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Abstract: In this contribution, a novel methodology for multi-class classification in the field of
Parkinson’s disease is proposed. The methodology is structured in two phases. In a first phase,
the most relevant volumes of interest (VOI) of the brain are selected by means of an evolutionary
multi-objective optimization (MOE) algorithm. Each of these VOIs are subjected to volumetric feature
extraction using the Three-Dimensional Discrete Wavelet Transform (3D-DWT). When applying
3D-DWT, a high number of coefficients is obtained, requiring the use of feature selection/reduction
algorithms to find the most relevant features. The method used in this contribution is based on
Mutual Redundancy (MI) and Minimum Maximum Relevance (mRMR) and PCA. To optimize
the VOI selection, a first group of 550 MRI was used for the 5 classes: PD, SWEDD, Prodromal,
GeneCohort and Normal. Once the Pareto Front of the solutions is obtained (with varying degrees of
complexity, reflected in the number of selected VOlIs), these solutions are tested in a second phase.
In order to analyze the SVM classifier accuracy, a test set of 367 MRI was used. The methodology
obtains relevant results in multi-class classification, presenting several solutions with different levels
of complexity and precision (Pareto Front solutions), reaching a result of 97% as the highest precision
in the test data.

Keywords: Parkinson’s disease (PD); 3D-discrete wavelet transform (3D-DWT); support vector
machine (SVM); multi-objective optimization evolutionary algorithm (MOE); minimum redundancy
maximum relevance (mRMR)

1. Introduction

Dementia is a clinical syndrome characterized by a progressive deterioration of
cognitive functions. Currently, research in brain diseases and dementia is one of the
most important fields of investigation. According to the Parkinson Foundation (https:
/ /www.parkinson.org/, accessed on 1 February 2022), 46.8 million people worldwide are
living with some form of dementia. The same report predicts that the number of people
with dementia will unfortunately double every 20 years.

Parkinson’s disease (PD) is the second most common neuro-degenerative disorder [1].
PD has an incidence rate of 16 to 19 per 100,000 people per year, according to the World
Health Organization [2], and it is estimated that this value will unfortunately increase in the
coming years due to the ageing of the population [3]. According to recent studies, there are
currently more than 10 million people worldwide who suffer from Parkinson’s disease [4],
and by the year 2040, it will be an important cause of death in the elderly population.

These evidences show the urgent need to advance in Parkinson’s research, since an
early diagnosis helps to delay the development of the disease in the patient.

Unfortunately, at present, a cure for Parkinson’s has not been obtained, although
the pharmaceutical industry has developed therapies that slow down the development
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of PD, giving patients a minimum quality of life for a more extended period of time [5].
Neurological damage and loss of neurons are triggers in Parkinson’s disease, resulting in
cognitive dysfunction. In this disease, neurons degenerate in an area of the basal ganglia
(called the substantia nigra) [3], which are groups of neurons found deep in the brain
that help smooth muscle movements and coordinate muscle movements postural changes.
When neurons degenerate in one area of the basal ganglia, dopamine production and the
number of connections between neurons in the basal ganglia decrease. As a consequence,
the basal ganglia do not smooth or harmonize movements as they normally do, leading to
tremors, lack of coordination, slow movements (bradykinesia), a tendency to move less
(hypokinesia), and postural problems associated with gait.

As has been analyzed in the literature, not all Parkinson’s patients suffer the same
symptoms or with the same intensity [6], affecting people who suffer from this disease
differently. However, typical patterns of progression in Parkinson’s disease have been
established in an attempt to establish the stages of this disease [7]. The first or initial stage
is denoted as “Stage One”, mainly defined by patients that have mild symptoms of the
disease. The last stage is “Stage Five”, which is the most advanced and incapacitating stage,
wherein rigidity and inflexibility in the legs makes the patient barely have the motor ability
to walk [8].

The methodology usually used in PD diagnosis consists of using clinical criteria, which
are based on medical evaluation and include a series of tests performed on patients to
address their stage. Current diagnoses are based on the presence of motor signs, which
means that patients with PD are inevitably diagnosed at an advanced stage. It is important
to highlight that a neuro-protective therapy initiated in a late stage of the disease may have
less substantial effects on limiting disease progression. Therefore, it is essential to find
methodologies and tools that make it possible to distinguish, classify and diagnose patients
in early stages of PD from the healthy population [8].

In clinical practice, various objective measures have been adopted for the differential di-
agnosis of PD, including a series of olfactory, electrophysiological and neuro-physiological
tests. However, and with special emphasis in the last decade, the most developed area for
providing an objective evaluation is neuroimaging [9].

The main diagnostic methods of PD consist of using human expert clinical crite-
ria. These criteria are based on medical evaluation (including a range of olfactory, mo-
tor/biomechanical ability, electrophysiological and neuro-physiological tests) to diagnose
the patient’s disease state.

In addition to these criteria, nowadays, neuroimaging is of great importance for the
diagnosis of the disease [1,9].

One of the most relevant techniques in the field of neuroimaging is Magnetic Reso-
nance Imaging (MRI), being a non-invasive, high spatial and temporal resolution technol-
ogy. MRl is a powerful tool in the field of medical imaging that has been fruitfully applied
for the analysis and diagnosis of abnormalities in the brain for different diseases.

In this study, we combined MRI with machine learning algorithms in order to develop
a methodology for the automatic classification of the MRI. The procedure implements
three-dimensional discrete wavelet transform (3D-DWT) as a powerful tool to extract 3D
characteristics from the brain and an optimization algorithm (based on multi-objective
genetic algorithms) to determine and analyze which brain regions have the greatest impact
on the disease. Using the most relevant regions, an intelligent classifier based on Support
Vector Machine (S§VM), is constructed with the aim of being able to automatically classify
different types of patients (multiclass classification: Parkinson’s disease, prodomal, SWEDD,
gene cohort and normal patients)
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2. State-of-the-Art
2.1. Diagnosis Tools

As mentioned in the Introduction section, the ability and knowledge of the expert
neurologist, together with the external clinical symptoms that the patient presents, are the
classically used tools in the diagnosis of PD.

One of the non-invasive methods commonly analyzed with precision for the evaluation
and diagnosis of the status of PD is the analysis of initial walking patterns. Also known as
gait cycles, these walking patterns measure the initial to final contact of the same foot when
walking and were observed as a consequence of central pattern generators established
by spinal circuits [10]. However, other parts of our brain, such as the basal ganglia, the
cerebral cortex and the descending pathways to the spinal cord, also have a great influence
on human locomotion.

Currently, neuroimaging has been implemented as a powerful source of information
for decision making (mainly relevant in the early diagnosis of brain disorders), being an
important medical test for neurologists.

Among the best known and most used technologies, it is worth mentioning structure
MRI (sMRI), functional magnetic resonance imaging (fMRI) and positron emission tomog-
raphy (PET). In the field of PD, MRI has been used for the discrimination of PD and other
Parkinsonian syndromes that present relevant structural modifications/changes [11]. MRI
has also been used for the identification of possible patterns associated with volumetric
alterations that may indicate the severity of the disease [12].

Single-Photon Emission Computed Tomography (SPECT) is based on the Dopamine
Transporter scan (DaTscan) method by using the radioligand Ioflupane I 123 (123I-FP-CIT).
This technology has been successfully used to differentiate PD from other motor diseases
non-associated with dopaminergic deficit [13,14].

There are studies in the literature that show how glucose hypo-metabolism occurs
prior to localized atrophy of brain matter and that the conversion time is correlated with
this hypo-metabolism. The use of FDG-PET images [15] has become an effective tool for
this information.

The numerous contributions presented in the literature analyzing the genetic factors
underlying Parkinson’s disease with dementia and with mild/moderate cognitive impair-
ment are very promising and clearly demonstrate the importance of genetic for cognitive
impairment in PD [16].

As presented in the Introduction section, one of the reasons that characterize Parkin-
son’s disease comes from the deterioration of dopamine-producing cells located in the
substantia nigra of the brain [17], resulting in motor and non-motor symptoms (tremors
at rest, motor retardation, bradykinesia, rigidity, etc). For the elderly, the identification
and proper treatment of PD as early as possible is of great importance to be able to act
medically and clinically in the prevention of the patient, with the intention of slowing
down the progress of the disease as much as possible.

2.2. Computer Studies and Algorithms in PD Classification

MRI analysis for PD classification is a very fruitful area of research; indeed, in recent
years, many relevant papers have been published developing novel methodologies [18-21].

Most of the articles cited in the bibliography focus on the realization of binary clas-
sifiers in order to differentiate between control and PD patients. The use of intelligent
systems in the field of neuroimaging has shown excellent synergy, developing precise
automatic diagnostic systems [12,14,22].

For example, in Long et al. [23], 19 early PD patients and 27 normal patients (vol-
unteers) recruited from Zhejiang University were used for the classification using a SVM
classifier. For each patient, resting-state functional magnetic resonance imaging (rsfMRI)
and structural images were used. Three different types of characteristics were extracted
from the rsfMRI images: ReHo (regional homogeneity), ALFF (amplitude of low-frequency
fluctuations) and RECS (regional functional connectivity strength). For the structural im-
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ages, the volume characteristics from the gray matter, the white matter and the cerebrospinal
fluid were computed. With this reduced data set, the accuracy was 87%, sensitivity was
79% and specificity was 93%.

In Lei et al. [24], a multi-class classification system for PD analysis, based on a
sparse discriminative feature selection methodology, is presented. The authors presented a
framework to create a least square regression model based on Fisher’s linear discriminant
analysis and locality preserving projection. Input data were acquired from the Parkinson’s
Progression Markers Initiative (PPMI) database, using 123 PD, 56 normal and 29 SWEDD
images and obtaining an accuracy of 78.4%.

A methodology based on complex networks for precise early diagnoses using MRI
is presented by Amoroso et al. [18]. The authors defined a network model of brain
regions and associate proper connectivity measures to each region, with the brain being
characterized through a feature vector encoding the local relations where brain regions
interweave. Feature selection and learning is performed by using Random Forests. SVM is
used for classification normal (169 patients) and PD (374 patients) from the PPMI database,
obtaining an accuracy of 93%.

An interesting approach is presented by Oliveira et al. [25], in which the potential of
a set of features obtained from [123I]FP-CIT SPECT brain images are used. The authors
selected seven features (five associated to uptake ratios on the striatum and two features
correlated to the estimated volume and length of the striatal region with normal uptake)
from each brain hemisphere. The classification capacities of each individual feature and
groups of features were analyzed using a data set of 209 normal and 443 PD patients from
PPMI. The best classification performance was achieved using the SVM classifier, using all
the features (accuracy = 97.9%, sensitivity = 98% and specificity = 97.6%).

In recent years, Convolutional Neural Networks (CNN) have been extensively used
in the automatic classification of images using Deep Learning (DL) neural networks and
in particular in PD diagnosis [26,27]. For example, in Sivaranjini et al. [27], MR images of
Parkinson’s disease subjects and healthy control volunteers were classified by a DL neural
network, showing an accuracy of 88.9%, based on the PPMI data set. The CNN architecture,
AlexNet, is used to improve the diagnosis of PD via the transfer learning methodology.

In [28], a deep learning framework for the simultaneous classification and regression of
PD patients using personal information (i.e., age, gender) and MRI was proposed. The data
set consists of 452 Parkinson patients, including 292 males and 160 females and 204 images
from people in healthy conditions (134 males and 70 females). The authors achieved a
100% accuracy in both the test and validation sets and verified that the Basal Ganglia and
the Substantia Nigra parts of the brain, as was already known by medical experts, are
important in the diagnosis of Parkinson’s.

A methodology for creating predictive markers of PD using CNNs based on NeuroMe-
lanin Sensitive Magnetic Resonance Imaging (NMS-MRI) is presented in [19]. NMS-MRI
has been decisive in identifying abnormalities in the substantia Nigra pars compacta (SNc)
in patients suffering Parkinson, analyzing the loss of dopaminergic neurons in the SNc. The
proposed framework supports discriminating PD from atypical Parkinsonian syndromes,
achieving an accuracy of 85.7% in test patients.

In this paper, a useful framework for multi-class classification is proposed for PD
recognition using a Multi-Objective Optimization Evolutionary Algorithm. To the best
of our knowledge, there are very few, if any, references in the literature that perform 3-D
feature extraction for VOI optimization related to Parkinson ’s disease, as 2D images have
instead been more frequently used for binary classification. The high accuracy achieved
during the testing phase, reaffirms the usefulness of the use of the different hybridized
methodologies and techniques: 3D-DWT for feature extraction in MRI, dimensionality
reduction in the problem using the most relevant features applying mRMR and PCA and
the use of a multi-objective optimization algorithm for the selection of the relevant brain
regions, which will be used by the SVM classifier.
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3. Materials and Methods

The proposed methodology presented in this contribution for Parkinson’s disease
detection using MRI consists of five main stages for training the system in order to obtain
the regions/volume of interest (VOI): (1) Pre-processing the NIfTI files (normalization,
segmentation); (2) Feature Extraction (using 3D discrete wavelet transform (3D-DWT));
(3) Feature Selection and Reduction (using minimum Redundancy Maximum Relevance
(mRMR) and PCA algorithms); (4) Detection of regions/volume of interest (VOI) (using
multi-objective genetic algorithm NSGA-II); and (5) Optimization of the SVM classifier
with the selected VOI. The block scheme for multi-objective optimization (VOIs selection) is
shown in Figure 1. The main functional blocks are described in the following sub-sections.
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Figure 1. The block scheme for multi-objective optimization. Phase 1: VOI selection.

The phases for the performance assessment with test samples, similar to training
phases, are as follows: (1) Pre-processing the NIfTI files (normalization, segmentation);
(2) Feature Extraction (using 3D discrete wavelet transform (3D-DWT)); (3) Feature Selection
and Reduction (using minimum Redundancy Maximum Relevance (mRMR) and PCA
algorithms); (4) Classification of test samples through the SVM classifier previously trained
with selected VOI; (5) Performance assessment by the confusion matrix. Figure 2 shows the
block scheme of the test phase, being the results of the proposed methodology presented in
Section 5.
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Figure 2. Phase 2: Block scheme for the test phase. Selected VOIs from the Pareto Front are used to
construct the SVM classifier.

3.1. Subjects Cohort

The data used in this paper were obtained from the Parkinson’s Progression Markers
Initiative (PPMI) database [29]. The PPMI portal was created in 2010 supported by the
Michael J. Fox Foundation and a group of scientists and academics. The main objective was
the collection and analysis of data from Parkinson’s patients in order to carry out a clinical
study of critically necessary biological markers of the onset and progression of this disease.

The data and samples acquired from the participants (patients and volunteers) will
allow the development of a complete Parkinson’s database and bio-repository, with a large
set of MRI images of patients of various categories.

In this contribution, different groups of patients existing in the PPMI data base have
been used (Normal, SWEDD, Prodromal, PD and Gene Cohort). These groups are briefly
described below.

Analyzing patients with Single Photon Emission Computed Tomography (SPECT)
technology has allowed the detection of a set of patients who were initially diagnosed
as suffering Parkinson’s disease but who should more precisely be associated to “Scans
Without Evidence of Dopaminergic Deficit (SWEDD)” [13]. The definition and determina-
tion of the term SWEDD has created some controversy in the literature, referring to the
absence, rather than the presence, of a relevant abnormality in the image of a patient who
has been diagnosed with PD. While there are several papers in the literature suggesting
that various PD-like disorders could explain some of the SWEDD cases, others have in-
dicated that some of them could have a benign PD sub-type. As a result, there has been
controversy and confusion, and the use of this term remains unclear [30,31]. For example,
there are contributions that conclude the fact that SWEDD are an initial stage of Parkinson’s
disease [32]. However, there are other authors who suggest that SWEDD patients do not
progress to PD [33], maintaining the assumption that SWEDD patients suffer from another
motor disorder [34].

A relevant analysis is also presented in [35], in which it is concluded that SPECT
misinterpretation can occur in the diagnosis of SWEDD patients, and it is recommended
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that suspected SWEDD patients pose not only a serious diagnostic challenge but also
should prompt a detailed scan reassessment. Thus, there is a clear need for reliable and
accurate systems that are capable of differentiating PD from other motor disorders and
diseases [36].

The second group of patients analyzed in this contribution is logically PD. For the
inclusion of this type of patient in the PPMI databases, a set of requirements is compulsory
to be met: in summary, patients aged 30 or over, of both genders, the existence of a
validation through presynaptic dopaminergic examinations, a scale of I or II on the Hoehn
and Yahr scale at the beginning and, finally, without expectation of medication for PD
within six months from baseline. It must be emphasized that there are patients having
multiple NIfTT files, and all of them are used in our study. The insertion conditions for the
SWEDD patients were similar as those for the PD group, except that subjects were required
to have no evidence of dopaminergic deficit in presynaptic dopaminergic scans.

It is important to emphasize that the recognition and characterization of the first
signs of PD disease, even in very early stages, is of great clinical utility to be able to
start the treatment of a patient as soon as possible. In this sense, evidence from clinical,
neuropathological and imaging research suggests the initiation of PD-specific pathology
prior to the external symptoms of the disease, such as the appearance of classical motor
dysfunctions (such as bradykinesia) [37,38].

The third group which was analyzed in this article are the prodromal patients. In
2013, the PPMI initiative launched a new prodromal cohort. This new cohort seeks to
enroll subjects without Parkinson’s disease, and as for previous groups, individuals are
required to have a series of requirements. Briefly, they need to meet at least one of the
following criteria: hyposmia, REM sleep behaviour disorder or LRRK2 gene mutation.
Subjects enrolled in this PPMI prodromal cohort will be 60 years of age or older, and none
of these subjects will have PD.

Finally, we have a class of few subjects for whom the classification is based on genetic
diagnosis. This class is called Genetic Cohort Subjects (GenCohort) and is made up of
subjects with and without Parkinson’s disease who have a genetic mutation in gene LRRK?2,
GBA or SNCA.

For the construction of the database in this article, more than 1000 different MRI brain
images stored in NIfTI (Neuroimaging Informatics Technology Initiative) format were used.
These images were obtained at 1.5T and 3T using several medical devices, always keeping
in mind the specific protocol established by PPMI [29].

The first step consisted of the elimination of duplicated and corrupted images. Af-
terwards, the set of images was reduced to a total of 917 MRI images, corresponding to
the 5 types of patients that were analyzed. The normal (control) group contained 258 im-
ages, SWEDD group contained 154 images, Prodromal contained 38 images, PD contained
450 images and, finally, GenCohort contained 17 files.

In summary, Tables 1-3 show the number of patients in each group, indicating the
number of women and men, together with the mean values and age and weight standard
deviation. The volume of processed information is considerable, being around 55 GB of
information (resulting in more than 85 GB after storing the pre-processed and segmented
images).

Table 1. Characteristics of the cohort of normal and SWEDD images used in this contribution.

Measures Normal (258) SWEDD (154)
Sex
(Male/Female) 181 77 100 54
Age (years) 61.4 11.7 59.0 8.2 64.1 9.7 57.8 10.7
Weight (kg) 83.0 10.7 67.9 17.1 88.6 12.8 75.8 12.8

Mean Std Mean Std Mean Std Mean Std
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Table 2. Characteristics of the cohort of Prodromal and PD images used in this contribution.
Measures Prodromal (38) PD (450)
Sex
(Male/Female) 30 8 288 162
Age (years) 67.1 3.9 67.8 3.1 62.4 9.8 60.2 8.7
Weight (kg) 88.8 14.5 68.5 9.7 90.8 16.1 66.3 11.9

Mean Std Mean Std Mean Std Mean Std

Table 3. Characteristics of the cohort of GeneCohort images used in this contribution.

Measures GeneCohort (17)
Sex (Male/Female) 14 3
Age 62.1 10.6 72.2 9.0
Weight (kg) 87.2 11.3 64.7 5.7
Mean Std Mean Std

3.2. Pre-processing: Normalization and Segmentation

The image pre-processing process is a fundamental stage to homogenize, normalize
and segment the MRIs of the different patients. This process has been carried out with
the statistical tool Statistical Parametric Mapping (SPM) [39,40], in the SPM12 version.
Therefore, bias correction, spatial normalization and segmentation are performed. The new
version is based on the method described by J. Ashburner et al. [41] known as proposed
unified segmentation algorithm, in which a probabilistic framework was defined, with
which image registration, bias adjustment and tissue categorization can be merged in a
unified model. The model obtained is based on a mixture of Gaussian values with the
possibility to incorporate a smooth intensity adaptation and a non-linear protocol with
tissue probability maps.

All the MRIs from patients and volunteers in this contribution were spatially normal-
ized. The bounding box of 157 x 189 x 130 voxels in the X, Y and Z directions, respectively,
were used. It should be kept in mind that the MRI are volumetric (three-dimensional), and
in this contribution, a three-dimensional wavelet transform will also be performed, with
which each voxel is adjusted to the measure of 1 mm x 1 mm X 1 mm. In the study of
brain images, it is relevant to separate or segment what is called gray matter (C1 images),
white matter (C2 images) and whole matter (W images). These images were available in
different files.

It is relevant to note that MRI images are often corrupted by an artifact or noise that
varies spatially and changes the intensity level of the brain image (bias). Although the
noise that can be present in an image may not excessively affect the visual inspection by
an expert neurologist, it can adversely influence the performance of an automatic image
pre-processing methodology, and therefore, it requires removal.

3.3. Feature Extraction

Each volume of interest, VOI, must be characterized by a set of characteristics or
features. These features (as a real number vector) will represent each one of the brain
images.

A powerful transform based on the windowing technique with variable size is the
Wavelet Transform (WT). The main feature of WT is that it maintains both the time and
frequency information of the analyzed signal, adopting “scale” instead of traditional “fre-
quency”; namely, it does not generate a time-frequency interpretation but a time-scale
understanding of the signal. The discrete wavelet transform (DWT) is a helpful imple-
mentation of the wavelet transform, frequently used in numerical analysis and functional
analysis, for which the wavelets are discretely sampled. The procedure to perform the
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wavelet transform is that a fully scalable modulated window is shifted along the signal
for every position. This procedure is repeated modifying the amplitude of the window,
which leads to obtaining a multi-resolution analysis. In the case of its application in images,
the decomposing of the original image in its wavelet coefficients will generate a series of
images with different scales. The computation of these coefficients is calculated as follows.

First, the mother or kernel wavelets define a Hilbert basis, which is constructed as
the family of functions {¢;,k € Z} by means of translations and dilations of the mother
wavelet ¢:

Pix(x) = 259(2/x k) 1)

The integral wavelet transform of f(x) relative to an specific mother wavelet is defined
by the following equation:

Wofl(ab) = 7¢(X;b

In this way, the wavelet coefficients cj; are given by:

)f(x)dx @

ik = [Wyfl(277,k277) 3)

These operations are discretized to implement the Discrete Wavelet Transform, where
translations and dilations convert to dyadic scales and positions by limiting 2 and b to
a discrete lattice {a = 200 > 0;a,b € R} so that the DWT coefficients are now defined
as [42]:

C;};p (n) = DS

n

Y x(n)gj(n - 2fk>] (4)

cﬁt(n) = DS

Y x(n)hi(n— 2jk)] (5)

where “app” refers to “approximation”, hence approximation coefficients; “det” refers to
“detail”, hence detail coefficients; “DS” refers to down sampling; and g¢(n) and h(n) denote
a low-pass filter and a high-pass filter, respectively.

The parameters j, k presented in the previous equations are interpreted as the wavelet
scale and translation factors.

In the case of having a one-dimensional signal, 1ID-DWT can be applied. Each filter
yields one sub-band, low-filter outputs the low-frequency sub-band L and high-filter
outputs the high-frequency sub-band.

In the case of having images, 1D-DWT can be applied iteratively, obtaining four sub-
bands: Low-Low, Low-High, High-High and High-Low, denoted as LL, LH, HH and HL,
respectively, LL being the approximation coefficients of the image, while LH, HH and HL
are the detailed coefficients. Different levels of decomposition can be obtained, performing
the transformation to the approximation coefficients. As the level of decomposition is
increased, further sub-bands are computed and more compact yet coarser approximation
coefficients are acquired. For example, Figure 3 shows a two-level decomposition for a
brain image.

If we assume that the initial image has a size of N x N, in the first level decomposition,
the size of the approximation coefficients would be reduced to N/2 x N/2, and the size of
the second level will be reduced to N/4 x N/4.

Traditionally, slices of the brain are fetched and used to extract features [20,43,44],
using, for example, the 2D-DWT Daubechies family on a sagital slice [45].
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Figure 3. Operating mode of the 2D wavelet transform applied to images.

One of the main novelties of the methodology presented in this document is the
extension of the 2-D image field to the 3-D volumetric analysis, using a three-dimensional
volumetric feature extraction (wavelet transform), instead of two-dimensional wavelet
transform of the slices selected by an expert neurologist. The main goal of the volumetric
analysis is finding those regions of the brain that will have more relevance in the characteri-
zation of the different classes analyzed in order to obtain a precise classifier. Additionally, a
better understanding of the disease is expected by characterizing the most relevant regions
of the brain for the construction of the classifier.

In this paper, the three-dimensional wavelet transformation (3D-DWT) has been used
in order to extract features for each of the selected volumes of interest (VOI). The 3D-DWT
wavelet transform can be considered as an extension to an additional dimension [46], of
the one existing for two-dimensional spaces (being the two-dimensional, an extension of
spaces with a single dimension).

Figure 4 shows a block diagram of how the 3D-DWT transform is performed on
a selected brain volume (VOI). Initially, there is a decomposition, using the 1D-DWT
transform along the columns, which assumes the wavelet transform in the X dimension.
This gives the volumes L and H (green boxes) corresponding to the low-pass volume
and a volume high pass, respectively. The amount of data in each of these volumes is
reduced. If we assume that the original volume has a data number of Ny, N, and N,
pixels, corresponding to each of the dimensions (x,y, z) in the low-pass volume L(x,y,z),
the number of pixels would be (Ny/2 * Ny x N;). After this application of the wavelet
transform in the x dimension, the decomposition is performed in the rows (y axis), with
the generation of new subvolumes (the orange boxes): HH, Hl, LH and LL. As in the
previous decomposition, the amount of data is also reduced, being for these volumes:
(Nx/2 % Ny /2 * Nz). The final phase is the decomposition along the cuts (z axis), obtaining
eight sub-bands (blue boxes): HHH, HHL, HLH, HLL, LHH, LHL, LLH and LLL, with the
number of data: (N, /2 % Ny/Z x N, /2).

In the specialized wavelet literature and its applications in images [47,48], there are a
large number of variants for the determination of the mother wavelet, opting in this paper
for the use of the biorthogonal 3.3 up to level 2. When a volumetric magnetic resonance
image is being processed, various filtering procedures must be performed, some of them to
select the type of matter to be analyzed. In this work, the whole matter (W) and the gray
matter (C1) of the brain are used, thus performing a wavelet transform on each of these
matters for each of the volumes analyzed. Figure 5 shows the feature matrix of 3D-DWT
wavelet coefficients obtained for each specific VOI, in whole and gray matter.
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Each feature corresponds to the coefficients of the wavelet transform, obtaining M
coefficients for each of the volumes analyzed in each patient and for each type of matter (W
and C1). The brain of each patient is divided into 1728 different, non-overlapping VOIs,
each one with a dimension of 12 x 14 x 10 voxels.

Nx*Ny*Nz  Nx/2*Ny*Nz Nx/2*Ny/2*Nz Nx/2*Ny/2*Nz/2

I
—BLHL

LH LHH

HLL

it { HL _DHLH

VOI: 3D IMAGE 4 : HHL
HH HHH

Y o e

3D BRAIN DECOMPOSITION ~ DECOMPOSITION ~ DECOMPOSITION
VOLUME ALONG COLUMNS ~ ALONG ROWS ALONG SLICES

Figure 4. Operating mode of the 3D-DWT wavelet decomposition applied to a specific VOI

3D-DWT Wavelet coefficients

Patient 1 ‘ Feature 1 ‘ Feature2 .. FeatureM ‘
VOI 1 (W) 0.4578 0.7307 -0.4691
VOI 2 (W) -0.9581 0.8239 0.3285
Patient 1 -
VOI 1728 (W) 02156 | 07833 |..| 03557
Vol 1(c1) 0.7824 -0.4812 0.1229
VoI 2(C1) 0.6797 0.1592 0.8023
VOI 1728 (C1) -0.3465 0.7238 0.7492

o K Patients
[ ]

Patient K ‘ Feature 1 ‘ Feature2 .. FeatureM ‘
VOI 1 (W) 0.1204 08502 |..| 04601
VOI 2 (W) 0.7821 0.1159 -0.3285
P i n K d e e e e e
atient VOI 1728 (W) -0.2756 0.1833 0.5887
VoI 1(C1) 0.7124 -0.4802 0.3329
VOI 2 (C1) 0.6297 0.1512 0.6623
VOI 1728 (C1) -0.1465 -0.4238 0.3322

Figure 5. Feature matrix of 3D-DWT wavelet coefficients for each specific VOI in whole and
gray matter.

3.4. Feature Selection

This paper addresses a classification problem where there exist multi-classes (C classes)
for each pattern. Each pattern (patient) is represented by the vector formed by the set of M
variables or features (as presented in Figure 5) and an additional value that indicates the
class to which it belongs, that is, Patienty = v;,cy withi=1,...,Mandc, =1,...,C— 1.
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In this contribution the number of non-balanced classes is 5, represented by 1 = Control,
2 =SWEDD, 3 = Prodomal, 4 = PD and 5 = GenCohort.

Mutual information is the most general measure of statistical independence between
two random variables v; and v; and quantifies the information that v; and vj share (how
knowledge of one of them affects the uncertainty about the other).

Formally, the mutual information (I) between two random variables is defined from
the marginal density functions p(v;) and p(v;), and the joint density function p(v;, v;) as

follows: (03,07)
1) = [ [ plowepiog sl sdma) ©

If v; and v; are independent, the knowledge of v; does not give any information about
vj, being in this case I = 0. At the other extreme, if v; and v;j are identically distributed, the
knowledge of v; implies full knowledge of v; and vice versa.

The main difficulty in calculating Equation (6) lies in estimating the densities p(v;, v;),
p(v;) and p(v;) using only the data. For categorical variables, Equation (6) is reduced to a
summation, and the calculation of mutual information is immediate by performing a simple
count. Therefore, instead of the evaluation of the integral in Equation (6) for continuous
variables, one possible solution (simplification) is to incorporate a discretization step in the
data pre-processing. Determining the appropriate discretization is not an easy task for this
specific problem. In this case, other estimation methods of density functions as maximum
likelihood, Bayesian estimation or non-parametric techniques were used.

The objective of a variable selection method based on mutual information is to find
a subset S of m variables S = vy,...,v, that jointly have the maximum dependency
(MaxDep) on the target variable c:

maxD(S,c),D = I(v;,i=1...,m;c) (7)

Although MaxDep is an optimal theoretical criterion, the estimation of p(v;, ..., vm)
and p(vy,...,vm, c) is difficult to be computed due to the fact that the number of available
examples is often insufficient and/or is computationally expensive. It is possible to use
MaxDep when a small number of variables are wanted to be selected and the number of
patterns is large. In this way, the lack of data for the estimation of the density functions
would be solved, and their calculation would be carried out in a reduced feature space
where the computational cost is affordable.

As an alternative to MaxDep, the set of variables based on the dependency with the
class (relevance) can be selected. The criterion of Maximum Relevance consists in finding
the subset of variables S that maximize D(S, ¢), where D has been approximated as the
mean value of the mutual information between each of the variables that make up the
subset S and the class, that is:

D=1 Y I(v0) ®)
S| ocs

Therefore, the optimal subset selected by the algorithm will be the m variables with
more mutual information with class c.

It is possible that the variables selected by MaxDep are quite redundant due to a
great dependency between them. If the dependency between two variables is high, its
discriminative power is not greatly affected by removing one of them. Therefore, not only is
it desirable to maximize the relevance of the variables with the class, but it is also desirable
to minimize the redundancy between them. To that end, the minimum redundancy criterion
is defined as:

! Y (vi;0)) )

minR(S),R = —
|S| v;€S
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The minimal redundancy maximal relevance (mnRMR) algorithm combines Equations (8)
and (9) according to the following expression:

max¥(D,R),¥ = D — R; (MID) (10)
maxQ(D,R),Q = D/R; (MIQ)

MID stands for Mutual Information Different criteria, and the other possible imple-
mentation for the mRMR algorithm is the Mutual Information Quotient (MIQ). In this
contribution, MID is used.

The authors of the algorithm [49] suggest an iterative method to find a set of variables
close to the optimum since, in practice, it is unfeasible to try to evaluate the Equation (10)
for all possible subsets of m variables in the original space. Assuming the suboptimal set
Sm—1 of m — 1 variables to be found, the following variable to be added will be the one
that verifies:

1
v,E’gg%qu{I(v],C) — U]E%H I(Uj,v,)} (11)

In the first iteration of the algorithm, the redundancy term is null, so the first variable
selected by mRMR is the same as the one chosen by MaxDep (the one that has the maximum
relevance with the class).

The 3D-DWT transform produces a large number of coefficients (thousands), making
it necessary to select them using mRMR (the 30 most relevant are selected). It should be
kept in mind that reducing the number of coefficients for each region of interest reduces
the computational complexity and memory size of the matrix of coefficients used. It
should be noted that since there are 550 MRI images for the training phase, for each image,
1728 possible VOlIs are obtained, each VOI has 30 coefficients and both whole and gray
matter are treated, the total number of coefficients that it is necessary to store is 57,024,000.

3.5. Optimization of the VOlIs Selection Using Multi-Objective Optimization Evolutionary
Algorithm (MOE)

In this contribution, a Multi-Objective Optimization Evolutionary Algorithm (MOE)
based on a controlled elitist algorithm variant of NSGA-II is used to select the most relevant
region of the brain (VOIS), taking into account two objective functions: The classification
accuracy and the complexity of the classifier (measure as the number of VOIs required for
the system).

This optimization tool is based on Darwin’s survival of the fittest principle, which
states that an initial population of individuals evolves through natural selection. Therefore,
a set of solution candidates is retained in MOE, performing selection processes (fitness
assignment and sampling are performed on these potential solutions), and finally, several
potential solutions can be mixed (in terms of recombination operators) to produce new
solutions. In resemblance to Darwin’s theory on survival (from an initial population of
individuals, and due to a process of natural selection, the population evolves towards
better individuals in terms of the fitness function used), the potential solutions are called
individuals, and the set of solutions is called the population.

In this contribution, a binary coding of the individuals (the solutions) that make up
the EMO population has been used. In the terminology of evolutionary algorithms, each
individual is represented by a chromosome, which is made up of different genes. The genes
in our case represent the VOIs used, indicated by a 1 if the VOl is selected and by a 0 when
that VOI is not used.

Therefore, the number of brain regions that are selected in a solution of the Multi-
Objective Optimization Evolutionary Algorithm is equal to the number of genes that have
a value of 1. In our case, as we worked with whole matter and gray matter, the total
number of genes that can be activated in a solution of the MOE (equal to the number of
VOIs that can be selected for the two volumetric images of the brain) is 3456. The upper
part of the Figure 6 shows an example of codification for an individual-j of the population
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of the evolutionary algorithm. The total size of the population is 250 individuals in the
simulations carried out, with a coding example of the entire population shown in the lower
part of Figure 6.

Whole matter (W) Gray matter (C1)

[oJaJwTlaJwa]waJoJo w2 Jo] [2]oJa .cJ2]o..]JoJ2]..]2]0]1]
L 2 $ 3 2

Gene 1 Gene 1728 Gene 1729 Gene 3456
\ )
[
Individual-j
Genel | Gene2 | ... | Gene 3456
Individual 1 0 1
Individual 2 1 1 0

Population of the Multi-Objective ‘
Evolutionary Algorithm Individual 250 | 1 0 0

Figure 6. Binary coding used by the MOE algorithm, with the aim of selecting the most relevant VOI
of the brain (both in gray and complete matter), and these regions being used for the construction of
an accurate multi-class classifier.

The objective of this research is twofold. The first objective is to deepen the knowledge
of which the most relevant regions of the brain are (taking into account both gray and
whole matter) that are related to Parkinson’s disease and the different types of patients
analyzed in this contribution. Obtaining these VOISs can be of great relevance for expert
doctors and neurologists and specialists in Parkinson’s disease. The second objective is the
realization of an accurate multi-class classifier, whose inputs are the 3D-DWT coefficients
of the brain regions that have been selected as most relevant. For the construction of the
classifier, in this paper, a multi-class classification system based on SVM will be used.The
algorithm has the following steps:

1.  Initialization of the Multi-Objective Optimization Evolutionary Algorithm (MOE),
through an initial population Py, and the creation of an initial (empty) set of non-
dominated solutions (NDyp). The population size that was used in the simulation
was 250.

2. Calculate the fitness value for each individual. For this calculation, using the set of
training patients, the mean precision value (10-k-fold is used) of the SVM classifier
used in the MOE fitness function must be computed, together with the number of
genes (complexity of the system) that are set to one.

3. In the NSGA-II algorithm, there are two components that are relevant in its elitist
strategy: sorting the non-dominated solutions and calculating the crowding distance.
With this methodology, individuals from the population will be selected based on
their fitness function.

4. The evolutionary algorithm generates a new population of individuals. To achieve
this, a copy of the non-dominated individuals in P and ND; is made to ND;;

5. During the execution of a new generation, operators of the evolutionary algorithm
are applied to the individuals of the population. These include the binary tournament
selection with replacement in ND; 1. As we have indicated before, there is an elitist
process where the best solutions are copied from generation to generation, and MOE
operators complete the population (until the 250 individuals used in this role are
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obtained). Binary crossover and mutation are also applied, and P;;; is set on the
resulting population.

6.  Evaluation of fitness and Pareto functions from the construction. Our fitness function
has two goals: Complexity of the obtained solution (measured as the number of VOIs
selected) and accuracy of the classifier (using an SVM).

7. Repeat until Stopping Condition is reached (typically, a maximum number of genera-
tions is reached).

The final solution of the multi-objective optimization is the so-called Pareto Front,
which is a set of non-dominated solutions, chosen as being optimal, in which the two
objectives were simultaneously optimized: the accuracy of the classifier (using SVM to
perform a classification between SWEDD, PD, Prodromal, GenCohort and normal subjects)
and the complexity of the system (measured as the number of needed VOlIs).

Figure 7 shows an example of coding for the solutions of the Pareto frontier. Assuming
that there are M non-dominated solutions, each of the solutions have both a different
number of selected VOIs (genes in our case), as well as a different accuracy. For each VOI,
the number of features used is called N and is extracted using 3D-DWT. As can be seen
in the bottom part of Figure 7, for a given patient K’, using the individual—j of the Pareto
Front, only a subset of the VOIs is used, each having N features. Therefore, each patient K’
can be represented by a matrix of real numbers such as the one presented in Figure 7. This
process must be carried out on all the patients in the database, as illustrated in Figure 8.

As previously mentioned, the number of representative wavelet coefficients for each
VOl is reduced thanks to the use of the mRMR algorithm. However, when using a high
number of VOIs, the number of coefficients that are input to the SVM classifier is high. For
this reason, a feature reduction is performed by means of PCA, reducing the dimensionality
of the input space for the classifier of the fitness function. Therefore, for each patient, the
matrix of real numbers is simplified, as represented in Figure 9.

ko Pareto Front
© .
M solutions
§ b ( ) Genel | Gene2 | ... | Gene 3456
Q
< Individual 1 1 1 1
© 0., M) e o [ 1 ]
Individual M 1 (1] 1

#VOlIs

Select the Individual-j of the Pareto Front. 1

Patient K’ Feature1 Feature2 .. FeatureN Individual-j
VOI 1 (W) 0.3204 0.2702 0.1691 Genel=1 V
whole matter (W) VOI2 (W)  ——0382t——6:615 6:9285 Gene2 =0 X
Patient K’ VOI 1728 (W) -0.8156 0.2833 0.2887 Gene1728=1 \/
gray matter (C1) VoI 1 (C1) - ) 5 Gene 1729-0 X
VOI 2 (C1) 08207 £0.6512- 01623 Gene1730=0 x
o VOI 1728 (C1) -0.9465 -0.1238 0.9322 Gene 3456 = 1 V

Figure 7. Binary coding used by the MOE algorithm for the selection of the most relevant VOIs in
gray and whole matter.
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Patient1 Feature1l Feature2 .. FeatureN
VOI 1 (W) 0.4578 0.7307 -0.4691

/[ \ VOI2 (W) o958
PPMI Data Base Vori728W) G215 07833 | 03557
VoI 1 (C1) - = =
e VOI2 (C1) 05307 01802 0s023| Individual-j
Gene1=1 4
V011728 (C1) -0.3465 07238 | ... 0.7492 Gene2=0 X
X
Patient K Feature1l Feature2 .. FeatureN X
VOI 1 (W) 0.3204 0.2702 0.1691
W and C1 VOI 2 (W) 03821 o150 09285 | Gene3456=1 4
\ matter / Vo725 W) 816 [ETEEN 2887
VoI (c1) na12a 02302 07320
VOI2(Cl) | 08297 | 06512 01623 |
\ Vo728 el 5465 FXTECI (X5
~—
Individual-j Selected VOIs of White Matter (W). Selected VOIs of Grey Matter (C1).
] VOIL1 (W) VOI 1728 (W) VOIs (C1) VOI 1728 (C1)
F.1 EN |... F.1 F.N F.1 ...| EN F.1 ...| EN
Patient1 | 04578 | ... | 0.4691 | ... | -0.2156 | ... | 0.3557 | 02887 |...| 0.1493 | ... | -0.3465 | ...| 0.7492
Patient2 | 04588 | ... | 0.3271 | ... | 0.1856 | ... | 0.9657 | 01763 |...| 0.1233 | ... | 0.2963 | ...| 0.6438
Patient K | 0.3204 | ... | 0.1691 | ... | -0.8156 | ... | 0.2887 | 0.4625 |...| 0.3412 | ... | -0.9465 | ...| 0.9322

Figure 8. Matrix of coefficients of the 3D-DWT for the different VOIs selected in the individual-j of
the Pareto Front.

Individual-j v
Genel=1
Selected VOIs [cewez=o X
() [ewemn |V
Gene 1729=0 X
Gene 1730 =0 x
Gene 3456 =1 v
l 3D-DWT & mRMR
Indi\lidua I_- Selected VOIs of White Matter (W). Selected VOIs of Grey Matter (C1).
J VOI 1 (W) VOI 1728 (W) VOI-s (C1) VOI 1728 (C1)
F1 [ ...] FN [..| F1 [.. ] EN F.1 ..] EN [ ... F1 [..[ FEN
Patient1 | 04578 | ... [-0.4601 | ...]-02156 [ ... [ 03557 [ 0.2887 |...[ 01493 | ... [-0.3465[...] 0.7492
Patient2 | 04588 | ... [ 03271 [ ...[ 01856 | ... [ 09657 [ 0.1763 |...[ 01233 | ... [ 02963 | ...| 0.6438
Patient K | 03204 | ... [ 0.1691 | ...[-08156 [ ... | 0.2887 [ 0.4625 |...[ 03412 | ... [-0.9465 [ ...[ 0.9322
Individual-j
PCA.1 | PCA.2 | ... | PCA-j PCA-P
Patient1 | 0.1678 | 0.9212 | ... | 0.3691 | ... |0.7857
Patient2 | 02458 [ 08762 [ ... [ 07271 | ... Jo.1257
Patient K | 0.7204 [-0.4521 [ ... | 04691 | ... [0.3487

Figure 9. Block diagram of the PCA component matrix used for reducing the number of features for
each patient, using a specific individual-j of the Pareto Front.

4. Pipeline

MRIs from the PPIM database were divided into two different groups with no intersec-
tion. The first group is made up of the training set, with a total of 550 MRIs, being Control
(n =155), SWEDD (n = 92), Prodromal (n = 23), PD (n = 270) and GeneCohort (n = 10). For
the training set, 367 different MRI are selected, their composition being: Control (n = 103),
SWEDD (n = 62), Prodromal (n = 15), PD (n = 180) and GeneCohort (n = 7).

All the MRIs used were previously normalized to the MNI space to find the best brain
areas, dividing the brain into 1728 different VOIs, with a dimension of 12 x 14 x 10 voxels.
Once the MRIs are normalized, different filters are used to select gray matter (C1) and
whole matter (W). These VOlIs are characterized by the wavelet coefficients of the 3D-
DWT transform using the biorthogonal function 3.3 as a reference wavelet up to level 2.
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The number of coefficients obtained in the 3D-DWT transform is very high (thousand),
requiring a reduction and selecting the most relevant ones (the 30 best coefficients are
selected) with the mRMR algorithm.

A further step to reduce the number of coefficients is the use of PCA when all the
coefficients of the selected VOIs are merged using the multi-objective optimization evolu-
tionary algorithm. The coefficients obtained through PCA will be the input to the SVM
classifier.

As indicated, the methodology presented has two different phases: obtaining the most
relevant VOIs (optimization phase with the 550 training MRIs) and a test phase of the
obtained SVM classifier (using the different solutions of the Pareto Frontier and the 367
MRI scan).

In the first optimization phase, each individual of the population of the MOE (i.e.,
potential solutions, called chromosomes) is represented by a binary code (with a length of
1728 genes, equal to the number of VOIs, for each matter W and C1, Figure 6). If the value
of a gene is one, it means that the VOI is selected, and zero therefore means that the VOI
was not used for classification.

The parameters used in the MOE are a population of 250 individuals and 100 gen-
erations in an optimization process based on NSGA-II. The number of individuals and
generations has not been selected excessively large, since the computational complexity
and the execution time increase exponentially in this type of task.

To obtain greater robustness in the optimization phase, a 10-fold cross-validation has
been performed in the evaluation of the classification of the SVM classifier. The output of
the MOE is the Pareto front (Figure 10), where various solutions (solutions with different
numbers of VOIs for performing the classification) are obtained. In this contribution,
various solutions obtained by the MOE algorithm have been analyzed, performing the test
phase with the set of 367 MRI.

Coronal slice:

SOLUTION 3 PARETO FRONT

PARETO FRONT

COMPLEXITY (#VOls)

ERROR (%)

Figure 10. Non-dominated solutions from the Pareto Front, representing a sets of selected VOIs and
its corresponding SVM classifier.
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5. Results
5.1. Performance

In bi-class problems, the sensitivity and specificity are often used to analyze the
behavior of the classifier. However, the problem addressed in this contribution is more
complex, using five different classes. In multi-class problems, the confusion matrix is
frequently used for the analysis of the behavior of the classifier. The confusion matrix for a
problem of 1 class is an nxn matrix in which the columns represent the actual classes and
the rows the output classes predicted by the model. The main diagonal contains the sum of
all correct predictions.

5.2. Classification Results

Once the optimization process had ended, it is important to analyze the non-dominated
solutions obtained from the Pareto front, observing their complexity and the accuracy
obtained (Table 4). The first subject of the Pareto front is the individual who achieves the
best accuracy. However, it is also the most complex and contains the most VOIs. This
solution has 466 VOlIs, taking into account both whole and gray sources (W + C1 sources).

Table 4. Pareto front for VOI optimization. Training phase.

Pareto Solution Accuracy (%) Total VOIs W-VOIs C1-VOIs
1 99.73 466 231 235
2 99.18 265 133 132
3 98.91 159 73 86
4 98.09 27 6 21
5 97.54 26 4 22
6 97.27 18 6 12
7 96.18 15 4 11
8 95.64 11 4 7
9 94.00 7 0 7

10 85.55 6 0 6

As can be seen from Table 4, for Pareto front solutions with a higher number of VOIs,
the precision is high (It is above 98%, bearing in mind that it is a measure of accuracy
obtained with training data during the first optimization phase), the ratio of the number
of VOIs being similar for both gray matter and whole matter. As the number of selected
VOlIs is smaller, the precision decreases and most of the VOISs selected by MOE are in the
volumetric information of the brain belonging to the gray matter.

This statement can be corroborated thanks to Figure 11, which shows the Pareto
Genome, that is, the selected VOIs of the brain are represented on the x-axis (both for gray
matter and for whole matter), and the y-axis represents the precision of the MOE solution
with these selected VOIs. For solutions with low complexity, most of the sources are in
the gray matter part. Remember that the brain is divided into 12 x 12 x 12 partitions,
with VOIs from 1 to 1728 coming from whole matter and from 1729 to 3456 from gray
matter images.

Figure 12 shows the complexity (measured as the number of VOIs), together with the
error obtained for the classification in the training stage, for all the solution populations of
the MOE (zoomed to 700 VOlIs solutions). The last generation solutions (filled blue circles)
and Pareto front solutions (filled red circles) are also included in the figure.

It should be noted that the results presented in Table 4 come from the VOI optimization
phase (Figure 1), and therefore, the precision results are related to the training phase. These
solutions have been obtained using the MOE algorithm, within which there is an evaluation
stage of the solutions selected, using an SVM classifier. This SVM classifier uses 550 training
MR images.
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Figure 11. Pareto front genome, where the VOIs that are most relevant to obtain a high accuracy in
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EVOLUTION OF THE MULTI-OBJECTIVE OPTIMIZATION ALGORITHM
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Figure 12. Evolution of all populations of individuals of the MOE algorithm (including the last
generation and the Pareto front).

To analyze the robustness of the proposed methodology, it is necessary to carry out the
second phase, consisting of performing the classification with test data, using the solutions
proposed in the Pareto front. The Pareto front solutions obtained in the first optimization
phase (VOI selection) were tested on the test images, where 367 new MRI images are
classified with an SVM, the coefficients of the selected VOIs being the input of the classifier.

It is relevant to emphasize that the MRIs used during the first phase (optimization
phase for VOI selection) are different and independent from the MRIs used in the testing
phase. Carrying out the test phase guarantees the solidity and robustness of the results
presented by the proposed methodology. Different Pareto front solutions and configurations
regarding the selection of the VOISs selected (gray matter, whole matter or both) were tested,
showing in Table 5 some of the most relevant results.
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Table 5. Test results for several solutions of the Pareto front. Details of the number of VOIs, number
of features and components of the PCA for W,C1 and W+C1 sources.

Solution (PF) Source #VOIs #Features #PCA Accuracy  Conf.Matrix
4 231 6930 511 70.8 Figure 13a
1 C1 235 7050 464 96.2 Figure 13¢
W+C1 466 13,980 535 97.0
W 133 3990 419 63.8
2 C1 132 3960 416 95.9
W+C1 265 7950 498 96.2
w 73 2190 339 60.8 Figure 13b
3 C1 86 2580 380 95.9 Figure 13d
W+C1 159 4770 448 96
W 6 180 32 48.0
4 C1 21 630 224 93.7
WC1 27 810 232 93.5
4 4 120 37 49.86
5 C1 22 660 221 92.9
WC1 26 780 230 93.18
4 4 120 3 49.0
7 C1 11 330 136 88.8
WC1 15 450 138 90.5

As it was described in the first optimization phase, due to the high number of coeffi-
cients, PCA is used to keep around 95% of the features variance, significantly reducing the
final dimension of the number of input features to the SVM classifier. The confusion matri-
ces of the different configurations analyzed for the first and third Pareto front solutions are
presented in Figure 13 (for W, C1 and W+C1 sources used for VOIs selection).

The results obtained using an independent cohort of MRI subjects for the testing phase
have yielded promising results, taking into account that the problem is complex because
it has five different classes, with an imbalance between them. For the first Pareto Front
solution using both whole matter and gray matter, the accuracy obtained in the confusion
table is 97%, requiring 466 VOIs. Analyzing the third Pareto solution, focusing on the gray
matter, using 86 VOISs reaches 95.9 % precision. Note that the brain regions used in whole
matter may be different from those used in gray matter.

Table 6 shows the locations of the 73 and 86 VOIs selected by the third solution of
Pareto Front, for whole and gray matter, respectively. Graphically, Figures 14 and 15 show
the location in three-dimensional space of these VOIs in the brain. In the left part of the
figures, the spatial location of the selected VOIs is shown. On the right side, and in order
to facilitate its location in slices, three slices of the brain and the location of the VOlIs are
presented.

It is relevant to make a comparison of the PD disease classification results presented
in the bibliography, with those obtained in the present methodology (although it should be
noted that the number of classes in this paper is higher than those commonly presented
in publications). Table 7 presents a summary of relevant contributions that, based on MRI
images, have used machine learning and artificial intelligent techniques for the automatic
classification of PD.
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Figure 13. Confusion matrices obtained in the testing phase, for the first (left) and third (right)
solution of the Pareto Front, using W and C1 sources.
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Figure 14. Selected brain regions from the third Pareto solution (whole matter source, W).
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Table 6. Description of the spatial location (each VOI being described by its six integers
[xmin,xmax,ymin,ymax,zmin,zmax]) for the third solution obtained by the MOE algorithm, for
both W and C1 matter.

Source

Description of VOI Locations

[1,13,35,49,16,26]; [1,13,35,49,36,46]; [1,13,95,109,6,16]; [1,13,110,124,86,96]; [1,13,110,124,106,116]; [1,13,125,139,76,861;
[1,13,155,169,46,56]; [14,26,20,34,6,16]; [14,26,20,34,66,76]; [14,26,50,64,46,561; [14,26,80,94,36,46]; [14,26,80,94,116,126];
[14,26,95,109,106,116]; [14,26,125,139,116,126]; [14,26,170,184,36,461; [14,26,170,184,56,66]; [27,39,5,19,86,96]; [27,39,140,154,76,86];
[27,39,170,184,16,26]; [27,39,170,184,76,86]; [40,52,20,34,36,46]; [40,52,170,184,86,96]; [40,52,170,184,96,106]; [53,65,5,19,36,46];
[53,65,5,19,86,96]; [53,65,35,49,36,46]; [53,65,65,79,116,126]; [53,65,110,124,6,16]; [53,65,125,139,46,56]; [53,65,140,154,96,106];
[53,65,155,169,6,16]; [53,65,170,184,66,76]; [53,65,170,184,106,116]; [66,78,20,34,76,86]; [66,78,35,49,16,26]; [66,78,80,94,86,96];
[66,78,155,169,6,16]; [66,78,155,169,16,26]; [79,91,20,34,16,26]; [79,91,95,109,96,106]; [79,91,125,139,16,26]; [92,104,35,49,66,76];
[92,104,50,64,16,26]; [92,104,65,79,6,16]; [92,104,65,79,86,96]; [92,104,95,109,26,36]; [92,104,95,109,116,126]; [92,104,125,139,46,56];
[105,117,35,49,116,126]; [105,117,50,64,106,116]; [105,117,65,79,16,26]; [105,117,80,94,116,126]; [105,117,125,139,46,56];
[105,117,140,154,66,76]; [118,130,5,19,16,26]; [118,130,5,19,46,56]; [118,130,20,34,36,46]; [118,130,80,94,86,96]; [118,130,95,109,26,36];
[118,130,95,109,116,126]; [118,130,110,124,56,66]; [118,130,125,139,86,96]; [118,130,140,154,26,36]; [118,130,140,154,66,76];
[118,130,155,169,26,36]; [131,143,35,49,76,86]; [131,143,140,154,66,76]; [131,143,170,184,96,106]; [144,156,65,79,116,126];
[144,156,95,109,76,861; [144,156,125,139,96,106]; [144,156,140,154,76,86]; [144,156,155,169,106,116]

C1

[1,13,5,19,86,96]; [1,13,20,34,66,761; [1,13,35,49,76,86]; [1,13,35,49,96,106]; [1,13,50,64,96,106]; [1,13,65,79,36,46]; [1,13,80,94,76,86];
[1,13,80,94,96,106]; [1,13,110,124,96,106]; [1,13,125,139,96,106]; [1,13,140,154,96,106]; [1,13,170,184,26,36]; [1,13,170,184,46,56];
[1,13,170,184,56,66]; [14,26,20,34,116,126]; [14,26,50,64,6,16]; [14,26,65,79,86,961; [14,26,80,94,16,26]; [14,26,95,109,116,126];
[27,39,5,19,106,116]; [27,39,125,139,76,86]; [27,39,125,139,86,96]; [27,39,125,139,116,126]; [40,52,20,34,56,66]; [40,52,50,64,116,126];
[40,52,80,94,6,16]; [40,52,110,124,6,16]; [40,52,110,124,66,761; [40,52,110,124,116,126]; [40,52,155,169,6,16]; [53,65,35,49,26,36];
[53,65,50,64,66,761; [53,65,50,64,106,116]; [53,65,80,94,76,861; [53,65,110,124,46,56]; [53,65,125,139,46,56]; [53,65,140,154,106,116];
[53,65,155,169,66,76]; [66,78,20,34,46,56]; [66,78,20,34,106,116]; [66,78,65,79,96,106]; [66,78,80,94,116,126]; [66,78,110,124,96,106];
[66,78,155,169,96,106]; [79,91,5,19,96,106]; [79,91,20,34,26,361; [79,91,20,34,76,86]; [79,91,35,49,6,16]; [79,91,50,64,16,261; [79,91,50,64,46,56];
[79,91,50,64,76,861; [79,91,65,79,116,126]; [79,91,80,94,76,86]; [79,91,95,109,96,106]; [79,91,110,124,16,26]; [79,91,110,124,26,36];
[79,91,125,139,76,86]; [92,104,50,64,66,76]; [92,104,65,79,86,96]; [92,104,80,94,116,126]; [92,104,125,139,66,761; [92,104,140,154,86,96];
[92,104,140,154,96,106]; [105,117,65,79,26,36]; [105,117,65,79,36,46]; [105,117,65,79,86,96]; [105,117,65,79,106,116]; [105,117,80,94,46,56];
[105,117,95,109,56,66]; [105,117,155,169,66,76]; [105,117,155,169,116,126]; [105,117,170,184,56,66]; [105,117,170,184,106,116];
[118,130,50,64,76,86]; [118,130,65,79,86,96]; [118,130,80,94,76,86]; [118,130,95,109,96,106]; [118,130,140,154,36,461; [131,143,80,94,86,96];
[131,143,95,109,116,126]; [144,156,35,49,6,16]; [144,156,65,79,36,46]; [144,156,65,79,46,56]; [144,156,80,94,36,46]; [144,156,125,139,116,126];
[144,156,155,169,16,26]
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Figure 15. Selected brain regions from the third Pareto solution (gray matter source, C1).
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Table 7. Comparative summary of different methodologies presented in the bibliography to predict
PD from MRI.

Author, Year Cohort Data Base Number of Subjects Method Employed Accuracy (%)
Long et al., 2012 [23] Zhejiang University. PD (n = 19) vs. Normal (n = 26) SVM, LOOCV 86.9
Salvatore et al., 2014 [12] Own data-base. PD (n = 28) vs. Normal (n = 28) PCA, SVM, VBM 83.2
Rana et al., 2015 [22] Own data-base. PD (n = 30) vs. Normal (n = 30) SVM, ROI 86.67
Adeli et al., 2016 [50] PPMIL PD (n = 374) vs. Normal (n = 169) Joint feature-sample selection, RLDA 81.9
Abos et al., 2017 [51] Own data-base. PD (n =27) vs. Normal (n = 38) SVM, Functional connectome 80.0
Lei et al, 2018 [24] PPML PD (n=123) vs. SWEDD (n = 29) SVM, GDC,CSF, DSSM 78.37
vs. Normal (n = 56)

Amoroso et al., 2018 [18] PPML PD (n = 378) vs. Normal (n = 169) Random Forest, SVM 93
Oliveira et al., 2018 [25] PPMI. FP-CIT SPECT PD (n = 443) vs. Normal (n = 209) SV, LOOCYV, ROJ, k-NN 97.9
Ariz et al., 2019 [52] UK Brain Bank. PD (n = 39) vs. Normal (n = 40) Artificial Neural Network 79.9
Shinde et al., 2019 [19] NIMHANS, India. PD (n = 45) vs. Normal (n = 35) CNNs 80.00
Pang et al., 2020 [20] China Medical University. IPD (n = 83) vs. MSA-P (n =102) Seven radiomic features, SVM 86.2

PD (n =201) vs. Prodromal (n = 193) Semi-supervised, LDA

Zhang etal,, 2020 [53] PPML vs. Normal (n = 204) Multi-view learning Clustering 74

Park et al., 2020 [54] Yonsei Univ. HealthSystem. PD (n =77) vs. Normal (n = 53) SVM, Vol + ReHo + DegCen 75.3
. (a) PD (n = 378) vs. SWEDD (n = 58) (a)73.3
Pereira et al., 2020 [26] PPML (b) PD (n = 378) vs. Normal (n = 168) CNNs (b) 974
= _ _ Seven classifiers
Solana et al., 2021 [55] PPMI PD (n = 348) vs. Normal (n = 159) Haralick and Wrapper FS 93

Regional morphology features
quantitative T2 values 95.1
diffusion-tensor

PD (n = 45) vs. PSP-RS (n = 20)

Talai et al., 2021 [56] vs. Normal (n = 159)

U.Medical Center Hamburg.

PD (n = 450) vs. Normal (n = 258) vs.

Proposed method
Solution 1. C1 matter Figure 13c PPML SWEDD (n = 154) vs. Prodromal (n = 38) 3D-DWT, MOE, SVM 96.2
vs. GeneCohort (n = 17)
PD (n = 450) vs. Normal (n = 258) vs. vs.
Proposed method PPML SWEDD (n = 154) vs. Prodromal (n = 38) 3D-DWT, MOE, SVM 95.9

Solution 3. C1 matter Fi 13d
otution matter Hgure vs. GeneCohort (n = 17)

5.3. Conclusions

This study has presented a novel procedure for the multiple-class classification in
the field of Parkinson’s disease using MRI and machine learning paradigms. The novel
presented methodology has two main objectives. First, obtaining the brain regions that
are most relevant to the detection and classification of Parkinson’s disease is of great
relevance to expert neurologists. Obtaining the most relevant VOIs was accomplished due
to the implementation of an optimization algorithm based on Multi-Objective Optimization
Evolutionary Algorithm using an SVM classifier. The second objective of this contribution
is to offer a set of solutions, with different complexity (measured as the number of VOIs)
and precision for the automatic classification of patient of various classes: PD, SWEDD,
Prodromal, GeneCohort and healthy patients, using a large international cohort from
the PPMI database. The proposed methodology is therefore composed of two phases:
optimization of the most relevant VOIs and the classifier test with an independent set
of MRIs.

Both the whole matter images (dividing the brain into 1728 VOIs) and the gray matter
segmented images (again with 1728 VOIs) have been used. In the first phase, the optimiza-
tion phase, there are therefore 3456 different volumes of interest, extracted from 550 MRI
images from different subjects of the 5 categories analyzed in this paper. The optimization
was accomplished using an MOE, obtaining a diverse set of solutions with different com-
plexities (measured with the number of VOIs) and degrees of precision (giving rise to the
so-called Pareto front).

In the second phase, the testing phase, some of the solutions that provide the Pareto
front were tested with a cohort of independent subjects consisting of 367 MRIs of different
subjects from the five categories. The most precise, but most complex solution (we could
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call it the first solution), has a total of 466 volumes of interest (231 for W matter and 235 for
C1 matter). With this large number of VOIS, the classifier in the test phase obtained high
accuracy: 97.0 % (70.8 % and 96.2 % using only the W and C1 matter, respectively).

Another solution (the third of the Pareto front) with less complexity was analyzed. This
solution selects 159 regions (73 for W matter and 86 for C1 matter). Using the 86 volumes
of gray matter, the classifier, in the test phase, achieved an accuracy of 95.9 % in a multi-
class problem.

From the different solutions obtained in the Pareto Front, the high number of VOIs
selected in the gray matter for the construction of the classifier can be obtained as a final
conclusion.

To the best of our knowledge, there are very few, if not almost none, references in
the literature that perform 3-D feature extraction for VOI optimization in a multi-class
classification related to Parkinson’s disease. The results from the confusion matrices for
the different solutions of the analyzed MOE confirm that feature extraction using 3D-DWT,
together with feature reduction using mRMR and PCA, are powerful tools for characterizing
brain regions. The MOE algorithm has obtained a repertoire of solutions with different
degrees of precision and complexity, providing information on which are the most relevant
brain regions for the construction of the SVM classifier.
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