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José Manuel Fernández-Guisuraga a,b,*, Alfonso Fernández-Manso c, Carmen Quintano d,e, 
Víctor Fernández-García a,f, Alberto Cerrillo g, Guillermo Marqués g, Gaspar Cascallana g, 
Leonor Calvo a 

a Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain 
b Centro de Investigação e de Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal 
c Agrarian Science and Engineering Department, School of Agricultural and Forestry Engineering, University of León, 24400 Ponferrada, Spain 
d Electronic Technology Department, School of Industrial Engineering, University of Valladolid, 47011 Valladolid, Spain 
e Sustainable Forest Management Research Institute, University of Valladolid-Spanish National Institute for Agriculture and Food Research and Technology (INIA), 
34004 Palencia, Spain 
f Institute of Geography and Sustainability, Faculty of Geosciences and Environment, University of Lausanne, Geópolis, CH-1015 Lausanne, Switzerland 
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A B S T R A C T   

The formulation and planning of integrated fire management strategies must be strengthened by decision support 
systems about fire-induced ecological impacts and ecosystem recovery processes, particularly in the context of 
extreme wildfire events that challenge land management initiatives. Wildfire data collection and analysis 
through remote sensing earth observations is of utmost importance for this purpose. However, the needs of land 
managers are not always met because the exploitation of the full potential of remote sensing techniques requires 
a high level of technical expertise. In addition, data acquisition and storage, database management, networking, 
and computing requirements may present technical difficulties. Here, we present FIREMAP software, which 
leverages the potential of Google Earth Engine (GEE) cloud-based platform, an intuitive graphical user interface 
(GUI), and the European Forest Fire Information System (EFFIS) wildfire database for wildfire analyses through 
remote sensing techniques and data collections. FIREMAP software allows automatic computing of (i) machine 
learning-based burned area (BA) detection algorithms to facilitate the mapping of (historical) fire perimeters, (ii) 
fire severity spectral indices, and (iii) post-fire recovery trajectories through the inversion of physically-based 
radiative transfer models. We introduce (i) the FIREMAP platform architecture and the GUI, (ii) the imple
mentation of well-established algorithms for wildfire science and management in GEE, (iii) the validation of the 
algorithm implementation in fifteen case-study wildfires across the western Mediterranean Basin, and (iv) the 
near-future and long-term planned expansion of FIREMAP features.   

1. Background 

Fire disturbance is considered as a widespread agent of change in 
terrestrial ecosystems (Buma et al., 2020), and has shaped mosaic-like 
pyrodiversity patterns at the landscape scale for millennia under natu
ral fire regimes worldwide (Jones and Tingley, 2022; Parks et al., 
2014a). However, current global change feedbacks are inducing rapid 

shifts in wildfire regimes (Abatzoglou and Williams, 2016; Vilà-Cabrera 
et al., 2018), characterized by an increasing wildfire extent and severity 
(Abatzoglou et al., 2018; Touma et al., 2022). 

First, prolonged drought periods together with increased heat waves, 
changing circulation phenomena and novel wind patterns in the context 
of anthropogenic climate change (Duane et al., 2019; Tripathy et al., 
2023; Wang et al., 2020) promote elevated fuel dryness conditions 
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conducive to extreme fire weather (Jones et al., 2022) and fire behavior 
(Harvey et al., 2016; Ruffault et al., 2018). Under a climate change 
context in the last decades, strong shifts from fuel-limited to drought- 
driven fire regimes have been experienced in several biomes world
wide (Boer et al., 2017). Examples include humid Mediterranean regions 
of southern Europe (Fernandes et al., 2014), or temperate forests in 
North America and southeastern Australia (Millar and Stephenson, 
2015). Second, changes in land use, fire suppression policies and 
reshaping of fuel patterns are currently interacting with climate change 
feedbacks to promote extreme fire behavior in relation to historical fire 
regimes (Duane et al., 2021). In the last few decades, land use changes 
have involved the concomitant discontinuation of agricultural and 
forestry traditional practices as a consequence of rural land abandon
ment (Pausas and Keeley, 2009), together with the proliferation of 
extensive unmanaged forest plantations (Fernández-Guisuraga et al., 
2023a) in southern European countries. This process has also been 
relevant across several regions in North America, South America and 
Eurasia (e.g. Mantero et al., 2020; Munroe et al., 2013). In addition, 
frequent and low-intensity surface fires were a dominant ecological 
process in fuel-limited ecosystems of western United States that has been 
significantly disrupted by strong fire suppression policies in the 20th 
century (Parks et al., 2015; Taylor and Skinner, 2003). Altogether, these 
global change feedbacks have led to a large landscape simplification and 
thus to an exacerbated connectivity and accumulation of flammable 
fuels (Moreira et al., 2011; Naficy et al., 2010; Roos et al., 2020), 
increasing the susceptibility to large wildfire extent and potentially 
promoting fire activity in the near future (Fernández-Guisuraga et al., 
2023b; Schoennagel et al., 2017). 

In this context, the frequency of novel extreme wildfire events is 
increasing in many regions worldwide (Boer et al., 2017; Duane et al., 
2021) and thus they represent a major ecological and socioeconomic 
threat (Wunder et al., 2021). Indeed, extreme wildfires may be associ
ated to drastic changes in the structure, composition and spatiotemporal 
dynamics of plant communities (Nolè et al., 2022), unprecedented im
pacts to the functioning of fire-prone ecosystems (Lasslop et al., 2019), 
and a significant threat to human lives and assets in wildland-urban 
interface (WUI) areas (Fernandes, 2013; Pausas et al., 2008). Exam
ples include 2007 events in Greece, Italy and western United States, 
2017 events in Portugal and Canada, or recent 2023 events in Chile and 
Turkey. 

Extreme wildfire events challenge fire response programs and land 
management initiatives in fire-prone ecosystems worldwide (e.g. Tedim 
et al., 2020; Tymstra et al., 2020). In this context, the formulation and 
planning of integrated fire management strategies must be strengthened 
by decision support systems about fire-induced ecological impacts and 
ecosystem recovery processes (Moore, 2019). Wildfire data collection 
and analysis through remote sensing earth observations is of utmost 
importance to produce cartography and spatial databases that meet land 
manager needs (FAO, 2016). Also, the analysis of historical remote 
sensing data at Landsat spatial resolution (generally 30 m) or finer 
resolution would be useful to confirm burned area (Andela et al., 2017) 
and severity trends (Fernández-García and Alonso-González, 2023) 
found at the global scale by coarser imagery. This confirmation is 
mandatory in view of the large burned area underestimations by coarser 
spatial resolution products such as those from MODIS (e.g. Fernández- 
Guisuraga et al., 2023a; Gaveau et al., 2021). Thus, it is essential to use 
Landsat or higher resolution imagery to gather feasible statistics about 
fire size or severity, which are lacking in many countries worldwide 
(Chuvieco et al., 2020). The most obvious applications of remote sensing 
earth observations to wildfire science and management are the mapping 
burned area (BA), the assessment of fire severity, and the identification 
of ecosystem resilience to fire (Wing et al., 2014). However, the needs of 
land managers are not always met because the exploitation of the full 
potential of state-of-the-art remote sensing techniques requires high 
technical expertise and, in most of the cases, knowledge of a program
ming language (Aghababaei et al., 2022). In addition, remote sensing 

data acquisition and storage, database management, networking and 
computational requirements may involve technical difficulties in pro
cessing frameworks of fire-related geospatial data, especially if using 
moderate or high-resolution imagery. In this context, operational users 
-including land managers- can be discouraged from leveraging remote 
sensing datasets (Davies et al., 2008; Gorelick et al., 2017; Horning 
et al., 2010; Ma et al., 2015; Pettorelli, 2019). 

Google Earth Engine (GEE; Gorelick et al., 2017) is a cloud-based 
platform that has facilitated the access to high-performance 
computing with high applicability in wildfire science (e.g. Parks et al., 
2018; Piao et al., 2022; Roteta et al., 2021) because it hosts a vast remote 
sensing data catalog in the petabyte scale, including European Space 
Agency (ESA) and National Aeronautics and Space Administration 
(NASA) datasets over 40-years. These datasets can be readily processed 
at very large spatial scales using automatic parallel processing (Gorelick 
et al., 2017), taking advantage of advanced image processing techniques 
and machine learning (ML) algorithms (Amani et al., 2020). However, 
JavaScript, Python or R application programming interface (API) and 
the associated interactive development environment (IDE) in GEE still 
requires a high-level technical expertise. 

Several applications (hereafter apps) with graphical user interface 
(GUI) implemented in GEE Apps (https://www.earthengine.app/), or in 
stand-alone GUIs, allow estimating BA, fire severity and/or post-fire 
recovery, including BRIDGE (https://cimss.ssec.wisc.edu/bridge/), 
Fire Severity Analyst App (https://severus.pt/) or DELWP (http 
s://gee-fire-severity-maps.appspot.com/), exclusively by means of fire 
severity and greenness spectral indices. Monitoring Trends in Burn 
Severity (MTBS) data explorer (MDE) is a web-based application that 
leverages Google Earth Engine and a stand-alone GUI to visualize and 
analyze MTBS categorized fire severity data across United States. To the 
best of our knowledge, none of these apps integrate BA, fire severity and 
post-fire recovery trajectory algorithms together for comprehensive 
processing, nor do they implement advanced physically based and 
generalizable remote sensing algorithms in fire science (e.g. radiative 
transfer models -RTM-), customization options for end-users, or auto
matic search queries (except MDE) through wildfire databases. To fill 
this gap, and facilitate the automatic implementation of such algorithms 
by land managers across large regions worldwide, we introduce in this 
paper a novel GEE-based app. The so-called FIREMAP app allows sys
tematically computing ML-based BA detection algorithms to facilitate 
the mapping of (historical) fire perimeters, fire severity spectral indices 
and post-fire recovery trajectories through the inversion of physically- 
based radiative transfer models (RTMs). Here, we introduce (i) the 
FIREMAP platform architecture, (ii) the implementation of well- 
established algorithms for wildfire science and management, (iii) the 
validation of the algorithm implementation in several case-study wild
fires across the western Mediterranean Basin, and (iv) the near-future 
and long-term planned expansion of FIREMAP features. 

2. FIREMAP software 

FIREMAP (current version 1.0) is a GEE-based app hosted at the 
University of León (https://firemap.unileon.es/) with a user-friendly 
GUI that encompasses all app functionalities. FIREMAP is freely acces
sible, however, users can log in through a personal account in which 
their favorite search records can be saved. The most relevant functions 
are the automatic (i) BA mapping and fire scar delineation through ML- 
based classification, (ii) computation of fire severity spectral indices, 
and (iii) calculation of post-fire fractional vegetation cover (FCOVER) 
through the ML-based inversion of RTMs (Fig. 1). The left panel of the 
main screen (Fig. 2A) provides the inputs for all algorithms. The user can 
select from the drop-down menus the algorithm and the predefined 
multispectral sensors [Thematic Mapper (TM), Enhanced Thematic 
Mapper Plus (ETM+), Operational Land Imager 1–2 (OLI 1–2) onboard 
Landsat 5–9, and Multispectral Instrument (MSI) onboard Sentinel-2], 
whose availability varies depending on the algorithm. The region of 
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interest can be defined by using historical wildfire perimeters 
(2008–2023), filtered by country and region, through the database of 
the European Forest Fire Information System (EFFIS; San-Miguel-Ayanz 
et al., 2013). Alternatively, the user can also define its own region of 
interest by manually digitizing a polygon. The dates of interest can be 
entered either manually, e.g. by providing the pre- and/or post-fire date 
range, or by using dates in the EFFIS database if the perimeter of a 
historic wildfire corresponds to the region of interest. FIREMAP auto
matically selects the best available scenes (see Section 2.2) within the 

date range. When the algorithm is run, the output automatically appears 
in the central part of the main screen (Fig. 2B). The user can choose the 
layers to display in the table of contents (e.g. pre- and/or post-fire im
ages used in the algorithm, or only the algorithm output itself), 
customize their display, and check the scene dates involved in the al
gorithm execution (Fig. 2C). Further, results can be exported to Google 
Drive. Another relevant menu in the right side of FIREMAP main screen 
enables to load auxiliary layers such as base maps, including high spatial 
resolution orthophotos, or land cover products (Fig. 2D). 

2.1. Platform architecture 

FIREMAP software is designed as a reactive web application devel
oped in JavaScript, leveraging the Vue.js and Vuetify.js frameworks to 
build the GUI. The geographic information system (GIS) viewer of the 
GUI are developed using the OpenLayers library, in order to be able to 
create interactive maps and represent multiple types of spatial data. This 
design allowed to implement in an intuitive and reliable way all the 
capabilities of the solution developed in the GEE JavaScript API. FIRE
MAP software rely on an open source relational database management 
system PostgreSQL with high robustness and power, particularly in 
managing spatial information and large data volumes. This database is 
used to store user simulations and some complementary and necessary 
assets for the correct functioning of the application. In order to allow 
users to access the information stored in the database and perform some 
operations, a custom Node.js backend was developed using the Express.js 
and Sequelize frameworks. The web application and backend are avail
able to users using an Apache web server. The GUI aspect of the web 
application has a clean and simple environment following Google's 
Material Design recommendations. This user-friendly GUI are also 
adaptable to mobile devices, keeping the same functionalities as the web 
application. 

2.2. Implemented workflows 

2.2.1. Fire scar delineation 
The initial version of the BA algorithm implemented in FIREMAP 

involves a supervised ML classification to procure a BA vector of the 
region of interest defined by the user. A data-mining approach using a 
large predefined training dataset (e.g. Gaveau et al., 2021; Ramo et al., 
2018) is adopted, following a mono-temporal perspective relying on 
atmospherically corrected, harmonized Sentinel-2 (S2) post-fire Level-2 
A scenes (COPERNICUS/S2_SR_HARMONIZED dataset in GEE from 2018 
onwards). First, we considered in this initial version the exclusive use of 
post-fire scenes to (i) minimize commission errors associated with land 
cover changes such as logging, harvesting or flooding in the post-fire 
period (assuming those associated with shadows and water bodies) 
(Chuvieco et al., 2019), and (ii) maximize the synergistic potential of S2 
near-infrared (NIR), short-wave infrared (SWIR), and red-edge (RE) 
bands to discriminate the burned signal by operating with individual 
bands themselves rather than using context-dependent, broadband 
spectral indices with limited spectral information (Huang et al., 2016; 
Quintano et al., 2023). Although mono-temporal approaches are usually 
preferred when using individual bands, complex interactions among 
them as inputs in data-mining ML approaches can be expected (Afira and 
Wijayanto, 2022). Second, cloud masks in S2 Level-1C scenes may 
seriously underestimate the presence of dense clouds and cirrus, with 
omission errors higher than 50% (Coluzzi et al., 2018). The use of S2 
Level-2 A scenes minimizes this issue but may feature a topography 
overcorrection in mountain areas (Roteta et al., 2021). More user op
tions (multi-temporal approaches and additional sensors, including S2 
Level-1C) will be provided in future implementations (see Section 4) to 
procure balanced BA assessment performance under a wide variety of 
environmental contexts. 

The BA algorithm first considers using a single-date approach to 
select the scene closest to the post-fire date specified by the user (or by 

Fig. 1. Schematic overview of FIREMAP workflow.  
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the EFFIS database if refinement of the BA inside the official perimeter is 
desired), because fire scar delineation through BA analyses are expected 
in FIREMAP to be conducted within the expected wildfire extent or 
affected regions, rather than as a blind tool applied over large, untar
geted areas. The single-date approach is only considered if the region of 
interest within the closest-date scene has <5% of non-valid pixels (e.g. 
clouds, cirrus, cloud shadows or bad acquisition) as assessed by the S2 
quality assessment band (QA60). This option is preferred because of the 
high post-fire responses at the short-term in some ecosystem types and 
regions in the western Mediterranean Basin (e.g. Fernández-Guisuraga 
et al., 2023c), and as determined by internal testing where a reduction in 
the BA signal was observed beyond this window in productive envi
ronments. FIREMAP also allows pixel-based temporal mean composites 
to be exploited when the image closest to the post-fire date specified by 

the user does not meet the above condition, thus exhibiting a great 
advantage in large burned areas (Roteta et al., 2021). FIREMAP auto
matically uses a maximum range of 60-days to perform the mean com
posite, otherwise, the user is warned. 

The Random Forest (RF) classifier (Breiman, 2001) implemented in 
GEE was trained using individual bands of S2 Level-2 A post-fire scene 
and burned/unburned samples (binary variable). The bands at 60 m of 
spatial resolution were discarded because of their high sensitivity to 
atmospheric effects (Fernández-Guisuraga et al., 2021a; Jia et al., 2016). 
We chose RF instead of other data-mining classifiers in GEE because it 
can unravel complex, non-linear relationships between the predictors 
and the binary variable, can detect intricate interactions among the 
predictors, minimizes overfitted responses, handles efficiently non- 
balanced class data, is not very sensitive to data multicollinearity, 

Fig. 2. Main screen of the FIREMAP graphical user interface (GUI).  
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does not assume a specific distribution of the response variable, and is 
largely computationally-efficient in GEE (Belgiu and Drăguţ, 2016; 
Breiman, 2001; Lary et al., 2016; Quintano et al., 2023; Roteta et al., 
2021). The default RF hyperparameters in the GEE implementation were 
preserved, except for the number of trees, which was set to 500 to 
improve computational efficiency without losing precision in the BA 
estimates as determined by recursive validation of the BA classification 
algorithm over independent wildfires (see Section 3.1). We calculated 
the mean decrease in the Gini Index (dGI) to assess RF variable impor
tance on classification accuracy. 

Burned and unburned training samples were acquired from grading 
products depicting fire extent and impact over 7 wildfires across the 
Iberian Peninsula (Table 1 and Fig. 3) in the framework of Copernicus 
Emergency Management Service (CEMS; https://emergency.copernicus. 
eu/) activations. The CEMS grading maps are produced through expert 
photo-interpretation and supervised classification of very high spatial 
resolution satellite imagery (Dorati et al., 2018), and classifies fire im
pacts on vegetation and soils into destroyed, damaged, possibly 
damaged, and non-damaged categories for rapid damage assessment 
purposes. We conducted a randomly stratified sampling of 10,000 points 
from the 7 CEMS grading products, using fire impact categories and non- 
damaged class as strata to ensure higher classification accuracy (Collins 
et al., 2020) by balancing the spectral response on the training samples 
as a function of the potential wildfire ecological impact. A minimum 
distance of 100 m was ensured both between sampled points within the 
same wildfire and from the polygon boundaries of the fire impact cat
egories in the CEMS grading products. The points were labeled as burned 
(destroyed, damaged, possibly damaged) or unburned (non-damaged) 
samples. The RF classifier featured an overall accuracy of 97.82% by 
means of the internal model validation. The three most important var
iables in the RF classifier were the band 12 (SWIR-2; dGI = 1191.37), the 
band 8 A (NIR; dGI = 624.31) and the band 5 (RE; dGI = 506.16), which 
is consistent with previous research where the NIR and SWIR were the 
most important regions to map BA using S2, both with individual bands 
and with spectral indices comprising these regions (e.g. Gibson et al., 
2020; Pinto et al., 2021; Roteta and Oliva, 2020). The remaining S2 
bands had dGI values below 300. The training samples were incorpo
rated as a GEE asset. When the algorithm is run in FIREMAP the results 
are visualized in the main screen as a categorized BA map, and the re
sults can be exported to the user's Google Drive account in ESRI shapefile 
format for the region of interest. 

2.2.2. Fire severity assessment 
Currently, FIREMAP supports the automatic calculation of the most- 

commonly used bi-temporal fire severity spectral indices derived from 
the Normalized Burn Ratio (NBR; López-García and Caselles, 1991), 
including the differenced NBR (dNBR; Key, 2006), or their relativized 
variants considering the pre-fire scenario, i.e. the Relative dNBR 
(RdNBR; Miller et al., 2009) or the Relativized Burn Ratio (RBR; Parks 
et al., 2014b). The FIREMAP algorithm allows the use of S2 Level-2 A 
(COPERNICUS/S2_SR_HARMONIZED dataset in GEE) scenes and Landsat 
Level 2, Collection 2, Tier 1 atmospherically corrected scenes of the TM 
(LANDSAT/LT05/C02/T1_L2), ETM+ (LANDSAT/LE07/C02/T1_L2), 
OLI1 (LANDSAT/LC08/C02/T1_L2), and OLI2 (LANDSAT/LC09/C02/ 
T1_L2) sensors based on user-defined dates of interest. In addition to the 
dNBR, RdNBR and RBR indices, used operationally in the Rapid Damage 
Assessment (RDA) module of the EFFIS, or in the Monitoring Trends in 
Burn Severity (MTBS) program (Picotte et al., 2020), and considered as a 
methodological reference in fire severity initial assessments (Soverel 
et al., 2010), FIREMAP also calculates the dNBR-EVI index proposed by 
Fernández-García et al. (2018). The dNBR-EVI index has shown not only 
a high generalization capability across environmental conditions in the 
Iberian Peninsula, but also high accuracy in estimating soil fire severity 
through initial assessments. The authors attributed the high perfor
mance of the dNBR-EVI index to (i) the absence of spectral signal 
saturation at high fire severity, (ii) the use of more spectral information 
than that provided by the NIR and SWIR bands of traditional fire severity 
indices, (iii) the combination of mono-temporal and bi-temporal per
spectives. See Fernández-García et al. (2018) for more in-depth details. 

As in the BA algorithm implemented in FIREMAP, the calculation of 
spectral indices can be performed both for the user-defined region of 

Table 1 
Wildfire events from the Copernicus Emergency Management Service (CEMS) 
used to acquire training samples and validate the FIREMAP burned area (BA) 
product.  

CEMS activation 
code 

Name Start date Fire size 
(ha) 

BA 

EMSR305 La Drova August 6th, 
2018 

2955 training 

EMSR362 Fuente de la 
Corcha 

June 1st, 2019 1577 training 

EMSR365 
Torre de 
l'Espanyol 

June 26th, 
2019 5047 training 

EMSR458 
Cabezuela del 
Valle 

August 27th, 
2020 3364 training 

EMSR590 Ladrillar July 11th, 
2022 

11,927 training 

EMSR599 Folgoso do 
Courel 

July 14th, 
2022 

13,249 training 

EMSR625 Vall d'Ebo 
August 13th, 
2022 11,317 training 

EMSR227 Encinedo 
August 22nd, 
2017 

9940 validation 

EMSR538 Navalacruz August 14th, 
2021 

22,768 validation 

EMSR580 Sierra de la 
Culebra 

June 15th, 
2022 

25,217 validation  

Fig. 3. Location of wildfires used to calibrate/validate FIREMAP algorithms for 
burned area (BA), severity (sev) and vegetation recovery (rec) across the Ibe
rian Peninsula (southwestern Europe). 
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interest and for the official fire perimeters of the EFFIS database. The 
algorithm automatically selects the date range of interest for the pre- 
and post-fire scenes in the case of using an official perimeter from the 
EFFIS database. Otherwise, the date range can be manually selected by 
the user. The automatic search for pre- and post-fire scenes of acceptable 
quality can either be based on a single-date approach or on pixel-based 
temporal mean composites as determined by the Sentinel (QA60) or 
Landsat (QA_PIXEL) quality assessment bands (see Section 2.2.1). When 
the user requests the calculation of a spectral index in FIREMAP, the 
result is automatically displayed on the main screen as a continuous or 
categorized fire severity map, with the possibility of using user-defined 
thresholds. The latter has been included because of the ecosystem- 
dependent nature of the relationships between the CBI and spectral 
indices (Fernández-Guisuraga et al., 2023d). The results can be exported 
to the user's Google Drive account in the preferred raster format for the 
region of interest. 

2.2.3. Post-fire vegetation recovery assessment 
FIREMAP currently calculates the post-fire FCOVER for the user- 

defined time series and region of interest as a proxy for vegetation re
covery trajectories through the ML-based inversion of RTMs, which has 
recently become a reliable alternative to retrieve biophysical variables 
in burned landscapes (e.g. Fernández-Guisuraga et al., 2021a, 2021b, 
2022). 

First, the PROSPECT-D leaf hemispherical transmittance and reflec
tance model (Féret et al., 2017), and the 4SAIL (Verhoef et al., 2007) 
canopy reflectance model, coupled in the PROSAIL-D RTM (Fernández- 
Guisuraga et al., 2021a), was used to generate a simulation dataset of 
top-of-canopy spectral reflectance and the corresponding FCOVER. The 
extraction of prior knowledge on leaf [chlorophyll a and b concentration 
(Ca+b), carotenoid concentration (Ccar), anthocyanin concentration 
(Cant), brown pigments fraction (Cbr), dry matter content (Cdm), water 
content (Cw)] and canopy [leaf area index (LAI), average leaf angle 
(ALA),] functional traits (FTs) used to parametrize PROSPECT-D and 
4SAIL models was conducted for the 2265 species compiled in the BROT 
2.0 database (Tavşanoğlu and Pausas, 2018) throughout the Mediter
ranean Basin and close locations that share similar ecological distur
bances. The minimum and maximum boundaries (Table 2) for FTs, leaf 
structure parameter (N), hot spot effect (hspot), soil brightness (αsoil) and 
viewing geometry conditions were inferred on the basis of the BROT 2.0 
database itself, the TRY database (Kattge et al., 2011), field expert 
knowledge and literature review of regional to global studies (e.g. 
Campos-Taberner et al., 2018; Fernández-Guisuraga et al., 2023d; 
García-Haro et al., 2018). The gap fraction at nadir was computed from 
LAI and ALA (Nilson, 1971) to estimate FCOVER following turbid- 
medium assumptions (Fernández-Guisuraga et al., 2023d). We accoun
ted for the effect of ground spatial heterogeneity at subpixel level by 

using a linear spectral mixing model considering vegetation and bare 
soil endmember fractions in potential mixed pixels (Campos-Taberner 
et al., 2016; Fernández-Guisuraga et al., 2021a). A total of 10,000 
possible combinations of the variable space with minimum and 
maximum boundaries as defined by the PROSAIL-D RTM input param
eters were sampled using a Latin hypercube sampling design (Fernán
dez-Guisuraga et al., 2021b; Verrelst et al., 2017) to optimize the 
FCOVER retrieval in GEE. 

Second, the PROSAIL-D RTM was run in forward mode from the 
selected input parameter combinations to procure a reflectance simu
lation dataset in the optical domain (400–2500 nm with a spectral res
olution of 1 nm) with a FCOVER value associated to each reflectance 
simulation. Following Fernández-Guisuraga et al. (2023d), the simula
tion dataset was expanded with 20% of representative spectra of burned 
landscapes, including char, ash, non-photosynthetic vegetation and bare 
soil. We extracted the representative spectra from open-access labora
tory (ECOSTRESS, Meerdink et al., 2019; LUCAS Topsoil 2015, Jones 
et al., 2020) and field-based (Morgan et al., 2005) spectral libraries, i.e. 
reference endmembers. FIREMAP currently supports the FCOVER 
retrieval from S2 scenes. Then, PROSAIL-D top-of-canopy reflectance 
simulations and reference endmembers were resampled to the S2 band 
configuration using the MSI sensor spectral response function and 
bandwidth. The FCOVER retrieval must be based on atmospherically 
corrected data to provide interpretable canopy reflectance by PROSAIL- 
D RTM (Fernández-Guisuraga et al., 2021a; Jia et al., 2016), and thus 
the algorithm relies on harmonized S2 post-fire Level-2 A data 
(COPERNICUS/S2_SR_HARMONIZED dataset in GEE) discarding 60 m 
bands as in the BA product. Additional sensors will be included in future 
FIREMAP versions (see Section 4) to allow for the FCOVER retrieval 
prior to 2018. 

Third, the training dataset was incorporated as an asset in GEE to 
perform the ML-based PROSAIL-D RTM inversion and retrieve the 
FCOVER from post-fire S2 scenes. The RF regression algorithm has 
become a highly-adopted alternative for this purpose in GEE due to its 
high computational efficiency (Campos-Taberner et al., 2018). There
fore, we considered the implementation of RF regression in FIREMAP to 
build the relationships between the FCOVER and the corresponding 
reflectance in the S2 band configuration. We preserved the default 
values for RF hyperparameters except for the number of trees, which 
was set to 500 to improve computational efficiency in GEE. As in BA and 
fire severity algorithms implemented in FIREMAP, the FCOVER retrieval 
can be performed both for the user-defined region of interest and for the 
official fire perimeters of the EFFIS database. Similarly, the selection of 
the scene closest to the post-fire date specified by the user can be per
formed through a single-date approach as determined by the S2 quality 
assessment band (QA60), or alternatively through pixel-based temporal 
mean composites. The calibrated RF model was then applied to the 
observed reflectance in the selected S2 Level-2 A post-fire scene to 
retrieve pixel-based FCOVER predictions for the region of interest. The 
result is automatically displayed on the main screen of FIREMAP as a 
continuous raster that can be exported to the user's Google Drive 
account. 

2.3. Additional geospatial data 

The core search tool in FIREMAP is based on historical wildfire pe
rimeters (2008–2023) of the RDA module of EFFIS, which is a main 
component of the CEMS. This high-quality database is the main 
harmonized data source of wildfires in the European Union (Turco et al., 
2019). EFFIS BA mapping relies on active fire detection products from 
the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate 
Resolution Imaging Spectroradiometer (MODIS), and a semi-automatic 
classification of MODIS red-NIR (spatial resolution of 250 m) and 
SWIR (500 m) bands. Since 2018, the RDA incorporates S2 data to map 
BA smaller than 30 ha and refining the fire scars initially mapped from 
MODIS data. The EFFIS database is currently updated twice every day, 

Table 2 
Range of input parameters in PROSPECT-D and 4SAIL models.  

PROSPECT-D Symbol Unit Minimum Maximum 

Leaf structure parameter N – 1 2.5 
Chlorophyll a and b 

concentration 
Ca+b 

μg 
cm− 2 10 90 

Carotenoid concentration Ccar 
μg 

cm− 2 0.5 20 

Anthocyanin concentration Cant 
μg 

cm− 2 0 50 

Brown pigments fraction Cbr – 0 1 
Dry matter content Cdm g cm− 2 0.001 0.02 
Water content Cw g cm− 2 0.001 0.02 
4SAIL Symbol Unit Minimum Maximum 
Leaf area index LAI m2 m− 2 0 6 
Average leaf angle ALA ◦ 20 80 
Hot spot effect hspot – 0.001 1 
Soil brightness factor αsoil – 0 1 
Vegetation cover FCOVER – 0 1  

J.M. Fernández-Guisuraga et al.                                                                                                                                                                                                             



Ecological Informatics 81 (2024) 102591

7

and wildfire statistics at the NUTS3 level (Eurostat, 2021), including 
start and end date of the wildfires, are provided by the European Union 
member states (Turco et al., 2019). The availability of historical wildfire 
perimeters, along with wildfire dates and NUTS3 location, provides 
FIREMAP with a search engine with great potential for end-user auto
mation. Real-time data of active wildfires can be displayed on the 
FIREMAP main screen through the MODIS Collection 6 Active Fire 
Product (Giglio et al., 2016). 

To facilitate the interpretation of the results, FIREMAP can also 
display several base maps, including Google Satellite (Landsat/Coper
nicus, Airbus, Maxar Technologies), OpenStreetMap, and topographic 
data from the Spanish National Center of Geographic Information 
(CNIG). For Spain, FIREMAP also provides (i) very high spatial resolu
tion orthophotographs (0.5 m) acquired by the Spanish National Plan for 
Aerial Orthophotography (PNOA), (ii) the Land Cover and Use Infor
mation System of Spain (SIOSE; Valcarcel et al., 2008), and (iii) the 
Spanish Forest Map at 1:25000 (SFM25) derived from the fourth Spanish 
NFI (SNFI4). 

3. Product validation 

3.1. Burned area 

The BA algorithm in FIREMAP was validated over three independent 
wildfires (i.e. not used for calibration purposes) across the Iberian 
Peninsula (Table 1 and Fig. 3). These wildfires were selected on the basis 
of their large extent and high spatial heterogeneity in terms of fire 
severity, affected ecosystems and environmental conditions influencing 
the magnitude of post-fire responses (Fernández-Guisuraga et al., 2023c; 
Quintano et al., 2023). Indeed, the validation wildfires correspond to 
mixed-severity events that encompass a wide variety of burned ecosys
tems and land cover types, including conifer forests [e.g. Pinus sylvestris 
L., Pinus pinaster Ait., Pinus nigra Arnold subsp. salzmannii (Dunal) 
Franco], evergreen and deciduous broadleaf forests (e.g. Quercus pyr
enaica Willd., Quercus ilex L.), shrublands (e.g. Cistus sp., Erica sp., 
Cytisus sp., Genista sp.), grasslands and croplands. The CEMS grading 
maps (EMSR580, EMSR538, EMSR227) were used as ground-truth data. 
A random sampling of 10,000 points separated at least 100 m were used 
to extract ground truth data within the extension of each CEMS grading 
map and assess BA classification algorithm relying on immediately post- 
fire, harmonized S2 Level-2 A scenes. We computed a classification 
confusion matrix for each wildfire and the following accuracy metrics: 
(i) overall accuracy (OA; %), (ii) omission (OE; %) and commission (CE; 
%) errors, and (iii) Kappa index. 

The BA algorithm in FIREMAP featured a high accuracy (OA >
93.05% and Kappa >0.81), with both OE and CE being lower than 20% 
in the three test sites (Table 3). OE for the burned category ranged be
tween 16.17% and 18.96%, while CE ranged between 0.74% and 
10.25%. The largest OE and CE were found in the Encinedo wildfire 
(EMSR227). However, when inspecting very high spatial resolution 
orthophotographs (0.5 m) acquired by the PNOA shortly after the 
wildfires, we detected that CEMS maps largely omitted unburned islands 
inside the fire scars (Fig. 4). Besides detecting small unburned islands, 
the BA algorithm implemented in FIREMAP was able to detect other 
non-burned features in the landscape such as forest tracks, as well as 
logged and harvested areas digitized as burned in CEMS perimeters, e.g. 
northern and southernmost limits in the Navalacruz wildfire, and east
ernmost area in the Encinedo wildfire (Fig. 4). This may explain the OE 
for the burned areas evidenced here when using a non-strictly validation 
dataset that may contain propagation errors (Bastarrika et al., 2014). 
However, the OE and CE reported here, likely higher than the actual 
ones for the analyzed wildfires, are within the requirements of the end- 
users (Mouillot et al., 2014). Therefore, the initial version of the algo
rithm implemented in FIREMAP can be a solid alternative for fine-scale 
BA mapping, although it should be tested in other regions worldwide. 

3.2. Fire severity 

The fire severity retrieval based on the automatic calculation of 
(mono)bi-temporal spectral indices currently implemented in FIREMAP 
was validated throughout five wildfires across the Iberian Peninsula 
(Table 4 and Fig. 3) encompassing a wide variety of ecosystem types. 
Although FIREMAP supports the calculation of the RdNBR index, it was 
not validated and thus it will not be supported in future versions because 
of the inherent mathematical instability of the formulation with small 
positive and negative values of the pre-fire NBR, which may cause 
anomalous fire severity estimates to emerge in many ecosystems 
worldwide (Parks et al., 2014b). 

We conducted an initial assessment of fire severity in the field within 
two months after the wildfires. The Composite Burn Index (CBI; Key and 
Benson, 2005) was measured in field plots of 20 m × 20 m (n = 234) 
stratified by ecosystem type (Table 4), and located in homogeneous 
areas regarding fire effects on vegetation and soils and thus with an 
expected uniform spectral signal. A minimum distance of 100 m was 
ensured between plots, which were georeferenced using a GPS receiver 
in post-processing mode (RMSEX,Y < 1 m). We followed an adapted CBI 
protocol (Fernández-García et al., 2018) to the typical post-fire 
ecosystem conditions in southern European countries. Specifically, we 
did not consider neither individual CBI attributes related to extended 
assessments (e.g. delayed mortality or presence of colonizers) nor at
tributes that are not representative in these regions (e.g. heavy fuel 
consumption in the forest floor). See Fernández-García et al. (2018) for 
more details regarding the adapted CBI protocol. The individual CBI 
attributes measured by the agreement of at least two observers across 
five ecosystem strata (i.e. substrate and four vegetation layers) were 
rated using a semi-quantitative scale between zero (unchanged) and 
three (maximum fire severity). The scores of the CBI attributes were first 
averaged per stratum, and then the total CBI score of the plot was ob
tained through the average of the CBI scores per strata. 

The dNBR, RBR and dNBR-EVI spectral indices were retrieved by the 
FIREMAP fire severity product using harmonized S2 Level-2A pre- and 
post-fire scenes (COPERNICUS/S2_SR_HARMONIZED dataset in GEE) 
due to the field plot size of 20 m × 20 m (S2 pixel size). The values of the 

Table 3 
Confusion matrix for the burned area (BA) classification algorithm implemented 
in FIREMAP for the three validation wildfires. We show the overall accuracy 
(OA), omission (OE) and commission (CE) errors, as well as the Kappa index.  

EMSR580 
Sierra de la Culebra  

Ground truth   

Unburned Burned 

Predicted Unburned 7425 419  
Burned 16 2140  
OE (%) 0.21 16.37  
CE (%) 5.34 0.74  
OA (%) Kappa   
95.65 0.88  

EMSR538 
Navalacruz  Ground truth    

Unburned Burned 
Predicted Unburned 8666 199  

Burned 103 1032  
OE (%) 1.17 16.17  
CE (%) 2.24 9.07  
OA (%) Kappa   
96.98 0.86  

EMSR227 
Encinedo  Ground truth    

Unburned Burned 
Predicted Unburned 7309 467  

Burned 228 1996  
OE (%) 3.02 18.96  
CE (%) 6.01 10.25  
OA (%) Kappa   
93.05 0.81   
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spectral indices were extracted for each CBI plot using 20 points sampled 
in a systematic grid (2 m spacing) within each plot because of the po
tential mismatch between the plot edges and the S2 grid (Picotte and 
Robertson, 2011). 

The relationships between the CBI measured in the field plots and 
spectral indices retrieved by the FIREMAP fire severity product were 
evaluated using ordinary least squares (OLS) models for each ecosystem 
type. We tested for linear and quadratic relationships. The performance 
of OLS models was assessed through the coefficient of determination 
(R2). The spectral indices featured a consistent linear relationship 
throughout the different ecosystem types (Fig. 5). The model fit reported 
here was in line with previous research elsewhere in which image 
search, download and index calculation is performed at local computers 
(e.g. Miller et al., 2009; Soverel et al., 2010; Veraverbeke et al., 2010), as 
well as with other studies relying on the GEE code editor to calculate 
composite fire severity metrics (Parks et al., 2018). The dNBR-EVI index, 

not tested so far in ecosystems other than those dominated by Pinus 
pinaster (Fernández-García et al., 2018), featured a higher overall fit (R2 

= 0.52–0.73) than the dNBR (R2 = 0.35–0.56) and RBR (R2 =

0.37–0.64) indices, particularly in conifer and deciduous broadleaf 
forests (Fig. 5). Despite the usefulness of the implementation of the 
spectral indices in FIREMAP because of their straightforward interpre
tation for managers, the magnitude of the fit for all indices was strongly 
ecosystem-dependent, so the implementation of generalizable 
physically-based methods in future FIREMAP versions (see Section 4) 
can be a solid alternative to assess fire severity in complex landscapes 
encompassing a wide variety of ecosystem types. 

3.3. Post-fire vegetation recovery 

The automatic post-fire FCOVER retrieval in FIREMAP from 
harmonized S2 Level-2 A scenes (COPERNICUS/S2_SR_HARMONIZED 

Fig. 4. Comparison between the burned area (BA) product generated in FIREMAP by using immediately post-fire S2 Level-2A scenes and Copernicus Emergency 
Management Service (CEMS) grading maps for the three independent validation wildfires. The background image of the left panels corresponds to a S2 false color 
composite (R = band 12; G = band 8 A; B = band 4). 

Table 4 
Wildfire events from the Copernicus Emergency Management Service (CEMS) used to validate the FIREMAP fire severity product. We provide the number of field plots 
established within each ecosystem type (C: conifer forest; dBL: deciduous broadleaf forest; eBL: evergreen broadleaf forest; S: shrubland).  

Wildfire Encinedo Villapadierna Navalacruz Sierra de la Culebra Ferreruela 

CEMS code EMSR227 not available EMSR538 EMSR580 EMSR602 
Location NW Spain N Spain C Spain NW-W Spain NW-W Spain 
Wildfire size (ha) 9940 82 22,768 25,217 31,473 
Wildfire date August 22nd 2017 August 22nd 2019 August 14th 2021 June 15th 2022 July 17th, 2022 

Ecosystem (#plots) dBL(21) S(31) C(10) dBL(16) C(18) eBL(7) S(21) C(34) dBL(10) 
eBL (10) S(15) 

C(13) eBL (16) S(12)  
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dataset in GEE) through the inversion of the PROSAIL-D RTM as a proxy 
for vegetation recovery trajectories was validated over nine wildfires 
across the Iberian Peninsula (Table 5 and Fig. 3). These wildfires 
encompassed a wide variety of ecosystem types, including conifer for
ests, deciduous and evergreen broadleaf forests, shrublands, grasslands 
and croplands. 

Between 6-months and one-year after fire, we established a set of 
field plots of 20 m × 20 m (n = 345) stratified into the dominant eco
systems within each wildfire. We ensured a minimum distance of 100 m 
between plots and an expected homogeneous spectral signal within each 
plot regarding vegetation legacies. The plots were georeferenced simi
larly to the CBI plots. The FCOVER was measured in four 2 m × 2 m 
subplots nested at azimuths of 45◦, 135◦, 225◦ and 315◦ within the plots 
in order to facilitate the visual estimation (at 5% intervals) of the ver
tical projection occupied by the existing vegetation strata (Fernández- 

Guisuraga et al., 2023d). The visually-estimated FCOVER in the four 
subplots were averaged to obtain the FCOVER at the plot level. See 
Fernández-Guisuraga et al. (2021a, 2023d) for more details on FCOVER 
sampling protocol. The FCOVER data automatically retrieved in FIRE
MAP were extracted for each plot of 20 m × 20 m following the same 
procedure as for the CBI data. The performance of FCOVER retrievals 
was evaluated using OLS models at the ecosystem level and with all data 
pooled together. We calculated the coefficient of determination (R2) and 
the root mean squared error (RMSE) for the relationship between the 
field-measured FCOVER and that retrieved by FIREMAP. 

The automatic FCOVER retrieval from S2 Level-2 A scenes in FIRE
MAP featured a high performance in terms of model fit (R2 = 0.78) and 
predictive error (RMSE = 12.32%) both with the data from all 
ecosystem/land cover types pooled together and individually (Fig. 6). 
The FCOVER retrievals showed no significant under- and over- 
estimation effects. These results are promising in spite of the high 
variability in the testing dataset regarding environmental conditions 
and ecosystem/land cover types dominated by different species assem
blages and thus with very distinct physiological traits and reproductive 
strategies, which can be conducive to a high spatial and spectral vari
ability of the recovery patterns in the target communities (Asner, 1998). 
The high FCOVER retrieval performance under these circumstances may 
be attributed to the high generalization ability of RTMs due to the 
inherent physical basis of reflectance simulations encompassing the 
biophysical settings of the target species assemblages (Fernández-Gui
suraga et al., 2021a; Wang et al., 2017). 

In most of the wildfires, a strong FCOVER recovery signal can be 
noticed one year after fire with respect to adjacent unburned areas 
outside the fire scars (i.e. unburned control approach) (Fig. 7). However, 
it must be noted that FCOVER exclusively depicts the top-of-canopy 
vegetation fraction seen from the nadir in single- and multi-layered 
plant communities regardless of fire-induced changes in plant species 
composition and vertical structure (Vogeler and Cohen, 2016). Never
theless, the FCOVER is one of the most relevant attributes depicting 
changes in vegetation horizontal structure to post-fire management 
(Scheffer et al., 2015; Seidl et al., 2016) and may provide the operational 
needs in the short-term to land managers for identifying intervention 
priority areas targeted at controlling soil erosion (Fernández-Guisuraga 
et al., 2021b). 

4. Future implementations 

Future versions of FIREMAP will incorporate new functionalities to 
increase the software potential for land managers and applicability in 
different spatial and temporal dimensions. Despite the promising results 
of the BA algorithm currently implemented in FIREMAP, future versions 
will implement a multi-temporal approach to broaden the algorithm 
functionality under a wide variety of environmental contexts, e.g. in 

Fig. 5. Relationship between the Composite Burn Index (CBI) measured in the field and spectral indices retrieved by the FIREMAP fire severity product for each 
ecosystem type (C: conifer forest; dBL: deciduous broadleaf forest; eBL: evergreen broadleaf forest; S: shrubland). 

Table 5 
Wildfire events from the Copernicus Emergency Management Service (CEMS) 
used to validate the vegetation recovery product in FIREMAP. We provide the 
number of field plots established within each ecosystem and land cover type (C: 
conifer forest; dBL: deciduous broadleaf forest; eBL: evergreen broadleaf forest; 
S: shrubland; G: grassland; Cr: cropland).  

Wildfire CEMS 
code 

Location Wildfire 
size (ha) 

Wildfire 
date 

Ecosystem 
(#plots) 

O Barco EMSR599 
NW 

Spain 12,388 
July 
14nd 
2022 

C(6) eBL(3) S 
(12) Cr(2) 

Folgoso do 
Courel 

EMSR599 
NW 

Spain 
13,249 

July 
14nd 
2022 

C(17) S(10) G 
(1) 

Sierra de la 
Culebra 

EMSR580 
NW-W 
Spain 

25,217 
June 
15th 
2022 

C(38) dBL 
(10) eBL (11) 
S(9) G(6) Cr 

(1) 

Ferreruela EMSR602 
NW-W 
Spain 

31,473 
July 
17th, 
2022 

C(13) eBL 
(16) S(12) 

Ladrillar EMSR590 W Spain 11,927 
July 
11th, 
2022 

C(25) dBL (1) 
S(1) 

Navalacruz EMSR538 C Spain 22,768 
August 
14th 
2021 

C(16) dBL 
(11) S(50) G 

(13) 

Viver EMSR656 SE Spain 4604 
March 
23rd 
2023 

C(6) eBL(1) S 
(3) 

Bejís EMSR625 E Spain 18,058 
August 
13th 
2022 

C(9) S(6) G 
(2) Cr(4) 

Vall d'Ebo EMSR580 E Spain 11,317 
August 
13th 
2022 

C(18) S(11) 
Cr(1)  
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Fig. 6. Relationship between field-measured fractional vegetation cover (FCOVER) and that retrieved by FIREMAP through the PROSAIL-D radiative transfer model 
(RTM) inversion. We show the results for all ecosystem/land cover types pooled together and individually (C: conifer forest; dBL: deciduous broadleaf forest; eBL: 
evergreen broadleaf forest; S: shrubland; G: grassland; Cr: cropland). 

Fig. 7. Wall-to-wall fractional vegetation cover (FCOVER) estimates retrieved from S2 Level-2 A scenes through the PROSAIL-D radiative transfer model (RTM) 
inversion in FIREMAP for nine validation wildfires across the Iberian Peninsula. 

J.M. Fernández-Guisuraga et al.                                                                                                                                                                                                             



Ecological Informatics 81 (2024) 102591

11

regions where topographic shadows may pose a concern, bearing in 
mind the potential commission errors associated with land use and land 
cover changes. In this context, the BA algorithm should be refined and 
validated in other climatic regions and ecosystem types to test the 
transferability performance. Also, we will enable the use of atmo
spherically corrected scenes of the TM, ETM+, OLI1 and OLI2 sensors, as 
well as top-of-atmosphere reflectance data (including that from S2 
Level-1C) to increase the time scale of the analyses. In addition, future 
versions will consider different composite techniques (e.g. minimum 
composites in the case of multi-temporal indices), test the performance 
of parsimonious RF models with the most important/least correlated 
bands, as well as implement band subsetting or decision rules to avoid 
confusion between BA and dark surfaces such as cloud shadows in the 
visible region of the spectrum (Bastarrika et al., 2011). 

The severity product in future FIREMAP releases will incorporate the 
algorithm proposed by Fernández-Guisuraga et al. (2023d), which is 
based on the estimated fire-induced change in FCOVER retrieved by 
RTMs (as in the post-fire vegetation recovery product). Remarkably, the 
algorithm has been shown to solve the transferability issues between 
plant communities inherent to the limited physical basis of spectral 
indices. Indeed, the post- to pre-fire FCOVER ratio represents a bio
physical indicator that is closely linked to fire severity descriptors 
measured in the field as the CBI (Verstraete and Pinty, 1996). We will 
also consider the implementation of ML-based inversion of RTMs in 
which the post-fire spectral signal of fire effects on several plant com
munity strata are simulated to retrieve fire severity from optical imagery 
(De Santis et al., 2009; Yin et al., 2020). 

The post-fire FCOVER retrieval in future FIREMAP versions will be 
enhanced by supporting more GEE surface reflectance data collections 
such as those from all Landsat sensors to support FCOVER retrievals 
prior to 2018 after testing the effect of lower spectral resolution than S2 
on the retrieval of biophysical properties in complex burned landscapes. 

Finally, as additional geospatial data FIREMAP will implement 
global land cover products and, where possible, wall-to-wall products 
from national forest inventories of countries other than Spain in order to 
improve the interpretability of the results in other regions worldwide. 

Software availability section 
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Contact: jofeg@unileon.es 
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Software access: https://firemap.unileon.es/ 
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