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A B S T R A C T

Traditional microscope imaging techniques are unable to retrieve the complete dynamic range of a diatom
species with complex silica-based cell walls and multi-scale patterns. In order to extract details from the
diatom, multi-exposure images are captured at variable exposure settings using microscopy techniques. A recent
innovation shows that image fusion overcomes the limitations of standard digital cameras to capture details
from high dynamic range scene or specimen photographed using microscopy imaging techniques. In this paper,
we present a cell-region sensitive exposure fusion (CS-EF) approach to produce well-exposed fused images that
can be presented directly on conventional display devices. The ambition is to preserve details in poorly and
brightly illuminated regions of 3-D transparent diatom shells. The aforesaid objective is achieved by taking
into account local information measures, which select well-exposed regions across input exposures. In addition,
a modified histogram equalization is introduced to improve uniformity of input multi-exposure image prior
to fusion. Quantitative and qualitative assessment of proposed fusion results reveal better performance than
several state-of-the-art algorithms that substantiate the method’s validity.
1. Introduction

Diatoms are recognized as vital in the functioning of the ecosystem
for the various ecological services they offer, such as CO2 sequestration,
O2 production and silica cycling [1]. Freshwater covers only 0.78 per-
cent of the Earth’s surface, while marine ecosystems span three-quarters
of it. Diatoms are crucial micro-organisms that have distinct biological
characteristics to ensure the health of any aquatic ecosystem. They
can be sensitive ecosystem change sentinels because of their brief life
cycles, which allow them to adapt quickly to their environment. Apart
from these features, the fossils on the glass cell walls are marketed as
diatomite and have direct commercial worth in various fields such as
nutraceuticals, pharmaceuticals and renewal biofuels. Diatom research
continues to attract the interest of both basic and applied researchers
due to its wide range of applications.

Diatoms may be considered as a fascinating natural work of art,
but their study involves careful examination of several delicate micro-
structures that are scarcely noticeable using low magnification tech-
niques. Diatom sensitivity to environmental parameters means that
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they can be used for the detection of changes in water quality, as
well as to obtain information on ecological status, on an infinitely
more subtle scale than would be obtained using conventional water
chemistry techniques. Other application areas of diatom research are
forensic science and oil exploration. All of these applications necessitate
counting and identifying the various species present in the sample
of interest. Complete data is therefore obtained from the specimen
before automated identification [2]. Our objective in this paper is to
describe a framework for multi-exposure image fusion based detail
preservation. Modern optical microscopes can automatically capture
and analyze specimen images in order to produce the best possible
sample image. Diatoms are microscopic algae, and are classified based
on shell contour patterns and pores, called striae. Because diatoms
appear in such a broad variety of forms and structures, bright field and
dark field microscopy can capture more than one picture with vital and
valuable information. A sequence of photographs at variable exposure
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levels are taken to capture more details. In this case, the concept of
image fusion comes into play.

Nonlinear mapping is used by a digital camera with electronic
picture array which determines how scene radiance is converted into
pixel value in the image captured by the digital microscope. In the early
days of photography, photo-sensitive film was used to capture lumi-
nance variations present in the scene. In 1947, the experimental setup
for the creation of the latent picture was performed primarily in the
Kodak Research Laboratories at Rochester and Harrow. An overview
of the reactions of the photochemistry of silver halide is presented
in [3]. Image processing methods are applied on microscopy images to
visualize fine features in the specimen. A post-processing step towards
enhancing local contrast was carried out in [4]. Such work highlighted
the use of simple averaging filter on atomic force microscopy (AFM).
Various topographical features were visible in the processed image. In
another approach, low rank denoising was proposed to enhance atomic
resolution imaging which improved the signal to noise ratios in the
processed images [5]. In general, the proposed image fusion method
is utilized to boost local contrast while reducing noise in the fused
image. It helps to retain important features present in the specimen
under observation.

High Dynamic Range (HDR) image encoding comes into play when
full range of color and luminance values need to be captured. HDR laser
scanning microscope produces a single image that is correctly exposed
in both dark and light areas [6]. For real world imaging, Debevec and
Malik [7] used a quadratic objective function based on least square
error to recover smooth and monotonic response. In order to exclude
pixel values that are saturated, a weighting function is used to provide
more significance to input images with pixel values in the center of
the function. Single-precision floating point values are used to encode
recovered radiance map. The approach proposed by Mitsunaga and Na-
yar [8] utilizes polynomial approximation for their response function.
This technique is suitable for low-cost consumer equipment. Several
tone-mapping methods have been developed in the literature to convert
real-world luminances into display luminances and meet the growing
demand for displaying HDR data on conventional display devices. To
achieve visually plausible results, most tone mapping techniques utilize
photoreceptor adaptation [9]. The local light adaptation attribute of the
Human Visual System (HVS) was implemented by a local operator to
be in accordance with an observer’s visual perception while seeing an
input image, whereas a global operator is spatially invariant and less
effective than a local operator.

Diatoms play a crucial function in the water quality monitoring
process, and show nano- and micro-patterns. Due to the great diver-
sity of species, manual analysis is impractical. Digital microscopes
have been developed to investigate complicated patterns and to aid
in the automatic examination and categorization of various specimens.
Researchers have developed different imaging technologies for cell
structure characterization [10]. When a specimen is illuminated and
photographed using a digital microscope, only a small amount of ap-
parent contrast and light is fully revealed from transparent cell walls of
diatom [11]. Regions that are poorly illuminated in this case may seem
underexposed whereas regions that are brightly illuminated may seem
over exposed [12]. Therefore, in most situations, the whole luminance
spectrum cannot be captured with one single shot. For this purpose, the
specimen has to be photographed at various illumination levels to deal
with the full spectrum of luminance variations. Singh et al. [13] per-
formed multi-exposure image fusion for microscopic image data sets.
This method utilizes the Weighted Least Squares (WLS) optimization
technique for weighted average fusion. Multi-exposure image fusion has
been proposed as a way to improve the contours and ornamentation
features of diatom species. Recently, a new tonemapping method based
on the Nonsubsampled contourlet transform (NSCT) was proposed to
analyze multi-scale patterns in HDR images of diatom shells. [14]. For
these reasons, the perfect combination of lighting and exposure values
2

was discussed by Sánchez et al. [15]. Because the detailed structure
and ornamentation of frustules serves as the basis for diatom species
classification, programmable lighting techniques and fusion are critical.

The exposure fusion is the alternative solution to HDR which fuses
multi-exposure images into a single image. Over the years, various
approaches to weighted average exposure fusion have been proposed.
Among these, guided image filtering (GIF) [16] based on two-scale
decomposition [17], global optimization using Generalized Random
Walks (GRW) for fusion [18], fast exposure fusion (FEF) based on
median filtering and recursive filtering (FEF) [19] approaches produce
fusion results with better quality.

Orgden et al. [20] suggested an approach for the fusion of images
based on pyramidal decomposition. The pyramidal decomposition is a
multi-resolution drawing pad at increasingly fine precision to fill in
the local spatial information. The Laplacian pyramid decomposes the
input picture into separate spatial bands that are known to retain local
spatial information as band-pass images [21]. Another multi-resolution
fusion technique uses an input picture gradient map to generate a fused
image with true information [22]. In such approach, the horizontal and
vertical gradient maps are utilized to generate fused gradient maps. In
the reconstruction process, this gradient fusion technique is based on
the use of Discrete Wavelet Transform (DWT) and Quadrature Mirror
Filters (QMFs).

Mertens et al. [23] suggested the Exposure Fusion (EF) technique
utilizing a multi-resolution approach [21] without expanding the fused
image’s DR and tone-mapping. A multi-resolution approach was used
in this process to merge input images, which is dependent on standard
measurements such as saturation and contrast. Moreover, it was pro-
posed that a flash picture could be included in a series of exposures to
improve details in the fused image [23]. The efficiency of this multi-
scale method depends on the amount of stages of decomposition, that
is, the height of the pyramid. Bigger images would have to be processed
in a higher number of pyramid levels than smaller images for better
performance.

Compared to other established methods for exposure fusion, Kotwal
and Chaudhuri [24] suggested a modern fusion alternative in which
optimization techniques are used as an attempt to approximate the
best matting feasible, which serves as weight for the purpose of fusion.
Throughout this approach, a multi-objective cost function is built and
uses the variational method to provide an iterative solution. At each
iteration the matte is adaptively extracted from the data and the
accompanying picture fused. Raman and Chaudhuri [25] published
another matte-less approach, which used unconstrained optimization
problems for the collection of locally high contrast pixels. In this paper,
the use of a local information measure to regulate the details in the final
fused image is described.

2. Problem formulation

The proposed multi-exposure image fusion approach is intended
to take into consideration well-exposed portions of diatom pictures
captured by microscopic imaging techniques. Some examples of multi-
exposure data sets of different diatom species acquired by light mi-
croscopy and dark microscopy imaging techniques are shown in Fig. 1.
All multi-exposure image stacks were photographed with a Canon EOS
1300D, 18MP Digital Single-Lens Reflex (DSLR) Camera mounted on a
Brunel SP500, Objective × 60, NA 0.85.

The proposed method significantly enhances the quality of fused
images, furthermore the output image can be seen directly on Low Dy-
namic Range (LDR) display devices without radiance domain restora-
tion and tone manipulation [7]. In this paper, the input multi-exposure
images used are perfectly aligned to avoid unwanted ghosting artifacts.
Additionally, no post-processing is needed for the final synthesized
image. As such, the approach discussed comprises the following main

steps (See Fig. 2):
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Fig. 1. Multi-exposure image series taken by light microscopy and dark microscopy imaging. (a–d) Campylodiscus neofastuosus (darkfield), (e–h) Brachysira serians (left), Surirella
peisonis (center) and Frustulia saxonica (right) (darkfield), (i–l) Triceratium favus (brightfield), (m–p) B. serians (left), S. peisonis (center) and F. saxonica (right) (brightfield), (q–t)
Pleurosira laevis (brightfield).
1. Non-parametric Modified Histogram Equalization (NMHE) is in-
troduced to handle non-uniformity and non-cell regions across
the input multi-exposure image.

2. A local measure of information which decides the contribution
of pixels to the final fused images is proposed for weight map
computation.

3. For seamless blending, multi-scale weighted average fusion based
on pyramid decomposition is introduced.

3. Methodology

To overcome the limitations of a standard LDR digital camera which
does not record full range of light variations present in HDR scenes,
an intensity domain variation multi-exposure approach is proposed.
Such limitations can be reduced by pre-processing the input multi-
exposure images through histogram adjustment. Wu and Leou discuss
this type of problem in [26], in which the Weighted Least Squares
(WLS) based optimization solution is extended to input LDR images for
information enhancement. Thus, to preserve the information available
in the HDR scene’s highly lighted and poorly illuminated regions, a pre-
processing operator should be introduced before fusion. In the proposed
3

framework as shown in Fig. 2, a fusion method based on NMHE [27]
has been considered here, in order to obtain an enhancement in the
fused image with the minimum amount of noise.

Our approach is based on a pixel level fusion approach which
combines information from different non-linearly transformed 𝑁 ex-
posures. The process of arithmetic combination is used to blend the
corresponding pixels across input multi-exposure images. Arithmetic
fusion for two input images can be summarized by the expression given
as:

𝐼𝐹 (𝑖, 𝑗) = 𝑊1 × 𝐼1(𝑖, 𝑗) +𝑊2 × 𝐼2(𝑖, 𝑗) + 𝐶 (1)

where 𝐼1, 𝐼2, and 𝐼𝐹 denotes the input multi-exposure images and
blended output image respectively at location (𝑖, 𝑗). 𝑊1 and 𝑊2 rep-
resent the weights computed across individual input images which
control the contribution of input images in the fused image [28,29]
and 𝐶 the mean offset.

Computation of the mean image across input images constitutes an
example of arithmetic fusion technique. The fused image is computed
by taking the mean of input exposures; i.e., 𝑊1 = 1∕2, 𝑊2 = 1∕2 and
𝐶 = 0. Despite being significantly more computationally efficient than
most of other existing image fusion methods, a limited performance is
achieved by image averaging and other arithmetic fusion techniques.
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Fig. 2. Schematic of the proposed method of image fusion which uses NMHE as a pre-processing operator.
Fig. 3. Noise effect due to non-cell background region.(a) Surface plot of cell region and non-cell region of C. neofastuosus shown in Fig. 1(n); (b) Pseudocolor depiction of surface
plot. Different colors are used to highlight relative fluctuations of pixel values in the cell region and non-cell region.
The key reason for this is the lack of color, arising from disruptive
superposition while integrating input images. Furthermore, reduction
of contrast is also introduced when a normalized sum is used, for
example through the image averaging process. Calculation of a mean
image generally yields reasonable image quality in areas where pixel
values are identical, but the image quality is rapidly decreasing in
regions where pixel values are completely different. The poorest results
are obtained in places where pixel values are photographically opposite
to each other in input exposures.

3.1. Pre-processing of microscopy multi-exposure images with histogram
modification

In most cases, biologists adopt a fixed exposure setting based on
their personal preferences to analyze the features of the cell under
observation. Low contrast cell components are more difficult to analyze
at short exposure values than bright cell parts that may be overexposed
at a too long exposure setting. The multi-exposure image series in Fig. 1
leads us to consider collecting details from frustules with multi-scale
patterns using variable exposure settings. Non-cell pixels, on the other
hand, may show a substantial amount of noise as shown in Fig. 3(a).
In Fig. 3(b), a pseudocolor plot reveals the background’s hidden noise
from the image for a better visualization of the pixels values fluctua-
tions. Pixels from different cell images collected at various appropriate
exposure levels are considered for the histogram modification in the
suggested pre-processing technique.

A generic contrast enhancement algorithm is suggested by Poddar
et al. [27] in which the parameter setting does not depend upon the
dynamic range of input image and it does not require manual parameter
tuning during histogram modification. Also, after enhancement it may
well retain the histogram shape [30]. As a first step the spikes are
4

eliminated from the original histogram which improves details and
overcomes the problem of noise amplification in the fused image. It
further maintains the balance between contrast enhancement and a
faithful depiction of the original color appearance in the fused image.

In NMHE, a modified histogram is produced by introducing only
certain pixels with a two-lagged horizontal diversity higher than the
threshold value. Fig. 4(a) shows a microscopy image with under-
exposed regions, over-exposed regions and a large non-cell background
region at nearly the same gray levels. A Histogram with horizontal
diversity is shown in Fig. 4(b) in which pixel intensity values are not
distributed evenly over the whole intensity range (0–255). A Modified
histogram is formed with two-lagged difference (Fig. 4(c)) which has
a greater magnitude than a particular threshold for each row m and
each column n (i.e |𝐼[𝑚, 𝑛] − 𝐼[𝑚, 𝑛 − 2]| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). For efficient
implementation on hardware, row-wise pixel processing architecture is
used for horizontal contrast computation [31]. The modified histogram
(ℎ𝑛𝑒𝑤(𝑖)) with conditional probability is given by

ℎ𝑛𝑒𝑤(𝑖) = 𝑝[𝑖|𝐶] (2)

where 𝑝[𝑖|𝐶] denotes the probability of occurrence of pixels having 𝑖th
gray value in a horizontal contrast variation (𝐶). The event C deals with
histogram spikes produced from non-cell background regions. Hence,
histogram equalization on ℎ𝑛𝑒𝑤(𝑖) rather than ℎ improves the contrast
rather than the noise. However, ℎ𝑛𝑒𝑤(𝑖) only uses the dynamic range for
pixels with a sufficient level of contrast to the surrounding areas.

The default value of 𝐶 is set empirically to six, which gives adequate
results for all image data sets. A unique parameter from the original
histogram (ℎ𝑖) is calculated for uniform distribution in modified his-
tograms. A method of normalization is applied to the original histogram
(ℎ𝑖) and clipped at a particular height with a value of (1∕𝐿). The
Probability Density Function (𝑢) is given for uniform distribution as

𝑢 = 𝑜𝑛𝑒𝑠(𝐿, 1)∕𝐿 (3)
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Fig. 4. Histogram with horizontal diversity showing uneven tonal distribution and horizontal contrast computation. (a) Image captured at 300 ms; (b) Histogram and (c) Horizontal
local contrast computation.
where 𝐿 = 256 for an 8-bit gray scale image and the clipped histogram
is given by

ℎ𝑛𝑒𝑤 𝐶 (𝑛) =

{

( 1𝐿 ), if ℎ𝑖(𝑛) > ( 1𝐿 )
ℎ𝑖(𝑛), if ℎ𝑖(𝑛) ≤ ( 1𝐿 )

for 𝑛 = 0, 1,… ...𝐿 − 1 (4)

A factor called un-equalization (𝑀𝑢) which indicates the degree to
which a uniform distribution does not match the original histogram is
calculated as

𝑀𝑢 = 𝑠𝑢𝑚(𝑢 − ℎ𝑛𝑒𝑤 𝐶 ) (5)

This factor (𝑀𝑢) is utilized as weight factor for the calculation of
modified Probability Density Function (PDF) which is given as

ℎ𝑁𝑀𝐻𝐸 = (𝑀𝑢)ℎ𝑛𝑒𝑤 + (1 −𝑀𝑢)𝑢 (6)

and the cumulative distribution function (CDF) of the image computed
as

𝑐𝑁𝑀𝐻𝐸 (𝑛) =
𝑛
∑

𝑖=0
ℎ𝑁𝑀𝐻𝐸 (𝑛) (7)

The transfer function (𝑇𝑛𝑒𝑤) to modify the histogram based on
𝑐𝑁𝑀𝐻𝐸 is defined as

𝑇𝑛𝑒𝑤(𝑛) = [(𝐿 − 1)𝑐𝑁𝑀𝐻𝐸 + 0.5] (8)

The enhanced output image is produced by using the following equa-
tion.

𝐼(𝑖, 𝑗) = {𝑇 (𝑆(𝑖, 𝑗))|∀𝑆(𝑖, 𝑗) ∈ 𝑆} (9)

where 𝑆(𝑖, 𝑗) is the source image and 𝐼(𝑖, 𝑗) represents the enhanced
image.

The comparison between the original image histograms and the
equalized images by applying four different techniques is shown in
Fig. 5. We can note from Fig. 5(f) and 5(g), that NMHE preserves the
5

structure of the histogram. In addition, it does not add extra details to
the input image. Figs. 5(a) and 5(b) show the original underexposed
image and its NMHE corrected image, respectively. In Fig. 5(g), the
variation in the histogram is moderated more accurately than in the
other methods shown in 5(h,i,j).

In dark microscopy, the light impact can often arise from the
peculiarity that the sensor exposure period is adjusted according to
the light source. Fig. 1 shows how different the picture can appear
based on the right combination of illumination and exposure time. A
background correction is needed for microscopic images of diatoms
to remove illumination defects such as shadows or dark areas. The
enhancement based on Histogram Equalization (HE) [32], Brightness
Preserving Bi-histogram Equalization (BBHE) [33] and Contrast Limited
Adaptive Histogram Equalization (CLAHE) [34] introduces washed-out
appearance and distortion which can be observed in Fig. 5(c–e). The de-
fault parameter values (number of tiles = [8 8], contrast enhancement
limit=0.01, number of histogram bins = 256 and uniform distribution
with 𝛼 = 0.4) suggested in [34] are utilized for assessing CLAHE’s
performance to make fair comparisons. However, NMHE can preserve
the naturalness of the images and prevent amplification of the noise
present in the background, which is clearly visible in Fig. 5(b).

The amount of noise amplification and distortion caused by the
histogram modification approaches is also analyzed quantitatively. The
220 enhanced multi-exposure images of Aqualitas dataset [35] are com-
pared based on Entropy (E) and Structural Similarity Index Measure
(SSIM) to measure detail preservation and distortion introduction [36].
The SSIM between source 𝑆(𝑖, 𝑗) image and enhanced image 𝐼(𝑖, 𝑗) is
defined by

𝑆𝑆𝐼𝑀(𝑆, 𝐼) =
(2𝜇𝑆𝜇𝐼 + 𝑐1)(2𝜎𝑆𝐼 + 𝑐2)

(𝜇2
𝑆 + 𝜇2

𝐼 + 𝑐1)(𝜎2𝑆 + 𝜎2𝐼 + 𝑐2)
(10)

where 𝜇𝑆 and 𝜇𝐼 are the average of 𝑆 and 𝐼 , respectively, 𝜎2𝑆 is the
variance of 𝑆, and 𝜎2 is the variance of 𝐼 . 𝜎 represents the co-variance
𝐼 𝑆𝐼
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Fig. 5. Histogram of a multi-exposure image enhanced by different techniques.(a, f) Original Image and Histogram ; (b, g) Image modified by NMHE and Histogram. (c, h) Image
modified by HE and Histogram; (d, i) Image modified by BBHE and Histogram; (e, j) Image modified by CLAHE and Histogram.
Fig. 6. Impact of histogram modification on Aqualitas dataset [35] multi-exposure microscopy image data set for 220 enhanced images by NMHE, HE, CLAHE and BBHE (a)
Entropy results; (b) Box plot of SSIM index computed for 220 enhanced images.
.

of 𝑆 and 𝐼 and two constants 𝑐1 and 𝑐2 are used to stabilize the equation
which depends on the dynamic range of image pixel-values.

It can be noticed from Fig. 6(a) that the entropy of enhanced
multi-exposure images by NMHE remains closer or lower than that of
the original multi-exposure images, which verifies that no additional
information is ever added to the enhanced images. Entropy values were
arranged in ascending order for better visualization. In comparison to
CLAHE, which preserves entropy to a greater extent but introduces
additional distortion, the picture transformed by the suggested method-
ology demonstrates a considerable preservation of entropy without the
introduction of any new details.

Fig. 6(b) shows the SSIM results as a box plot for the images
enhanced by different histogram modification methods. We can notice
that NMHE has the highest SSIM values compared with HE, BBHE and
CLAHE which clearly indicates that NMHE introduces less distortion
in the 220 enhanced images. Thus, prior to image fusion, NMHE can
be used to enhance multi-exposure microscopy images to reveal all
appearance details of diatom species so that image fusion algorithms
are not affected by the non-cell background pixels.

In order to quantify the degree of preservation of details and the
image quality, two new metrics have been defined. Degree of Entropy
Un-preservation (DEU) and Mean SSIM Distortion (MSSIMD) have been
calculated to find the average difference in entropy and amount of
distortion that is present in the enhanced image. The value of DEU
and MSSIMD is given by Eqs. (11) and (12), respectively. The metric
values calculated by applying Eqs. (11) and (12) are presented in
Table 1. As shown in Table 1, the DEU value for NMHE is the lowest,
indicating that the entropy of 220 enhanced images is preserved even
after histogram modification. This arises because, unlike HE, BBHE,
and CLAHE, NMHE does not add any new information in the process
6

Table 1
Quantitative analysis on Aqualitas image dataset [35] multi-exposure microscopy image
data set for 220 enhanced images by applying NMHE, HE, CLAHE and BBHE methods

Metric NMHE HE BBHE CLAHE

𝐷𝐸𝑈 0.0495 0.5174 1.2271 0.3976
𝑀𝑆𝑆𝐼𝑀𝐷 0.1702 0.6842 0.2406 0.5302

of histogram modification. In comparison to HE, BBHE, and CLAHE,
we can notice from Table 1 that NMHE has the lowest MSSIMD value,
suggesting minimal structural change in the enhanced image.

𝐷𝐸𝑈 =
∑𝑁

𝑘=1 |𝐸(𝑆𝑘) − 𝐸(𝐼𝑘)|
𝑁

(11)

𝑀𝑆𝑆𝐼𝑀𝐷 =
(220 −

∑𝑁
𝑘=1 𝑆𝑆𝐼𝑀(𝐼𝑘))
𝑁

(12)

3.2. Local entropy and weight map computation

In this approach local entropy it is utilized for weight map computa-
tion. It is used to analyze the randomness present in the source images.
It can be defined as:

𝐻 = −
255
∑

𝐺=0
𝑃 (𝐺)𝑙𝑜𝑔2(𝑃 (𝐺)) (13)

where 𝑃 (𝐺) is the likelihood of the intensity value 𝐺. In our case, this
local measure is considered as a metric of information gained within
the local window for the computation of weight function.

In our multi-exposure image fusion approach, the local Entropy is
varying across input images photographed at different exposure values.
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Fig. 7. Manipulation of spatial frequency bands and fusion: illustrating the conceptual framework of detail-enhanced image fusion in local Laplacian domain. For the sake of
simplicity, we have generated the Laplacian pyramid (𝐿𝑙

1) of single input image and Gaussian pyramid (𝐺𝑊 𝑙
1 ) of the corresponding weight map function. Where 𝐿0

2 , 𝐿
0
3 ............𝐿

0
𝑁

are the modified Laplacian pyramids of level zero computed across all of the input images.
Well-exposed regions give higher local entropy values relative to the
shadows and highlights. To compute local entropy, the input image is
divided into small blocks of window size 3 × 3. The local entropy for the
𝑘th input image within 3 × 3 local windows 𝑘′ is computed as follows:

𝐻𝑖,𝑗,𝑘 = −
255
∑

𝐺=0
𝑃𝑖,𝑗,𝑘(𝐺)𝑙𝑜𝑔2(𝑃𝑖,𝑗,𝑘(𝐺)) (14)

𝑊𝑖,𝑗,𝑘 =

[ 𝑁
∑

𝑘′=0
𝐻𝑖,𝑗,𝑘′

] −1

×𝐻𝑖,𝑗,𝑘′ (15)

where 𝐻𝑖,𝑗,𝑘 represents the entropy value computed in each block and
𝑊𝑖,𝑗,𝑘 denotes entropy’s normalized value, which is serving as a weight
map function to regulate pixel contribution at 𝑖𝑗𝑡ℎ position in 𝑘th image.

3.3. Pyramid generation and image fusion

Researchers have employed multi-resolution techniques to fuse and
modify details at many scales in recent years, overcoming the problem
of seam and contrast reversal artifact caused during the image fusion
process [20]. In the present approach, the input images have been
decomposed into various spatial bands through a Laplacian pyramid
and manipulated based on a local entropy measure. In the final fused
image, only the local regions which have maximum information con-
tribute further. A high entropy value suggests that the picture block in
the source image has a higher weight throughout the fusion process.
For edge-aware smoothing, a simple threshold was proposed by Paris
et al. [37] to differentiate edge-detail from small-scale details. In a
similar spirit, we use thresholding to enhance the Laplacian pyramid
before using the Gaussian pyramid of local entropy to manipulate
it. The proposed detail-enhanced fusion algorithm in multi-resolution
domain is shown in Fig. 7.

Given an input image 𝐼𝑘, a low pass filtered image is created by
convolving original image 𝐺𝐼0𝑘 = 𝐼𝑘 with the Gaussian kernel. Sub-
sampling is used to build the next level 𝐺𝐼1𝑘 by eliminating every other
pixel and row from the filtered picture. By repeating this process several
times, we may create a Gaussian pyramid, which is a stack of reduced
7

resolution images 𝐺𝐼0𝑘 , 𝐺𝐼1𝑘 , 𝐺𝐼2𝑘 ,… , 𝐺𝐼𝑑𝑘 . For levels 0 < 𝑙 < 𝑑, the 𝑙𝑡ℎ
Gaussian level for 𝑘𝑡ℎ image is given by

𝐺𝐼 𝑙𝑘(𝑖, 𝑗) =
∑

𝑚

∑

𝑛
𝑤(𝑚, 𝑛)𝐺𝐼 𝑙−1𝑘 (2𝑖 + 𝑚, 2𝑗 + 𝑛), (16)

where 𝑤(∙) is the equivalent weighting function, which is separable:
𝑤(𝑚, 𝑛) = 𝑤(𝑚)𝑤(𝑛). For more details, readers are suggested to see [20].
The number of decomposition levels in the proposed fusion technique
is determined by the size of the input image, and the possible number
of levels for pyramid decomposition is given by

𝑑 =
⌊

𝑙𝑜𝑔(𝑚𝑖𝑛(𝑟, 𝑐))
𝑙𝑜𝑔(2)

⌋

(17)

where ⌊∙⌋ is the floor operator, and r and c are the number of rows and
number of columns in the input image.

For detail enhancement, a point-wise nonlinearity function 𝑟(∙) is
derived from 𝑔 = 𝐺𝐼 𝑙𝑘(𝑖, 𝑗) at each position (i,j). Where, g is the
coefficient of the Gaussian pyramid at (l,i,j) to build Laplacian pyramid
(𝐿𝐼 𝑙𝑖,𝑗,𝑘) of transformed image at that level. For instance, to enhance
details, a local S-shaped tone curve centered on g is applied. The
remapping function proposed in [37] is used to separate details from
edges, which is given by
{

𝑔 + 𝑠𝑖𝑔𝑛(𝑖 − 𝑔)𝜎𝑟(|𝑖 − 𝑔|∕𝜎𝑟)𝛼 if 𝑖 ≤ 𝜎𝑟
𝑔 + 𝑠𝑖𝑔𝑛(𝑖 − 𝑔)(𝛽(|𝑖 − 𝑔|∕𝜎𝑟) + 𝜎𝑟) if 𝑖 > 𝜎𝑟

(18)

where 𝛼, 𝛽 and 𝜎𝑟 are the user defined parameters that serve as detail
enhancement thresholds. In the proposed fusion approach, we set 𝛼 =
0.15, 𝛽 = 1 and 𝜎𝑟 = 0.12 to produce Laplacian pyramid for details
enhancement.

Gaussian pyramid of local entropy controls the pixel contribution
from multiple exposures that yields the modified Laplacian pyramid 𝐿𝑙,
which provides the fused Laplacian pyramid and is given by

𝐿𝑙
𝐹 =

𝑁
∑

𝑘=1
𝐿𝐼 𝑙𝑖,𝑗,𝑘 × 𝐺𝑊 𝑙

𝑖,𝑗,𝑘 (19)

where 𝐿𝐼 𝑙𝑖,𝑗,𝑘 denotes the Laplacian pyramid of input images after
enhancement and 𝐺𝑊 𝑙

𝑖,𝑗,𝑘 represents the Gaussian pyramid of scalar
weight maps calculated by Eq. (15). In the same way that we computed
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Fig. 8. Comparison of the five existing image fusion algorithms and CS-EF using the C. neofastuosus images acquired by darkfield microscopy.
the Gaussian pyramid of the input picture in Eq. (16), we compute
the Gaussian pyramid of the weight map function. The well exposed
detailed enhanced fused image is reconstructed from each enhanced
fused Laplacian pyramid 𝐿𝑙

𝐹 by expanding and summing up each
enhanced level, which is given by

𝐹 = 𝐿0
𝐹 (𝑖, 𝑗) + 𝐿2

𝐹 (𝑖, 𝑗) + 𝐿3
𝐹 (𝑖, 𝑗) +⋯ ......𝐿𝑑

𝐹 (𝑖, 𝑗) (20)

4. Results and discussion

The multi-exposure image fusion method described in this paper
is implemented on MATLAB-2018a. The results generated from the
proposed approach yields natural contrast in output fused images.
The method is tested on different microscopic image data sets that
are captured at different exposure levels using darkfield and lightfield
microscopy techniques. The fusion quality is assessed using different
standard quality metrics, such as 𝑄𝐴𝐵∕𝐹 , 𝐿𝐴𝐵∕𝐹 , 𝑁𝐴𝐵∕𝐹 , 𝑄𝑆𝐹 , 𝑄𝐴𝐺 [38,
39] to test the validity of the present approach.

In Figs. 8, 9, 10, 11 and 12, we compare our fusion results with five
state-of-the-art image fusion methods that including EF [23], GIF [16],
Matting based Exposure Fusion (MEF) [40], FEF [41] and Illumination
estimation based Exposure Fusion (IEF) [42]. Fig. 8(a–f) and Fig. 9(a–
f) illustrate the fusion results for C. neofastuosus and B. serians (left),
S. peisonis (center) and F. saxonica (right) image data sets acquired
by dark microscopy imaging. We can observe that the CS-EF results
shown in Fig. 8(f) and 9(f) preserve details in fine micro-structures
within the specimen without blooming artifacts seen on the transparent
regions illuminated by the light source. Moreover, the CS-EF signifi-
cantly reduces the glare caused by brighter regions across boundaries
as compared to results produced by EF, GFF, MEF, FEF and IEF.

In Figs. 10 and 11, we show the qualitative comparison between
CS-EF and other methods for T. favus, and B. serians (left), S. peisonis
(center) and F. saxonica (right) image data sets acquired by brightfield
microscopy imaging. The results of CS-EF are illustrated in Fig. 10(f)
and Fig. 11(f). As we observe from fusion results of CS-EF, the proposed
method is able to preserve details in cell-region while the background
noise is reduced gradually. It is observed from Fig. 10(f) that the com-
plete light variations are preserved accurately without producing any
artifacts. Throughout this way the detail information can be discovered
in the cell-regions, particularly when using multi-exposure microscopy
imaging techniques.

The results produced by the different multi-exposure fusion tech-
niques including EF, GIF, MEF, FEF, IEF and CS-EF for P. laevis are
shown in Fig. 12. The CS-EF results in Fig. 12(f)) reveal that details in
diatom species’ well-exposed areas are preserved, and the fused image
preserves sharpness of the fine micro-structures within the specimen.
8

So the information collected under various reflections or absorptions is
retained in the fused image. Here we report that the CS-EF improves
local contrast of the blended image and also eliminates the noise
present in the homogeneous areas. Therefore, the proposed fusion
method is less prone to be noisy in non-cell pixels that are present in the
background and produces better results than existing state-of-the-art
fusion methods.

To test the performances of the proposed fusion method, it has also
been tested on the color image datasets. In our implementation, we
have tested our fusion approach on the micrographs of blood samples
captured using darkfield microscopy. The multi-exposure images shown
in Figs. 13(a–d) show the fact that the morphology of erythrocytes [43]
cannot be captured with a single shot. Blood samples must be pho-
tographed using a variety of exposure settings, and image fusion can
then be used to improve details. As it can be observed from the fusion
results shown in Fig. 13(j), CS-EF depicts significant improvement in
the details as compared with other methods shown in Figs. 13(e–i).
Moreover, it seems to preserve color information present in the input
images. The full resolution images of fusion results shown in Figs. 8–
13 can be found on the web link https://doi.org/10.6084/m9.figshare.
14854161.v8. Apart from them, the supplementary material contains
more fusion results which support the reported results.

The performance of the experiments is quantitatively assessed to
determine the efficiency of the fusion processes. Five common image
fusion quality metrics were considered for objective evaluation (see
Table 2). The goal is to assess the fusion output from different view-
points, such as the amount of details transferred from source images to
the blended picture 𝑄𝐴𝐵∕𝐹 [38], total lack of information in the fused
image 𝐿𝐴𝐵∕𝐹 [39] and artifacts added to the fused image by fusion
process 𝑁𝐴𝐵∕𝐹 [39]. 𝑄𝐴𝐵∕𝐹 is a gradient-based fusion consistency
metric that calculates the quantity of edge information transmitted to
the blended picture from the inputs. 𝑄𝑆𝐹 originates from the human
visual system (HVS) and shows the average degree of operation in
picture [44]. The 𝑄𝑆𝐹 is defined as

𝑄𝑆𝐹 =
√

𝑅2
𝑓 + 𝐶2

𝑓 (21)

where 𝑅2
𝑓 refers to the measured spatial frequencies from pixels in

row and 𝐶2
𝑓 refers to the measured spatial frequencies from pixels in

column [44].
𝑄𝐴𝐺 evaluates the amount of clarity and sharpness of the image

fused from the source images, which is measured as

𝑄𝐴𝐺 =
∑

𝑖
∑

𝑗 ((𝐹 (𝑖, 𝑗) − 𝐹 (𝑖 + 1, 𝑗))2 + (𝐹 (𝑖, 𝑗) − 𝐹 (𝑖, 𝑗 + 1))2)1∕2

𝑚𝑛
(22)

where 𝐹 is the fused image. Ultimately we want a successful picture
fusion process to produce a higher 𝑄𝐴𝐺 value.

https://doi.org/10.6084/m9.figshare.14854161.v8
https://doi.org/10.6084/m9.figshare.14854161.v8
https://doi.org/10.6084/m9.figshare.14854161.v8
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Fig. 9. Comparison of the five existing image fusion algorithms and CS-EF using the B. serians (left), S. peisonis (center) and F. saxonica (right) images acquired by darkfield
microscopy.
Fig. 10. Comparison of the five existing image fusion algorithms and CS-EF using the T. favus images acquired by brightfield microscopy.
Fig. 11. Comparison of the five existing image fusion algorithms and CS-EF using the B. serians (left), S. peisonis (center) and F. saxonica (right) images acquired by brightfield
microscopy.
In Table 2, the metric values computed from the fusion results of EF,
GIF, MEF, FEF, IEF and CS-EF are presented, depicting better values in
bold. Fused picture with better quality would yield the highest 𝑄𝐴𝐵∕𝐹

value. By comparison, the lower the 𝑁𝐴𝐵∕𝐹 and 𝐿𝐴𝐵∕𝐹 values, the
9

better the composite picture quality. In terms of non-reference quality
metrics such as 𝑄𝑆𝐹 and 𝑄𝐴𝐺, higher scores are expected from the ideal
fusion method. The objective assessments presented in Table 2 show
that on three data sets the CS-EF outperformed the other methods in
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Fig. 12. Comparison of the five existing image fusion algorithms and CS-EF using the P. laevis images acquired by brightfield microscopy.
Fig. 13. Extension to color image data set. (a–d) Four multiexposure input images; (e–j) Comparison of the five existing image fusion algorithms and CS-EF using RAT-blood
images acquired by darkfield microscopy.
terms of 𝑄𝐴𝐵∕𝐹 , 𝐿𝐴𝐵∕𝐹 𝑄𝑆𝐹 and 𝑄𝐴𝐺 metrics for T. favus, B. serians
(brightfield) et al. and RAT-blood image data sets, depicting also better
edge preservation ability. It can be noticed that CS-EF yields better
𝑄𝐴𝐵∕𝐹 , 𝑄𝑆𝐹 , and 𝑄𝐴𝐺 values, for two data sets which include B. serians
(darkfield) et al. and P. laevis. Therefore, better edge details are present
in the fused images with lesser background noise which can help in
identifying the species based on image analysis techniques [12]. The
smaller value of 𝐿𝐴𝐵∕𝐹 for P. laevis indicates that CS-EF introduces
less noise than other methods. We can notice that CS-EF does not
perform better in terms of 𝑄𝐴𝐵∕𝐹 and 𝐿𝐴𝐵∕𝐹 for C. neofastuosus. For C.
neofastuosus image data set, GIF has performed well in terms of 𝑄𝐴𝐵∕𝐹

and 𝐿𝐴𝐵∕𝐹 , and CS-EF outperforms the runner-greatest score. GIF has
also outperformed in terms of 𝐿𝐴𝐵∕𝐹 for T. favus dataset.

On the other hand, EF had outperformed well in terms of 𝑁𝐴𝐵∕𝐹

with a trade-off in terms of edge-preservation capability for the T.
favus data set. Aside from the three image data sets, MEF produces
lower 𝑁𝐴𝐵∕𝐹 values for B. serians(brightfield) et al. C. neofastuosus
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and RAT-blood data sets. It also outperforms in terms of 𝐿𝐴𝐵∕𝐹 for B.
serians (darkfield) et al. datasets. Based on our findings, the histogram
adjustment operation performed prior to the fusion procedure aids
in the production of high-quality fused images from multi-exposure
picture series of the same specimen. As a result, when NMHE is uti-
lized as a pre-processing tool before fusion, CS-EF fusion techniques
excel in enhancing delicate microstructures within specimens. Overall,
the suggested approach introduces less distortion while preserving
considerable edge features in the fused picture.

For the 20 microscopy data sets, Table 3 shows the average values
for each quality metric for the proposed approach and current state-
of-the-art methods. For all 20 image datasets, the proposed method
yields the best average values for all quality measures except 𝑁𝐴𝐵∕𝐹 .
We can notice that MEF performs better in terms of 𝑁𝐴𝐵∕𝐹 , which
offers the lowest average value for 20 image data sets fusion results.
This implies that the proposed technique’s fused image incorporates
more significant and accurate information from the input source data.
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Table 2
Comprehensive quantitative analysis of multi-exposure image fusion results obtained
from 6 microscopy data sets.

Image Metric EF IEF FEF MEF GIF CS-EF

C. neofastuosus

𝑄𝐴𝐵∕𝐹 0.48 0.50 0.50 0.57 0.71 0.6
𝐿𝐴𝐵∕𝐹 0.46 0.40 0.38 0.38 0.18 0.34
𝑁𝐴𝐵∕𝐹 0.06 0.10 0.12 0.05 0.11 0.06
𝑄𝑆𝐹 1.96 2.48 2.40 4.28 3.89 5.6
𝑄𝐴𝐺 0.82 1.06 1.00 1.51 1.57 2.4

T. favus

𝑄𝐴𝐵∕𝐹 0.92 0.90 0.93 0.52 0.91 0.94
𝐿𝐴𝐵∕𝐹 0.07 0.03 0.04 0.42 0.06 0.03
𝑁𝐴𝐵∕𝐹 0.01 0.06 0.03 0.06 0.02 0.03
𝑄𝑆𝐹 2.99 4.05 3.57 1.81 3.49 4.8
𝑄𝐴𝐺 1.12 1.59 1.32 0.66 1.43 2.26

B. serians (darkfield)

𝑄𝐴𝐵∕𝐹 0.57 0.62 0.70 0.64 0.69 0.82
𝐿𝐴𝐵∕𝐹 0.37 0.16 0.14 0.14 0.23 0.16
𝑁𝐴𝐵∕𝐹 0.06 0.22 0.16 0.22 0.08 0.02
𝑄𝑆𝐹 1.04 1.57 1.61 1.69 1.70 3.12
𝑄𝐴𝐺 0.29 0.48 0.61 0.64 0.65 1.31

P. laevis

𝑄𝐴𝐵∕𝐹 0.48 0.61 0.60 0.60 0.62 0.89
𝐿𝐴𝐵∕𝐹 0.45 0.14 0.13 0.25 0.03 0.04
𝑁𝐴𝐵∕𝐹 0.08 0.25 0.27 0.16 0.35 0.07
𝑄𝑆𝐹 2.97 4.48 2.81 2.62 3.73 5.21
𝑄𝐴𝐺 0.96 1.30 1.21 1.10 1.33 2.26

B. serians (brightfield)

𝑄𝐴𝐵∕𝐹 0.56 0.69 0.72 0.68 0.72 0.89
𝐿𝐴𝐵∕𝐹 0.39 0.11 0.12 0.30 0.22 0.05
𝑁𝐴𝐵∕𝐹 0.05 0.20 0.16 0.01 0.05 0.06
𝑄𝑆𝐹 0.92 1.39 0.95 0.75 1.19 3.74
𝑄𝐴𝐺 0.29 0.43 0.41 0.34 0.46 1.61

RAT-blood

𝑄𝐴𝐵∕𝐹 0.31 0.25 0.28 0.31 0.29 0.35
𝐿𝐴𝐵∕𝐹 0.57 0.62 0.59 0.58 0.58 0.42
𝑁𝐴𝐵∕𝐹 0.12 0.13 0.12 0.11 0.13 0.22
𝑄𝑆𝐹 3.87 4.18 3.78 3.59 4.07 5.54
𝑄𝐴𝐺 2.01 1.97 1.91 1.81 2.02 2.95

Table 3
Average value computed from quantitative analysis of multi-exposure image fusion
results obtained from 20 microscopy data sets.

Metric EF IEF FEF MEF GIF CS-EF

𝑄𝐴𝐵∕𝐹 0.766 0.751 0.0.760 0.707 0.796 0.852
𝐿𝐴𝐵∕𝐹 0.162 0.160 0.161 0.237 0.129 0.104
𝑁𝐴𝐵∕𝐹 0.073 0.091 0.078 0.038 0.071 0.044
𝑄𝑆𝐹 3.038 3.529 2.976 3.336 3.546 4.846
𝑄𝐴𝐺 0.996 1.147 1.004 1.085 1.212 2.077

Therefore, the current image fusion method outperforms alternative
methods, according to this study.

5. Conclusion

A Multi-exposure image fusion method is described to preserve
under-exposed and overexposed regions in microscopy. In the present
approach a local entropy measure is utilized for computing weight
map function. A modified Laplacian pyramid is computed based on
this weight map function to build a fused image across the input data.
NMHE is also shown to be a good pre-processing operator for dealing
with background noise in non-cell regions and avoiding inconsistencies
between input multi-exposure images used in the fusion process.

Diatoms are microscopic algae with a great range of contrast and
brightness, in particular with observations performed utilizing dark
field and bright field illumination. Due to high dynamic range of con-
trast and brightness, a single image of the diatom cannot be produced
with all the important details inside the bright and dark regions. The
main goal of exposure fusion is to reconstruct the fused image that
shows far greater detail than any image in the original sequence.
When the specimen is photographed with variable exposure values, the
clarity of the optical presentation can be maximized using the image
fusion. Standard multi-exposure techniques are commonly used with
the purpose of improving the details in the fused image. However, the
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quality of the multi-exposure image input stack determines the fusion
method’s outcome. The fusion method presented in this study helps to
improve the information found inside the specimen under examination
utilizing dark-field or bright-field microscopy. Of course, pre-processing
of the input multi-exposure image series is an excellent tool to in-
crease the features with the purpose of reducing the classification error
of different diatom species. Although, employing a modern darfikeld
microscopy technique with a perfect combination of illumination and
exposure value, the quality of the fused image can still be improved.
In order to capture the details of a transparent 3D specimen, one can
take into account superimposed darkfield microscopy [11] in which, for
example epi-illumination and mirrored lenses are used. Furthermore,
modern methods of dark-field microscopy may often be utilized where
objects are lit with light of various wavelengths so that sequences of
images are obtained. As a further research, the approaches described
in this study can be extended to other microscopic modalities such as
phase contrast or differential interference contrast (DIC) for improving
the final result.
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