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The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and
the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate
with velocity different than the speed of light, a difference that can be O(1) for many models of
dark energy. We determine the conditions behind the anomalous GW speed, namely that the scalar
field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl
tensor. If these conditions are realized in nature, the delay between GW and electromagnetic (EM)
signals from distant events will run beyond human timescales, making it impossible to measure the
speed of GWs using neutron star mergers or other violent events. We present a robust strategy to
exclude or confirm an anomalous speed of GWs using eclipsing binary systems, whose EM phase
can be exquisitely determined. he white dwarf binary J0651+2844 is a known example of such
system that can be used to probe deviations in the GW speed as small as cg/c− 1 & 2 · 10−12 when
LISA comes online. This test will either eliminate many contender models for cosmic acceleration
or wreck a fundamental pillar of general relativity.

PACS numbers: 04.30.Nk 04.50.Kd, 95.36.+x, 98.80.-k

Introduction and summary. The direct detection
of gravitational radiation [1, 2] has initiated a new era for
astronomy, astrophysics and fundamental physics. The
observed gravitational wave (GW) events and the ones
to come will usher in novel ways to test the nature of
gravity [3]. Here, we will argue that probing the speed of
GWs will be a decisive test for gravity and dark energy
models.

The nature of the propagation of GWs is a question of
great and fundamental interest. Einstein’s General Rel-
ativity (GR) predicts two massless tensor polarizations
each traveling at the speed of light, c, with an amplitude
inversely proportional to the distance from the source
[4]. However, major outstanding theoretical issues such
as the nature of dark energy and dark matter have led
to consider the possibility that gravity differs from GR
in some regimes (see e.g. [5, 6] for reviews). In alter-
native theories of gravity, additional polarizations may
propagate, each with potentially different velocities, at-
tenuations and effective masses [7]. This issue has been
well studied in cosmology, and has been a topic of dis-
cussion in connection to the early [8–11] and the late
Universe [12–15]. There are fairly model-independent
tests for effects caused by additional polarizations [16],
damping [17–19], mass [20], and Lorentz symmetry vio-
lations [21, 22]. Up to date, the speed of GWs has been
upper bounded with the arrival timing of GW150914 be-
tween the two LIGO detectors [23]. Also, it has been
constrained at the ∼ 1% level from the variation of the

orbital period in binary pulsars [24]. Moreover, if cg < c,
a very stringent lower bound cg/c − 1 & −10−15 can
be obtained from the absence of gravitational Cherenkov
radiation, probed the observation of ultra-high energy
cosmic rays [25, 26].

In this paper, we analyze the speed of GWs, cg, in
generic scalar-tensor theories of gravity and ask when it
can differ from the speed of light, c. Unlike previous
studies, we do not assume a specific cosmological back-
ground, instead focusing on the local speed of gravity.
Such anomalous propagation is potentially observable if
both gravitational waves and an electromagnetic (EM)
or other non-gravitational counterpart signal can be seen
from the same source.

One of two scenarios will arise: the simultaneous ar-
rival of a GW signal with non-gravitational counterpart
from a distant source will set extremely stringent and
model independent bounds on cg. However, a very slight
difference in propagation speed (as predicted by many
models of cosmic acceleration), would cause a delay be-
tween the signals’ arrival much larger than the multi-
messenger observation campaign. In this case a GW sig-
nal never gets identified with its true EM counterpart
and other techniques must be used. We will discuss one
such method, the phase lag test with eclipsing binaries,
based on monitoring periodic galactic sources observable
in GW by future space missions such as LISA [27], and
in EM by other means, and comparing the phase of the
two signals.
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A measurement of non-trivial cg would have profound
implications for our understanding of gravity. As we shall
see, the anomalous propagation of GW is directly related
to fundamental properties of the underlying gravitation
theories which can hence be distinguished on this basis.
Conversely, an observation consistent with GWs travel-
ing at the speed of light will place much more severe con-
straints than any other available test on the large class
of theories predicting an anomalous GW speed. In fact,
current cosmological constraints on general scalar-tensor
theories are only of the order of O(1 − 0.5) [28], while
future forecasts will reach O(0.1−0.01) [29]. Testing the
speed of GWs will dramatically improve these constraints
to O(10−12 − 10−17).

Scalar fields and the speed of GWs. In the fol-
lowing, we are going to present a general method to
compute the speed of GWs. Let us start with an ex-
ample theory that predicts anomalous GWs propaga-
tion: a quartic shift-symmetric Horndeski theory [30, 31]
S =

∫
d4x
√
−gL with

L = G(X)R+G′(X)
(
(�φ)2 −∇µ∇νφ∇µ∇νφ

)
, (1)

where X ≡ − 1
2 (∂φ)2 and G′ ≡ ∂G/∂X. We set c = 1 in

this section. Expanding around a background solution,
gµν → gµν + hµν , φ → φ + ϕ, yields a quadratic action
for the fluctuations

L =
1

2
[hµνDµν,ρσhρσ + hµνDµνϕ+ ϕDϕ] , (2)

where D(··· ) represent differential operators depending on
the background fields gµν and φ and their derivatives.

Since we are interested in local propagation, we adopt
Riemann normal coordinates around a point P and ex-
pand the scalar and metric background in a Taylor series
about P , gµν = ηµν− 1

3Rµρνσx
ρxσ+· · · , φ = φ0 +φµx

µ+
1
2φµνx

µxν+· · · , where φµ = ∇µφ, φµν = ∇µ∇νφ and the
derivatives and curvatures are all evaluated at P . This
leaves freedom for a rotation and boost around P.

We may now zoom in and obtain an effective action
valid around the point P by taking the scaling limit, λ→
0, with

xµ → λxµ , ϕ→ 1

λ
ϕ , hµν →

1

λ
hµν . (3)

The result is a flat space action, depending on the back-
ground field values and derivatives evaluated at P .

We will focus on the spin-2 polarizations present in
GR and neglect the additional scalar mode. Imposing
the transverse gauge condition ∂µhµν = 0, the scaling-
limit action reads

L =
1

2
hµν [G2 +G′φρφσ∂ρ∂σ]hµν+h ρ

µ G
′φµφν�hνρ+· · · ,

(4)
where we omitted terms involving both the trace of the
metric and the scalar field. We then perform a standard

3 + 1 split of hµν and restrict to the transverse-traceless
(TT) part of the spatial metric components hij ,

h00 = 0, h0i = 0, hij = hTTij , ϕ = 0, (5)

with ∂jhTTij = δijhTTij = 0. We will further assume that
the spatial shear of the background scalar configuration
is negligible.1 This assumption simplifies the analysis,
ensuring that hTTij decouple from the other perturbations
and allowing us to ignore the terms omitted in Eq. (4),
which describe the scalar polarization and non-dynamical
metric elements.

If the field gradient φµ is time-like (as expected for a
cosmological contribution) we can rotate the coordinates
so that φµ = (φ̇, 0, 0, 0), for some constant φ̇. Then, the
last term of (4) does not contribute and

L =
1

2

{[
G−G′φ̇2

] (
ḣTTij

)2

−G
(
~∇hTTij

)2
}
, (6)

from which we can read off the propagation speed

c2g =
1

1− G′
G φ̇

2
. (7)

In particular, GR corresponds to G(X) = const. and we
recover cg = 1.

In the case of a space-like field gradient we can boost
our reference frame so that the time component vanishes.
Decomposing the gradient in components parallel and

perpendicular to the GW propagation, φi = φ
‖
i + φ⊥i we

obtain that the velocity of propagation of GWs depends
on the direction as

c2g = 1 +
G′|φ‖|2

G+G′|φ⊥|2
. (8)

In general the speed is anisotropic (i.e. dependent on the
direction), and equal for both the + and × GW polar-
izations.

The scaling limit (3) elliminates all the lower derivative
terms, which is the reason that the resulting GW speed
is frequency independent. This is different for other well
studied cases, such as massive gravitons [32] (see [33, 34]
for reviews) or Lorentz violations. These other scenarios
modify the waveform in a frequency dependent way and
can thus be constrained from GW observations alone [3,
35, 36]. For the sake of simplicity we have also neglected
the scalar mode, which may also have its own anomalous
propagation speed [37–40].

1 The precise condition is φii−φjj , φij � G′/G for (i 6= j). This is
satisfied in a boosted frame with φi = 0 whenever φµ is time-like.
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Conditions for anomalous GWs speed. We now
study the origin of the anomalous speed of GWs (7, 8)
in more generality. The Lagrangian for the transverse-
traceless components (6) can be written in terms of an
effective gravitational metric

L ∝ hTTαβ
(
Gµν∂µ∂ν

)
hαβTT , (9)

determining the causal structure of GW propagation.2

The propagation path for GWs will be given by the con-
dition Gµνdxµdxν = 0 and will in general be different
from the lightcone condition gµνdx

µdxν = 0 unless the
two metrics obey a conformal relation: Gµν = Ω(x)gµν .
The lack of proportionality is found already in the simple
example theory (1), where

Gµν = G(X)gµν +G′(X)φµφν , (10)

and Gµν , gµν are connected by a disformal relation [41]
for which Gµν 6= Ω(x)gµν . Such a relation is ubiquitous
in modern scalar-tensor theories [42–45].

Let us examine the conditions for a disformal relation
to arise in a generic theory of gravity. First, it is nec-
essary that the background scalar field has a non-trivial
configuration that spontaneously breaks Lorentz invari-
ance, e.g. φµ 6= 0 in Eq. (10). In addition, we note that
the effective second-order Lagrangian (2) follows from the
second variation of the action over a background, and is
hence equal to the first variation of the equations of mo-
tion (EoM). The simplest term in the EoM producing
second derivatives and entering in (9) is the Ricci curva-
ture. When expanded to first-order, considering only the
TT components,

RTTµν = −1

2
2hTTµν and RTT = 0 , (11)

only contribute to the conformal part in the effective
gravitational metric (9).

Further second derivative terms are restricted by co-
variance to originate either from the Riemann tensor or
repeated application of covariant derivatives (e.g. third
derivatives of the scalar field), with the two cases related
by ∇µ∇νφα = ∇ν∇µφα + Rαλµνφ

λ. To first-order the
TT contribution to the Riemann tensor reads

RTTµανβ = −1

2
∂β∂αh

TT
µν +

1

2
∂ν∂αh

TT
µβ − (α↔ µ) , (12)

The above expression explicitly induces disformal terms
in Eq. (9) via contractions with scalar field derivatives.

2 We focus on the spin-2 components and assume they decouple.
Nonetheless, Eq. (9) remains valid for the propagation eigen-
states of the linearized fields (including the scalar mode and the
generalization of hTTαβ when it couples to other perturbations),

with a different GAµν for each polarization A.

In the simple example (1), only φµ enters in the effective
metric (10) due to the particular non-minimal coupling
to the Ricci scalar. In more general cases, for instance
when there are couplings to the Ricci tensor such as in
quintic Horndeski, second derivatives φµν could appear
contracted with the derivatives of the metric and hence
in Gµν . Thus, the effective metric would belong to the
extended disformal class [43, 46]. In any case, because the
Ricci tensor only contributes to the conformal part, the
contribution of Rµναβ leading to the anomalous speed of
GWs is fully captured by the Weyl tensor (i.e. the trace-
free part of the Riemann tensor). For the simple theory
(1), the Weyl tensor appears explicitly in the equations
of motion whenever G′ 6= 0 [47].

These considerations allow us to formulate a Weyl cri-
terion for anomalous speed of spin-2 GWs. The effective
gravitational metric of the example theory (10) can be
generalized to

L ∝ hµν
(
C2 +W(αβ)∂α∂β

)
hµν , (13)

where C and Wµν are the contributions associated with
the Ricci and Weyl tensors respectively. Anomalous GW
speed requires that Wαβ 6= 0, i.e. for the background
scalar derivatives to couple to the Riemann/Weyl curva-
ture. If the Weyl factor is purely time-like and constant
around P,Wµν =W00δµ0 δ

ν
0 , the speed of tensors becomes

c2g =
C

C −W00
. (14)

In Horndeski theories, which is a general framework
that englobes most of the current dark energy models, the
EoM are second order [30]. Therefore, the ocurrence of
the Weyl tensor fully distinguishes theories in which cg =
c exactly and those in which the speed of GWs is allowed
to vary. GR, Kinetic Gravity Braiding [48] and Jordan-
Brans-Dicke theories [49] (including f(R) [50, 51]) only
contain Ricci curvature in their equations of motion, and
therefore do not modify the speed of GWs. On the other
hand covariant Galileons [52] and the covariantization
of other generalizations [53–56] will generically predict
cg 6= c [57].

Although the Weyl criterion is characteristic of ST the-
ories, the occurrence of a disformal relation can be ap-
plied to more general theories such as massive gravity
[32]. In this case the kinetic term has the Einstein-Hilbert

form and hence cg = c plus corrections O
(
m2

E2

)
beyond

the scaling limit (3), as expected from unbroken Lorentz
invariance. In the case of bigravity [58] the situation
is more subtle, as the kinetic term of the second met-
ric
√
−fR[fµν ] forces its excitations to propagate along

fµνdx
µdxν = 0, with fµν 6= Ω(x)gµν in non-flat back-

ground space-times. Although matter does not couple to
fµν directly the anomalous speed may be detectable via
graviton oscillations [59]. Many theories that attempt to
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explain away dark matter such as TeVeS also predict an
anomalous GW speed [60].

Phase lag test with eclipsing binaries Most of
the present bounds on cg can be significantly strength-
ened by comparing GWs with other signals. In theories
in which matter is universally coupled to the metric, elec-
tromagnetic signals and ultrarelativistic particles propa-
gate at the speed of light. This produces a delay between
GW and electromagnetic signals

∆t = r

(
1

cg
− 1

c

)
≡ r

c
εg ≈ 1014s

r

Mpc
εg , (15)

where we define the differential delay parameter εg ≡
c∂∆t/∂r (in general space-times r is the proper distance
and one has to correct for time dilation at emission [16]).
The detection of violent, multi-messenger events at cos-
mological distances bears the promise of phenomenal con-
straints, even in the presence of considerable astrophys-
ical uncertainties. LIGO expects to perform such mea-
surements using violent events such as binary compact
object mergers involving neutron stars [61].

However, no distant GW-EM event will possibly be
observed if cg is modified significantly, since the delay
between both signals will be much larger than the mon-
itoring time around the GW detection. This is the case
of cosmic acceleration models without a cosmological
constant such as covariant Galileons [52, 62], for which
|cg/c− 1| ∼ 10− 100% (see [57] and Fig. 1 of Ref. [63]).
If such a model is responsible for cosmic acceleration, the
arrival times of both signals will differ by millions or even
billions of years. Clearly, an alternative test for the speed
of GWs would be needed in this situation. In the follow-
ing, we discuss how observations of sources with periodic
signals can help to test whether cg = c. In particular,
we propose a phase lag test with eclipsing binaries that
overcomes this limitation.

The anomalous speed of GWs can be tested by moni-
toring periodic sources with both GW and EM emission
[64, 65]. This ensures that both signals can be observed
continuously and allows for a long observation period. A
suitable source is a binary system in the band of space-
based interferometers [66], including verification binaries
[67–69]: systems expected to be resolvable by LISA and
which have already been identified and characterized us-
ing electromagnetic observations (see Ref. [69] for an
updated list). An extraordinarily clean binary system is
WDS J0651+2844: a binary, detached white dwarf sys-
tem ∼ 1kpc away from the Sun and whose orbital plane
is approximately aligned with the Solar System, allowing
the observation of periodic eclipses [70]. Its short orbital
period ∼ 12.75 min falls within the LISA band and makes
it a loud GW source, in which the effect of GW emission
has already been observed by the period variation [71].

Let us model WDS J0651+2844 as a binary orbit
coplanar with the observer and at a distance r from it,
cf Fig. 1. Due to symmetry the gravitational radiation

t

rsource

τ0{

h+ ∆x

t = r/c

t = r/c
g

r

xy

orbital plane

∆x
h+

FIG. 1: The phase lag test for the speed of gravity. A compact
binary system such as WDS J0651+2844 is monitored both
electromagnetically and using GWs. For this geometry (top)
only the + GW polarization is emitted in the observer’s direc-
tion. Its amplitude h+ is initially correlated with the object
transverse separation ∆x, but a phase lag (16) accumulates
on the propagation if cg 6= c (bottom and right).

emitted in the observer’s direction will be predominantly
in the + polarization hij = h+(t)(x̂x̂ − ŷŷ).3 Assuming
GR (i.e. cg = c), the h+ polarization will be in phase
with ∆x, the distance between the objects transverse to
the line of sight as observed electromagnetically. There-
fore, although the components of the binary will not be
resolvable, ∆x = 0 coincides with the eclipses and can be
timed with extraordinary precision [64].

In theories other than GR, the EM and GW observ-
ables will evolve as periodic functions of different re-
tarded times, i.e. ∆x ∝ cos(2ω(t − r/c)) and h+ ∝
cos(2ω(t − r/cg)). The difference in propagation speed
accumulated over the propagation distance r produces a
phase lag between the GW and the EM signals:4

∆Φ(t) = 2ω
r(t)

c

(
c

cg
− 1

)
= 2ω

r(t)

c
εg , (16)

where the distance between source and detector

r(t) = r0 + vrel t+ rorb(t) , (17)

includes the initial separation, relative velocity and the
detector’s orbit. We will focus on the effect of r0, vrel, as
the effect of rorb has been considered [72].

3 The orbital inclination is ι = 86.9+1.6
−1.0 degrees [70], making h×

suppressed by cos(ι) ≈ 0.05 in amplitude and shifted π/2 in
phase relative to the + component.

4 We have neglected the delay from the atmospheric or interstellar
refractive index, which can be shown to be unimportant [64].
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For eclipsing binaries we can neglect the error in EM
measurements in constructing the relative phase (16)

∆Φ(t) ≡ 2ω(τ0 + β̂t). The precision will be then lim-
ited by our knowledge of the GW signal. We can obtain
an estimate of fo the 1-σ uncertainties using the Fisher
matrix formalism [73] for the following quantities:

τ0 ≡ εg
r0

c
, ∆τ0 =

1√
2ωΣ

≈ 0.2s

(
2π/ω

765s

)(
T

5y

)
, (18)

β̂ ≡ εg
vrel

c
, ∆β̂ =

√
3/2

ωTΣ
≈ 10−8

(
2π/ω

765s

)(
T

5y

)
,(19)

where T is the observation time and Σ denotes the total
signal-to-noise ratio of the GW detection (see Appendix).
The expected detection significance of verification bina-

ries with LISA is Σ ∼ 100
(
T
1y

)
[72].

A non-zero measurement of either (18, 19) represents
a smoking gun for cg 6= c:

• τ0: The relative phase of the signals can detect an
anomalous propagation speed in the range |εg| & 2·
10−12

(
kpc
r0

)(
∆τ0
0.2s

)
. The false-negative case where

2r0εgω/(cπ) equals an integer within the measure-
ment error is very unlikely (prob. ≈ Σ−1 ∼ 0.2%)
and can be excluded by observing multiple systems
or measuring the frequency shift β̂.

• β̂: The relative velocity of the system induces a
frequency shift, sensitive to anomalous GW speeds

in the range |εg| & 10−4
(

30km/s
vrel

)(
∆β

10−8

)
. De-

spite the (ωT )−1 gain when observing over many
cycles, this test is less competitive due to the non-
relativistic factor.

Note that both the measurement of the relative phase
and the velocity can be used as a test of εg 6= 0 and as
a measurement of cg. The latter application requires a
measurement of either r0 or vrel, which will almost cer-
tainly dominate the error . Nevertheless, clean systems
such as WDS J0651+2844 will be able to confirm devia-
tions from cg = c at the level of few parts in a trillion.

Conclusions. Many well studied models of dark en-
ergy and modified gravity theories predict an anomalous
local speed of gravity around non-trivial backgrounds.
The Weyl criterion provides a clear-cut way to distin-
guish two classes of gravitational theories, those for which
the speed of GWs is exactly equal to the speed of light,
and those in which it can vary depending on the the-
ory parameters and the background configuration of the
scalar field. Future multi-messenger GW observations
will probe this effect to exquisite precision: if the pre-
diction of GR is satisfied, this will place such stringent
constraint on theories allowing variations in the speed of
GWs, O(10−17), that they will become uninteresting for
any low energy application, including cosmic accelera-
tion. On the other hand, a confirmation of an anomalous

propagation of GWs by extragalactic and galactic sources
would be able to rule out GR and all other theories with
simple kinetic terms, which would significantly impact
our understanding of gravity. This could be achieved
applying the proposed phase lag test for eclipsing bina-
ries to the already identified white dwarf binary WDS
J0651+2844. Any of these two scenarios shows that the
speed of GWs will be by far one of the most powerful
tools to constrain gravity and dark energy models.
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[19] J. Garćıa-Bellido, S. Nesseris, and M. Trashorras (2016),

1603.05616.

mailto:dario.bettoni@nordita.org
mailto:jose.ezquiaga@uam.es
mailto:kurt.hinterbichler@case.edu
mailto:miguelzuma@berkeley.edu


6

[20] C. de Rham, J. T. Deskins, A. J. Tolley, and S.-Y. Zhou
(2016), 1606.08462.

[21] K. Yagi, D. Blas, N. Yunes, and E. Barausse, Phys. Rev.
Lett. 112, 161101 (2014), 1307.6219.

[22] L. Shao, R. N. Caballero, M. Kramer, N. Wex, D. J.
Champion, and A. Jessner, Class. Quant. Grav. 30,
165019 (2013), 1307.2552.

[23] D. Blas, M. M. Ivanov, I. Sawicki, and S. Sibiryakov
(2016), 1602.04188.
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Signal to noise estimates

The signal-to-noise ratio Σ for a GW detection is given
by

Σ2 =
1

σ2
f

∫ T

0

R̃2(t)dt ≡ % . (20)

Here R̃ is the response of the detector to the signal and
σ2
f is the noise power at the GW frequency. We assume

the GW to be monochromatic and follow Ref. [72] (see
Ref. [73] for further details and cautionary notes). For
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a given detector the response function depends on the
GW polarizations as R̃(t) = A+(t)h+ + A×(t)h× where
Ai contain information of the antenna pattern of the de-
tector and its orientation as a function of time. However,
as discussed in the text, we will consider the situation in
which only one polarization is received and assume that
the errors in the electromagnetic signal are negligible.
Therefore we can reconstruct the relative phase (Eq. 16
in main text) directly

R̃(t) = Υ cos($t+ ψ) , (21)

where the signal has an overall amplitude Υ , which will
not directly affect the reconstruction of ψ and ω.

The Fisher matrix is then given as the derivative of
Eq. (20) with respect to the model parameters

Fij =
2

σ2
f

∫ T

0

∂R̃

∂θi

∂R̃

∂θj
dt , (22)

where θi = (Υ,$, ψ) collectively denotes the unknown
parameters of the signal. The error in the parameter θi
assuming the other ones are perfectly known is (Fii)

−1/2,
while the error in a parameter marginalized over the rest
is
√

(F−1)ii.
The Fisher matrix elements read

FΥΥ =
2

σ2
f

∫
cos2($t+ ψ)dt = 2%/Υ 2 ,

FΥ$ =
2

σ2
f

∫
−t sin($t+ ψ)Υ cos($t+ ψ)dt ∼ osc. ,

FΥψ =
2

σ2
f

∫
−Υ cos($t+ ψ) sin($t+ ψ)dt ∼ osc. ,

F$$ =
2

σ2
f

∫
Υ 2t2 sin2($t+ ψ)dt = 2%

t2

3
+ osc. ,

F$ψ =
2

σ2
f

∫
Υ 2t sin2($t+ ψ)dt = %t+ osc. ,

Fψψ =
2

σ2
f

∫
Υ 2 sin2($t+ ψ)dt = 2%+ osc. ,

where osc. denotes oscillatory terms that become negli-

gible for T � $−1 and we have used % = Υ 2

2σ2
f
T . Since

FΥ$, FΥψ do not build up with time, the amplitude is
uncorrelated with the frequency and the phase. However,
$,ψ are correlated with one another. The Fisher matrix
and its inverse for the ($,ψ) subspace are

F̂ = %

(
2
3T

2 T
T 2

)
, F̂−1 =

1

%

(
6
T 2 − 3

T
− 3
T 2

)
. (23)

From which we read the errors in the phase and frequency

∆ψ =

√
2

Σ
, ∆$ =

√
6

T · Σ
, (24)

which translate straightforwardly into the results (Eqs.
(18, 19) in the main text).
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