
symmetryS S

Article

Cryptanalysis of a Group Key Establishment Protocol

Jorge Martínez Carracedo 1,† and Adriana Suárez Corona 2,*,†

����������
�������

Citation: Carracedo, J.M.; Corona,

A.S. Cryptanalysis of a Group Key

Establishment Protocol. Symmetry

2021, 13, 332. https://doi.org/

10.3390/sym13020332

Academic Editors: Juan Alberto

Rodríguez Velázquez and Alejandro

Estrada-Moreno

Received: 20 January 2021

Accepted: 9 February 2021

Published: 17 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computing and Mathematics, Ulster University, Belfast BT37 0QB, UK;
j.martinez-carracedo@ulster.ac.uk

2 Department of Mathematical Sciences, Universidad de León, 24071 León, Spain
* Correspondence: asuac@unileon.es
† These authors contributed equally to this work.

Abstract: In this paper, we analyze the security of a group key establishment scheme proposed by
López-Ramos et al. This proposal aims at allowing a group of users to agree on a common key. We
present several attacks against the security of the proposed protocol. In particular, an active attack is
presented, and it is also proved that the protocol does not provide forward secrecy.

Keywords: cryptanalysis; group key establishment

1. Introduction

Secure multiparty communication is an important concern for many current appli-
cations that work over public insecure channels, such as the Internet. Wireless sensor
networks, collaborative applications, multiparty voice and video conferences, etc. need to
guarantee confidentiality, integrity and authentication in their communications.

Group key establishment (GKE) protocols are fundamental in that sense. They allow a
set of participants to agree on a common secret key to be used afterwards with symmetric
key cryptographic primitives.

In some settings all the nodes play an equivalent role, and thus the group protocol
is somewhat symmetric. Nevertheless, there are other applications where some nodes
are distinguished and one can assume they may have more computational power and
resources, and thus, they are required to perform more computations.

Over recent decades, group key establishment protocols were widely discussed in the
literature [1–7], and formal security models were proposed, indicating which attacks the
adversary can perform and what a secure key establishment protocol is. What is typically
required is that, after completion of the protocol, the intended users agree on a common
key, whereas the adversary does not learn anything about it.

A standard technique to augment the security of a scheme is the use of compilers,
which allows a modular design, going from passively secure solutions to authenticated
ones [8], from 2-party to group solutions [9], or adding forward secrecy [10].

However, several protocols were found to be insecure after they were published,
because the proposals do not provide security proofs or the proofs are not correct [11–13].
Other protocols were found to be insecure when considering active attacks [14].

Motivated by the works in López-Ramos et al. [14], in this paper, we analyze a group
key establishment proposal by López-Ramos et al. [15] and present several attacks on the
proposed protocols. In particular, we present here some active attacks against the protocols,
proving they are insecure when considering active adversaries.

Contributions: We present several concrete attacks showing the security flaws of the
protocols proposed in López-Ramos et al. [15]. In Section 2, we review the proposal of
López Ramos et al. Then, in Section 3 we review a standard security model for group key
exchange. We then present our attacks in Section 4.

Symmetry 2021, 13, 332. https://doi.org/10.3390/sym13020332 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8017-2598
https://orcid.org/0000-0002-8252-8620
https://doi.org/10.3390/sym13020332
https://doi.org/10.3390/sym13020332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13020332
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/2/332?type=check_update&version=3


Symmetry 2021, 13, 332 2 of 10

2. The Protocol of López Ramos et al.

In this section, we describe Protocol 1 in López-Ramos et al. [15], which can be seen as
an extension of the classical 2-party Diffie-Hellman key exchange. Four different protocols
are presented, which are modifications of this first one. In particular, Protocol 2 computes
the same session key, but publishing only one public key and sending a different message
in Round 2. Protocol 3 describe the extra steps to be done if some participants leave the
group and Protocol 4 deals with the case where some users join the group.

Initialization

Let {U1, . . . , Un} be the finite set of protocol participants, including Uc1 , who will act as
controller. The users agree on a multiplicative cyclic group G of prime order p and on g, a
generator of G.

Each user Ui, 1 ≤ i ≤ n will have two random values, ri, xi ∈ Z∗p as private keys and
gri and gxi will be their public keys.

Round 1

1. Each user Ui publishes his pair of public keys (gri , gxi ) (We assume that these keys
are sent to the users, hence the adversary can potentially manipulate those values).

2. The group controller calculate K1 = g
rc1

n
∑

j=1,j 6=c1

rj

, which will be the session key.
3. The group controller will choose a new pair of elements (r′c1

, x′c1
) that will be privately

kept and will become his new private information at a later stage.

Round 2

Every user Ui, using the public information, computes g∑j 6=i,c1
rj and sends this value to

Uc1 (Notice that there is no need to send this information, since this value can be computed
from the published public keys).

The group controller Uc1 , moreover, computes

Y1,i = g−xc1 xi

(
g

rc1 ∑
j 6=c1,i

rj
)

for i ∈ {1, . . . , n} \ {c1} and

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1 ,

R1 = grc1 and S1 = gxc1 .

He broadcasts (Y1,1, . . . , Y1,c1 , . . . , Y1,n, R1, S1)

Key Computation

Once user Ui has received the second round message, he computes the common
session key K1 := K1,i = Y1,iS

xi
1 Rri

1 .
The protocol is summarized in Figure 1.

Remark 1. The subindex 1 in the session key K1 indicates here that it is the first execution of
the protocol. In Protocols 3 and 4 in López-Ramos et al. [15], this subindex changes when the
participants involved in the protocol change, i.e., some participants leave or join the protocol, and
thus, some extra computations are needed.



Symmetry 2021, 13, 332 3 of 10

Round 1

Ui Controller Uc1

Publishes his public keys (gri , gxi ) Publishes his public keys (grc1 , gxc1 )

Computes: K1 = g
rc1

n
∑

j=1,j 6=c1

rj

selects and keeps private: (r′c1
, x′c1

)

Round 2

Computes: g∑j 6=i,c1
rj

g∑j 6=i,c1
rj

-
Computes:

Y1,i = g−xc1 xi

(
g

rc1 ∑
j 6=c1,i

rj
)

for i ∈ {1, . . . , n} \ {c1}

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1

R1 = grc1 and S1 = gxc1

�
(Y1,1, . . . , Y1,c1 , . . . , Y1,n, R1, S1)

Key Computation

Computes: K1 := K1,i = Y1,iS
xi
1 Rri

1

Figure 1. Protocol 1 of López Ramos et al.

3. Security Model

To formalize secure group key establishment, we use the somewhat standard Bohli
et al.’s [5] security model, which builds on Jonathan Katz and Moti Yung [8].

Security Goals: Semantic Security and Authentication

Participants:

The (potential) protocol participants are modelled as probabilistic polynomial time
(ppt) Turing machines in the finite set U = {U1, . . . , Un}. Each participant Ui in the set U is
able to run a polynomial amount of protocol instances in parallel.

We will refer to instance si of principal Ui as Πsi
i (i ∈ N) and it has the following

variables assigned:

pid
si
i : stores the identities of the parties user Ui aims at establishing a session key with

(including Ui itself);

sid
si
i : is a variable storing a non-secret session identifier to the session key stored in sk

si
i ;

acc
si
i : is a variable which indicates whether the session key in sk

si
i was accepted;

term
si
i : is a variable which indicates whether the protocol execution has terminated;

used
si
i : is a variable which indicates whether this instance is taking part in a protocol run;

sk
si
i : this variable is initialized with a distinguished NULL value and will store the ses-

sion key.

Communication network and adversarial capabilities:

We assume there exist arbitrary point to point connections among users and the
network is non-private, fully asynchronous and in complete control of the adversary A,
who can eavesdrop, delay, delete, modify or insert messages. The adversary’s capabilities
are captured by the following oracles:



Symmetry 2021, 13, 332 4 of 10

Send(Ui, si, M) : when querying this oracle, message M is sent to instance Πsi
i of user

Ui ∈ U . The output will be the protocol message that the instance outputs after
receiving message M. This oracle can also be used for the adversary A to initialize a
protocol execution, by using the special message M = {Ui1 , . . . , Uir} to an unused
instance Πsi

i . This oracle initializes a protocol run among Ui1 , . . . , Uir ∈ U . After such
a query, Πsi

i sets pidsi
i := {Ui1 , . . . , Uir}, used

si
i := TRUE, and processes the first step of

the protocol.

Execute(U1, s1, . . . , Ur, sr) : if the instances s1, . . . , sr have not yet been used, this oracle
will return a transcript of a complete execution of the protocol among the specified
instances.

Reveal(Ui, si) : this oracle returns the session key stored in sksi
i if accsi

i = TRUE and a NULL

value otherwise.

Corrupt(Ui) : this query returns Ui’s long term secret key.

We can distinguish two types of adversaries. An adversary with access to all the
oracles described above is considered to be active. If the adversary is not granted access to
any of the Send oracles, then it is considered a passive adversary.

To define semantic security, we also allow the adversary to have access to a Test oracle,
which can be queried only once. The query Test(Ui, si) can be made on input an instance
Πsi

i of user Ui ∈ U only if accsi
i = TRUE. In that case, a bit b← {0, 1} is chosen uniformly

at random; if b = 0, the oracle returns the session key stored in sk
si
i . Otherwise, the oracle

outputs a uniformly at random chosen element from the space of session keys.

Security notions:

For the schemes to be useful, we need the group key establishments to be correct,
i.e., without adversarial interference, the protocol would allow all users to compute the
same key.

Definition 1 (correctness). A group key establishment is correct if for all instances Πsi
i , Π

sj
j

which accepted with sid
si
i = sid

sj
j and pid

si
i = pid

sj
j , the condition sk

si
i = sk

sj
j 6= NULL is satisfied.

To be more precise in the security definition, it is important to specify under which
conditions the adversary can query the Test oracle. To do so, we first define the following
notion of partnering:

Definition 2 (partnering). Two terminated instances Πsi
i and Π

sj
j are partnered if sidsi

i = sid
sj
j ,

pid
si
i = pid

sj
j and acc

si
Ui

= acc
sj
Uj

= TRUE.

To avoid queries that would trivially allow the adversary to know the key, we restrict
the instances that can be queried to the Test oracle, only allowing fresh instances:

Definition 3 (freshness). We say an instance Πsi
i is fresh if none of the following events has

occurred:

• the adversary queried Reveal(Uj, sj) for an instance Π
sj
j that is partnered with Πsi

i ;
• the adversary queriedCorrupt(Uj) for a user Uj ∈ pid

si
i before a query of the form Send(Ul , sl , ∗);

Remark 2. The previous definition for freshness allows including the desired goal of forward
secrecy in our definition of security given below: an adversaryA is allowed to query Corrupt for all
users and obtain their long term keys without violating freshness, if he does not send any message
afterwards.



Symmetry 2021, 13, 332 5 of 10

Let SuccA be the event that the adversary A queries the Test oracle with a fresh
instance and makes a correct guess about the random bit b used by the Test oracle, we
define the advantage of an adversary A attacking protocol P as

Advke
A = Advke

A (k) :=
∣∣∣∣Pr[SuccA]−

1
2

∣∣∣∣.
Definition 4 (semantic security). A group key establishment protocol is (semantically) secure,
if Advke

A = Advke
A (k) is negligible for every ppt adversary A.

4. Cryptanalysis of the Proposal of López-Ramos et al.

In this section, we describe several concrete attacks refuting the security results of
López-Ramos et al. [15], where four different, but related, GKE protocols are described.
The four protocols will be considered in this section. However, we will only explicitly
attack Protocol 1, being the attacks to the others straightforwardly adapted.

4.1. Active Attack

Informally, since the protocol is not authenticated, we will describe here how an
adversary can attack the protocol by mounting a Man-In-The-Middle attack. Users will
end up sharing a key with the adversary, instead of with all the intended communication
partners. We formalize the attack below.

Let us fix {U1, ..., Un} the set of communication parties and let A be an active attacker
able to supersede some parties in the set. We will distinguish two different cases: A shares
a key with the group controller Uc1 and other with the rest of the users and A shares a key
with any other party Ui, i 6= c1, and a different key with the rest, including the controller.

IfA tries to share a different key with the group controller Uc1 the adversary can build
an attack by following the next steps:

1. The attacker A queries Send(U1, s1, . . . , Un, sn), to initiate a protocol instance. After
this query, the first step of the protocol is executed. In particular, the adversary obtains
every users’ pairs of public keys (gri , gxi ), with ri, xi ∈ Z∗p.

2. The adversary A will delete the message (grc1 , gxc1 ) sent by the controller Uc1 to the
rest of the users and delete the public keys (gr1 , gx1) sent by user U1 to Uc1 .

3. The adversary A generates its private keys ac1 , bc1 ∈ Z∗p and public keys (gac1 , gbc1 )

and queries Send(Ui, si, (gac1 , gbc1 )), for all i ∈ {1, ..., n} \ {c1}. the adversaryA gener-
ates its private keys a1, b1 ∈ Z∗p and public keys (ga1 , gb1) and queries
Send(Uc1 , sc1 , (ga1 , gb1)).

Notice that every user Ui, i 6= 1, c1, after receiving that message, will compute and

send the value g

n
∑

j=1,j 6=c1

rj

and therefore this value will be output by the Send oracle.
The controller Uc1 , after receiving that message, will compute and send the value

g
a1+

n
∑

j=2,j 6=c1

rj

and therefore this value will be output by the Send oracle.

4. The adversary A will compute the session key Q1 = g
ac1 (

n
∑

j=1,j 6=c1

rj)

and the values
T1 = gac1 and V1 = gbc1 , along with the keying values

Z1,i = g−bc1 xi g
ac1 (

n
∑

j=1,j 6=c1,i
rj)

, i 6= c1

Z1,c1 = Q1g−a′c1
ac1 g−b′c1

bc1 .

5. The adversaryAwill query Send(Ui, si, (Z1,1, . . . , Z1,n, T1, V1) oracle, for all i ∈ {1, ..., n}
\{c1}.



Symmetry 2021, 13, 332 6 of 10

6. The adversary A will compute the session key K1 = g
rc1 (

n
∑

j=1,j 6=c1

rj)

and the values
R1 = grc1 and S1 = gxc1 , along with the keying values

Y1,i = g−xc1 xi g
rc1 (a1+

n
∑

j=2,j 6=c1,i
rj)

, i 6= c1

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1 .

7. The adversary A will query Send(U1, s1, (Y1,1, . . . , Y1,n, S1, T1) oracle.

Please note that after receiving this last message, users {U1, . . . , Un} \ {Uc1}, following
the protocol, will compute Q1,i = Z1,iT

xi
1 Vri

1 . Please note that Q1,i = Q1 for every i 6= c1.
On the other hand, the group controller Uc1 will compute K1 = Y1,1Sb1

1 Ra1
1 .

Therefore, after this attack, the adversary has established a shared key Q1 with the set
of parties {U1, . . . , Un} \ {Uc1} and the key K1 with the group controller Uc1 , where

Q1 = g
ac1

n
∑

j=1,j 6=c1

rj

and K1 =
rc1 (a1+

n
∑

j=2,j 6=c1

rj)

.

Consequently, all the users will believe they are establishing a common key when they
are not. Moreover, the adversary can decrypt the messages sent encrypted with both keys
and forward the communication between the users that do not share a key.

This attack is outlined in Figure 2.
If A tries to compute a different key with any user different from the group controller,

we can assume without loss of generality that A is sharing it with U1. The adversary A can
build an attack following the subsequent steps:

1. The attacker A queries Send(U1, s1, . . . , Un, sn), to initiate a protocol instance. After
this query, the first step of the protocol is executed. In particular, the users send their
public keys and thus, the adversary obtains (gri , gxi ), with ri, xi ∈ Zp

∗ for all the
participants {U1, ..., Un}.

2. The adversary A will delete the message (grc1 , gxc1 ) sent by the controller Uc1 to user
U1 and the message (gr1 , gx1) sent by user U1 to the rest of the participants.

3. The adversary A, will choose random values a1, b1, ac1 , bc1 ∈ Zp
∗, and queries

Send(Ui, si, (ga1 , gb1)), for all i ∈ {2, ..., n}, including c1.

Notice that every user Ui, i 6= 1, c1 and the adversary A, after receiving that message,

will compute g
(a1+

n
∑

j=2,j 6=c1

rj)

and therefore this value will be output by the Send oracle.

Moreover, the group controller Uc1 will calculate the session key Q1 = g
rc1 (a1+

n
∑

j=2,j 6=c1

rj)

and he will send R1 = grc1 and S1 = gxc1 , along with the keying values

Z1,1 = g−xc1 b1 g
(rc1

n
∑

j=2,j 6=c1

rj)

,

Z1,i = g−xc1 xi g
rc1 (a1+

n
∑

j=2,j 6=c1

rj)

i 6= 1, c1,

Z1,c1 = Q1g−r′c1
rc1 g−x′c1

xc1 .

These values will also be part of the output of the Send oracle.
Please note that after receiving this message every user Ui, i 6= 1, can compute the key

Q1 = Z1,iS
xi
1 Rri

1 that will be shared with the adversary A.



Symmetry 2021, 13, 332 7 of 10

Round 1

Ui A Controller Uc1

Publishes: Publishes:
(gri , gxi ) (grc1 , gxc1 )

Erases(grc1 , gxc1 )

and publishes:(gac1 , gbc1 )

Erases(gr1 , gx1 )
and publishes:(ga1 , gb1 )

Round 2

Computes:

g∑j 6=1,c1
rj

g∑j 6=i,c1
rj

-
Computes:

g
a1+

n
∑

j=2,j 6=c1

rj

�
g

a1+
n
∑

j=2,j 6=c1

rj

Computes:

Q1 = g
ac1 (

n
∑

j=1,j 6=c1

rj)

T1 = gac1

V1 = gbc1

Z1,i = g−bc1 xi g
ac1 (

n
∑

j=1,j 6=c1,i
rj)

, i 6= c1

Z1,c1 = Q1g−a′c1
ac1 g−b′c1

bc1

�
(Z1,1, . . . , Z1,n, T1, V1)

Computes:

K1 = g
rc1 (

n
∑

j=1,j 6=c1

rj)

R1 = grc1

S1 = gxc1

Y1,i = g−xc1 xi g
rc1 (a1+

n
∑

j=2,j 6=c1,i
rj)

, i 6= c1

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1

(Y1,1, . . . , Y1,n, S1, T1)-

Key Computation

Computes: Computes:
Q1,i = Z1,iT

xi
1 Vri

1 K1 = Y1,1Sb1
1 Ra1

1

Figure 2. Active attack on Protocol 1 of López Ramos et al.

4. The attacker A will delete the message sent by Uc1 to the superseded user U1, and
queries Send(U1, s1, (W1,1, . . . , W1,n, T1, V1)), where

W1,i = g−bc1 xi g
ac1 (

n
∑

j=1,j 6=i,c1

rj)

,

W1,c1 = K1g−a′c1
ac1 g−b′c1

bc1 ,

T1 = gac1 and V1 = gbc1 .



Symmetry 2021, 13, 332 8 of 10

Please note that user U1, after receiving these last messages, can compute the key
K1 = W1,1Tx1

1 Vr1
1 which is shared with the adversary A.

5. With the information received, the users, following the protocol, will compute the
subsequent keys:

(a) The superseded user U1 will compute K1 = W1,1Tx1
1 Vr1

1 .
(b) Every user Ui, i 6= 1 computes Q1,i = Y1,iS

xi
1 Rri

1 .

(c) Adversary A computes Q1,1 = Z1,1Sb1
1 Ra1

1 and K1 = W1,1Tx1
1 Vr1

1 .

Therefore, the adversary A has established a shared key Q1 with the set of parties
{U2, ..., Un}. On the other hand, both U1 and the adversary A share the common key K1.

Remark 3. While in López-Ramos et al. [15] four different protocols were described, in the previous
lines only Protocol 1 was attacked.

In Protocol 2, authors try to share the computational requirements in a more even way among
the parties by slightly modifying which values every participant sends to the group controller and
the computations that this user has to perform. However, the only private information for every
user is the tuple (ri, xi) as in Protocol 1. Thus, an attack can be built analogously by following the
steps described above.

In Protocol 3, authors assume that the group controller has changed. The new group controller,
by using two private elements (r′ct , x′ct) makes a transformation of the key. The next steps of Protocol
3 follows the description of Protocol 1. Therefore, an attack can be built following the previous
description.

In Protocol 4, new users take part in the round with new private elements (rt, xt). Therefore
a new key has to be computed by the group controller using those new elements. Once more,
subsequent steps of Protocol 4 follows the description of Protocol 1 and an attack can be constructed
analogously.

4.2. Forward Secrecy

We will informally describe how a passive adversary who corrupts a participant
Ui ∈ {U1, . . . , Un} involved in a protocol run will be able to compute the shared session
key. Therefore, the protocol does not provide forward secrecy.

Let A be a probabilistic polynomial time adversary (modelled as a Turing machine).
He may perform an attack by following the next steps:

1. The attacker A queries Corrupt(Ui), obtaining the private keys ri and xi.
2. Afterwards, he queries, Execute(U1, s1, . . . , Ur, sr), obtaining a protocol transcript. In

particular, he gets the values Y1,i, R1 and S1.
3. The adversary now can compute the key as user Ui would do according to the protocol

description: K1 = Y1,iS
xi
1 Rri

1 .
4. The adversary now queries Test(Uj, sj) on any user instance involved in the above

execution. Since he knows the key established, he wins the game with probability
one.

Please note that session sj of user Uj remains fresh, since, the adversary has not made
any Send or Reveal query, so the attack is legitimate.

Remark 4. In Protocols 3 and 4 in López-Ramos et al. [15], it is described how to proceed when
participants may join or leave the group. However, when a participant leaves, the only user changing
his private and public keys is the new controller. This means that the rest of the users will have
the same private and public key used for previous instances. Therefore, when corrupting any user
that is not the new controller, one will obtain their private keys and mount the attack described
above. Protocol 2, can also be attacked in the same way, just changing the computations to obtain
the session key according to the protocol description.

Remark 5. As observed in Theorem 2.4 in López-Ramos et al. [15], the keying messages sent to
establish the key can be seen as ElGamal-like encryptions of the key K1 under a different key for



Symmetry 2021, 13, 332 9 of 10

each user. In that sense, the protocol can be interpreted as a key transport protocol, which cannot be
forward secret.

Remark 6. Countermeasures: If a security proof of the protocols in López-Ramos et al. [15] is
provided for passive adversaries, and one consider the private keys as random nonces to be used
only in one instance of the protocol, one could then apply the compiler in Katz and Yung [8] to
avoid active attacks, generating long term keys for each user to compute digital signatures on all the
exchanged messages to guarantee authentication. In that case, if the keys are nonces, Corrupt oracle
queries would return the signing private keys, thus, corrupted users would not be able to compute
the session keys and forward secrecy would also be granted.

5. Conclusions

As demonstrated above, the protocol proposed by López Ramos et al. [15] does not
offer security guarantees. The paper does not provide a rigorous security proof in any
standard security model using provable security techniques. The proofs provided are too
schematic. If a compiler for authentication is used and the private keys are ephemeral,
some attacks could not be applicable. Nevertheless, a security proof should be provided.

Author Contributions: Individual contributions to this article: conceptualization, J.M.C. and A.S.C.;
methodology, J.M.C. and A.S.C.; validation, J.M.C. and A.S.C.; formal analysis, J.M.C. and A.S.C.;
software, J.M.C. and A.S.C.; investigation, J.M.C. and A.S.C.; resources, J.M.C. and A.S.C.; writing—
original draft preparation, J.M.C. and A.S.C.; writing–review and editing, J.M.C. and A.S.C.; project
administration, J.M.C. and A.S.C.; funding acquisition, J.M.C. and A.S.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded in part through research project MTM2017-83506-C2-2-P by the
Spanish MICINN.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bellare, M.; Rogaway, P. Entity Authentication and Key Distribution; CRYPTO, Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 1993; Volume 773, pp. 232–249.
2. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure against Dictionary Attacks; EUROCRYPT, Lecture Notes

in Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1807, pp. 139–155.
3. Boyd, C.; Mathuria, A. Protocols for Authentication and Key Establishment; Information Security and Cryptography; Springer:

Berlin/Heidelberg, Germany, 2003.
4. Burmester, M.; Desmedt, Y. A secure and scalable Group Key Exchange system. Inf. Process. Lett. 2005, 94, 137–143. [CrossRef]
5. Bohli, J.; Vasco, M.I.G.; Steinwandt, R. Secure group key establishment revisited. Int. J. Inf. Sec. 2007, 6, 243–254. [CrossRef]
6. Boyd, C.; Davies, G.T.; Gjøsteen, K.; Jiang, Y. Offline Assisted Group Key Exchange; ISC, Lecture Notes in Computer Science;

Springer: Berlin/Heidelberg, Germany, 2018; Volume 11060, pp. 268–285.
7. Vasco, M.I.G.; del Pozo, A.L.P.; Corona, A.S. Group key exchange protocols withstanding ephemeral-key reveals. IET Inf. Secur.

2018, 12, 79–86. [CrossRef]
8. Katz, J.; Yung, M. Scalable Protocols for Authenticated Group Key Exchange; CRYPTO, Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 2003; Volume 2729, pp. 110–125.
9. Abdalla, M.; Bohli, J.; Vasco, M.I.G.; Steinwandt, R. (Password) Authenticated Key Establishment: From 2-Party to Group; TCC,

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4392, pp. 499–514.
10. Neupane, K.; Steinwandt, R.; Corona, A.S. Group Key Establishment: Adding Perfect Forward Secrecy at the Cost of One Round; CANS;

Springer: Berlin/Heidelberg, Germany, 2012; Volume 7712, pp. 158–168.
11. Vasco, M.I.G.; Robinson, A.; Steinwandt, R. Cryptanalysis of a Proposal Based on the Discrete Logarithm Problem Inside Sn.

Cryptography 2018, 2, 16. [CrossRef]
12. Steinwandt, R.; Corona, A.S. Cryptanalysis of a 2-party key establishment based on a semigroup action problem. Adv. Math.

Commun. 2011, 5, 87–92. [CrossRef]

http://doi.org/10.1016/j.ipl.2005.01.003
http://dx.doi.org/10.1007/s10207-007-0018-x
http://dx.doi.org/10.1049/iet-ifs.2017.0131
http://dx.doi.org/10.3390/cryptography2030016
http://dx.doi.org/10.3934/amc.2011.5.87


Symmetry 2021, 13, 332 10 of 10

13. Vasco, M.I.G.; del Pozo, A.L.P.; Corona, A.S. Pitfalls in a server-aided authenticated group key establishment. Inf. Sci. 2016,
363, 1–7. [CrossRef]

14. Baouch, M.; López-Ramos, J.A.; Torrecillas, B.; Schnyder, R. An active attack on a distributed Group Key Exchange system. Adv.
Math. Commun. 2017, 11, 715–717. [CrossRef]

15. López-Ramos, J.A.; Rosenthal, J.; Schipani, D.; Schnyder, R. An Application of Group Theory in Confidential Network
Communications. Math. Methods Appl. Sci. 2016. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2016.05.004
http://dx.doi.org/10.3934/amc.2017052
http://dx.doi.org/10.1002/mma.4244

	Introduction
	The Protocol of López Ramos et al.
	Security Model
	Cryptanalysis of the Proposal of López-Ramos et al.
	Active Attack
	Forward Secrecy

	Conclusions
	References

