 3 — Scan1 (single trees)
===+ Average difference Scan 2 — Scan1

Average difference Scan 3 — Scan1

Figure 9. Probability density functions of the differences in each tree and the average differences
between Scans 1 and 2 (blue curves) and Scans 1 and 3 (orange curves) over 37 weeks.

Figure 10 shows the tree scans for 12 different trees, together with the average dif-
ference calculated at a resolution of 5°. Different growth rates and how they are related
with the average difference can be easily appreciated in the different trees. As mentioned,
growth is not uniform, but can range from zero to 50 cm.



Sensors 2024, 24,1717

10 of 13

0.19 o057

Mean difference Scans 1-3

L 2m '

Figure 10. Point clouds of Scans 1, 2, and 3 (depicted using different colors) for 12 trees, plotted at the
same time, reporting mean growth for each tree (i.e., the mean difference between Scans 3 and 1).

Figure 11 represents growth in a spatially explicit way, with points colored according
to growth (difference between Scans 3 and 1).
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1.5
Figure 11. Tree growth as calculated for a reference point cloud. Scan 1, reflecting the tree at the time

of the reference scan, is indicated by green points. The colored points, ranging from blue to red (0 to
0.5 m), indicate ends of branches of different lengths.

4. Conclusions

This work describes an accurate and easily implemented non-invasive methodology
for monitoring tree growth based on an HHLS technique.

The methodology was applied to 64 chestnut trees in the same orchard. Each tree was
scanned three times in leaf-off conditions. Validating the methodology were two scans
made almost simultaneously in time, which confirmed that both mean growth and SD were
almost 0. The third scan, taken 37 weeks after the first scan, was used to estimate mean
growth for both the orchard and each tree. The results obtained reflect very heterogeneous
growth, ranging from zero to 50 cm.

Our results confirm that this method accurately estimates mean growth at the tree
level. The method can also be extended to growth estimates of specific areas of the tree
crown and even individual branches. Our results corroborate previous work that points to
the usefulness of HHLS for precision agriculture and forestry purposes, not only to estimate
stem and crown parameters but also to evaluate tree growth within agroforestry systems.
The method could also be used to monitor and evaluate the extent to which growth is
affected by infestations such as the chestnut tree wasp.

Author Contributions: Conceptualization, D.P--O., C.C. and J.R.R.-P.; methodology, C.O., C.C.
and D.P-O.; software, C.O., C.C. and D.P-O.; formal analysis, C.O., C.C., D.P-O. and J.R.R.-P;
investigation, C.C., D.P-O. and J.R.R.-P; writing—original draft preparation, D.P-O.; writing—
review and editing, ] RR.-P, C.O., C.C. and D.P-O.; supervision, ].R.R.-P. All authors have read and
agreed to the published version of the manuscript.



Sensors 2024, 24,1717 12 of 13

Funding: This work was supported by UK NERC project (NE/T001194/1): ‘Advancing 3D Fuel
Mapping for Wildfire Behaviour and Risk Mitigation Modelling” and by the Spanish Knowledge
Generation project (PID2021-126790NB-100): ‘Advancing carbon emission estimations from wildfires
applying artificial intelligence to 3D terrestrial point clouds’. This work was supported by the
company VITICAMPO, SL (grant id: 2021/00009/001; T132).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors acknowledge the assistance of Begofia Diez Alvarez and José M.
Rodriguez Gémez for providing access to chestnut trees and fieldwork support. Dimas Pereira
Obaya gratefully acknowledges financial support provided by the European Social Fund, Operational
Program of Castilla y Le6n and of the Junta de Castilla y Le6n, through the Consejeria de Educacion
(grants for pre-doctoral research 2020).

Conflicts of Interest: The authors declare no conflicts of interest. The authors declare that they
have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

1.  Guineacute:;, R.PE; Costa, C.; Florenccedila, S.G.; Correia, PM.R. A Review of the Use of Chestnut in Traditional and Innovative
Food Products. J. Nuts 2022, 14, 1-8. [CrossRef]

2. Fernandez-Cruz, J.; Miguez-Soto, B.; Fernandez-Loépez, J. Origin of Traditional Sweet Chestnut (Castanea Sativa Mill.) Varieties
from the Northwest of the Iberian Peninsula. Tree Genet. Genomes 2022, 18, 34. [CrossRef]

3. Fernandes, P; Colavolpe, M.B.; Serrazina, S.; Costa, R.L. European and American Chestnuts: An Overview of the Main Threats
and Control Efforts. Front. Plant Sci. 2022, 13, 951844. [CrossRef] [PubMed]

4. Aglietti, C.; Cappelli, A.; Andreani, A. From Chestnut Tree (Castanea sativa) to Flour and Foods: A Systematic Review of the Main
Criticalities and Control Strategies towards the Relaunch of Chestnut Production Chain. Sustainability 2022, 14, 12181. [CrossRef]

5. Rivera, G.; Porras, R.; Florencia, R.; Sanchez-Solis, ].P. LIDAR Applications in Precision Agriculture for Cultivating Crops: A
Review of Recent Advances. Comput. Electron. Agric. 2023, 207, 107737. [CrossRef]

6. Ozdemir, S.; Akbulut, Z.; Karsly, F.; Acar, H. Automatic Extraction Of Trees By Using Multiple Return Properties of The Lidar
Point Cloud. Int. J. Eng. Geosci. 2021, 6, 20-26. [CrossRef]

7. Canaz Sevgen, S.; Karsli, F. Automatic Ground Extraction For Urban Areas From Airborne Lidar Data. Turk. . Eng. 2020, 4,
113-122. [CrossRef]

8.  Ozdarici-ok, A.; Ok, A.O. Using Remote Sensing to Identify Individual Tree Species in Orchards: A Review. Sci. Hortic. 2023, 321,
112333. [CrossRef]

9. Padua, L.; Marques, P.; Martins, L.; Sousa, A.; Peres, E.; Sousa, J.J. Monitoring of Chestnut Trees Using Machine Learning
Techniques Applied to UAV-Based Multispectral Data. Remote Sens. 2020, 12, 3032. [CrossRef]

10. DIAZ, BS,; Mata-Zayas, E.E.; Gama-Campillo, L.M.; Rincon-Ramirez, J.A.; Vidal-Garcia, F.; Rullan-Silva, C.D.; Sanchez-Gutierrez,
F. Lidar Modeling to Determine the Height of Shade Canopy Tree in Cocoa Agrosystems as Available Habitat for Wildlife. Int. .
Eng. Geosci. 2022, 7, 283-293. [CrossRef]

11. Liang, X.; Kukko, A.; Balenovic, I.; Saarinen, N.; Junttila, S.; Kankare, V.; Holopainen, M.; Mokros, M.; Surovy, P.; Kaartinen,
H.; et al. Close-Range Remote Sensing of Forests: The State of the Art, Challenges, and Opportunities for Systems and Data
Acquisitions. IEEE Geosci. Remote Sens. Mag. 2022, 10, 32-71. [CrossRef]

12. Liang, X.; Hyypp4, J.; Kaartinen, H.; Lehtomadki, M.; Pyorals, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg,
J.; et al. International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories. ISPRS ]. Photogramm. Remote
Sens. 2018, 144, 137-179. [CrossRef]

13.  Schindler, Z.; Morhart, C.; Sheppard, ].P.; Frey, J.; Seifert, T. In a Nutshell: Exploring Single Tree Parameters and above-Ground
Carbon Sequestration Potential of Common Walnut (Juglans regia L.) in Agroforestry Systems. Agrofor. Syst. 2023, 97, 1007-1024.
[CrossRef]

14. Wang, Y.-T.; Bailey, B.N.; Fu, K.; Shackel, K. Topological and Spatial Analysis of Within-Tree Fruiting Characteristics for Walnut
Trees. Sci. Hortic. 2023, 318, 112127. [CrossRef]

15.  Schindler, Z.; Seifert, T.; Sheppard, ].P.; Morhart, C. Allometric Models for Above-Ground Biomass, Carbon and Nutrient Content
of Wild Cherry (Prunus avium L.) Trees in Agroforestry Systems. Ann. For. Sci. 2023, 80, 28. [CrossRef]

16. Torres-Sanchez, J.; Escola, A.; Isabel de Castro, A.; Lopez-Granados, F.; Rosell-Polo, ].R.; Sebé, F.; Manuel Jiménez-Brenes, F.;

Sanz, R.; Gregorio, E.; Pefia, ].M. Mobile Terrestrial Laser Scanner vs. UAV Photogrammetry to Estimate Woody Crop Canopy
Parameters—Part 2: Comparison for Different Crops and Training Systems. Comput. Electron. Agric. 2023, 212, 108083. [CrossRef]


https://doi.org/10.22034/jon.2022.1953486.1155
https://doi.org/10.1007/s11295-022-01564-9
https://doi.org/10.3389/fpls.2022.951844
https://www.ncbi.nlm.nih.gov/pubmed/36092400
https://doi.org/10.3390/su141912181
https://doi.org/10.1016/j.compag.2023.107737
https://doi.org/10.26833/ijeg.668352
https://doi.org/10.31127/tuje.641501
https://doi.org/10.1016/j.scienta.2023.112333
https://doi.org/10.3390/rs12183032
https://doi.org/10.26833/ijeg.978990
https://doi.org/10.1109/MGRS.2022.3168135
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1007/s10457-023-00844-0
https://doi.org/10.1016/j.scienta.2023.112127
https://doi.org/10.1186/s13595-023-01196-6
https://doi.org/10.1016/j.compag.2023.108083

Sensors 2024, 24,1717 13 of 13

17.

18.

19.

20.

21.

22.

23.

24.
25.

Alonso, L.; Picos, J.; Bastos, G.; Armesto, J. Detection of Very Small Tree Plantations and Tree-Level Characterization Using
Open-Access Remote-Sensing Databases. Remote Sens. 2020, 12, 2276. [CrossRef]

Arakawa, T.; Tanaka, T.S.T.; Kamio, S. Detection of On-Tree Chestnut Fruits Using Deep Learning and RGB UAV Imagery for
Estimation of Yield and Fruit Load. Agron. J. 2023. [CrossRef]

Balestra, M.; Tonelli, E.; Vitali, A.; Urbinati, C.; Frontoni, E.; Pierdicca, R. Geomatic Data Fusion for 3D Tree Modeling: The Case
Study of Monumental Chestnut Trees. Remote Sens. 2023, 15, 2197. [CrossRef]

Mokros, M.; Mikita, T.; Singh, A.; Tomastik, J.; Chuda, J.; Wezyk, P,; Kuzelka, K.; Surovy, P; Klimanek, M.; Zieba-Kulawik, K,;
et al. Novel Low-Cost Mobile Mapping Systems for Forest Inventories as Terrestrial Laser Scanning Alternatives. Int. J. Appl.
Earth Obs. Geoinf. 2021, 104, 102512. [CrossRef]

Spadavecchia, C.; Belcore, E.; Grasso, N.; Piras, M. A fully automatic forest parameters extraction at single-tree level: A comparison
of mls and tls applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1-W1-2023, 457—-463. [CrossRef]
Yrttimaa, T.; Junttila, S.; Luoma, V.; Calders, K.; Kankare, V.; Saarinen, N.; Kukko, A.; Holopainen, M.; Hyypp4, J.; Vastaranta, M.
Capturing Seasonal Radial Growth of Boreal Trees with Terrestrial Laser Scanning. For. Ecol. Manag. 2023, 529, 120733. [CrossRef]
Yrttimaa, T.; Luoma, V.; Saarinen, N.; Kankare, V.; Junttila, S.; Holopainen, M.; Hyypp4, J.; Vastaranta, M. Exploring Tree Growth
Allometry Using Two-Date Terrestrial Laser Scanning. For. Ecol. Manag. 2022, 518, 120303. [CrossRef]

CloudCompare. 2022. Available online: https:/ /www.danielgm.net/cc/release/ (accessed on 21 December 2023).

Python. 2023. Available online: https://www.python.org (accessed on 23 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/rs12142276
https://doi.org/10.1002/agj2.21330
https://doi.org/10.3390/rs15082197
https://doi.org/10.1016/j.jag.2021.102512
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-457-2023
https://doi.org/10.1016/j.foreco.2022.120733
https://doi.org/10.1016/j.foreco.2022.120303
https://www.danielgm.net/cc/release/
https://www.python.org

	Introduction 
	Materials and Methods 
	Study Site and MLS Data Acquisition 
	Tree Point Cloud Processing 
	Radial Distance and Branch End Estimation 
	Growth Estimation 


	Results and Discussion 
	Validation 
	Growth Analysis 

	Conclusions 
	References

