
Software Impacts 8 (2021) 100061

a

b

c

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

rl_reach: Reproducible reinforcement learning experiments for robotic
reaching tasks
Pierre Aumjaud a,∗, David McAuliffe b, Francisco J. Rodríguez Lera c, Philip Cardiff a

School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
Resero Ltd, Dublin 7, Ireland
Módulo de Investigación en Cibernética, Avenida de los Jesuitas, 24007 León, Spain

A R T I C L E I N F O

Keywords:
Reinforcement learning
Experiments
Robotics
Artificial intelligence

A B S T R A C T

Training reinforcement learning agents at solving a given task is highly dependent on identifying optimal sets of
hyperparameters and selecting suitable environment input/output configurations. This tedious process could
be eased with a straightforward toolbox allowing its user to quickly compare different training parameter
sets. We present rl_reach, a self-contained, open-source and easy-to-use software package designed to
run reproducible reinforcement learning experiments for customisable robotic reaching tasks. rl_reach
packs together training environments, agents, hyperparameter optimisation tools and policy evaluation scripts,
allowing its users to quickly investigate and identify optimal training configurations. rl_reach is publicly
available at this URL: https://github.com/PierreExeter/rl_reach.

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2021-9
Permanent link to Reproducible Capsule https://codeocean.com/capsule/4112840/tree/
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used Python 3
Compilation requirements, operating environments & dependencies Docker OR Python 3, Conda, CUDA (optional)
If available Link to developer documentation/manual https://rl-reach.readthedocs.io/en/latest/index.html
Support email for questions pierre.aumjaud@ucd.ie

1. Context and motivations

Industrial processes have seen their productivity and efficiency
increase considerably in recent decades thanks to the automation of
repetitive tasks, notably with the advances in robotics. This productiv-
ity can be further improved by enabling robotic agents to solve tasks
independently, without being explicitly programmed by humans.

Reinforcement Learning (RL) is a general framework for solving
sequential decision-making tasks through self-learning and as such, it
has found natural applications in robotics. In RL, an agent interacts
with an environment by sending actions and receiving an observation

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail address: pierre.aumjaud@ucd.ie (P. Aumjaud).

– describing the current state of the world – and a reward – describing
the quality of the action taken. The agent’s objective is to maximise
the expected cumulative return by learning a policy that will select the
appropriate actions in each situation.

RL has found many successful applications, however, experiments
are notoriously hard to reproduce as the learning process is highly
dependent on weight initialisation and environment stochasticity [1].
In order to improve reproducibility and compare RL solutions objec-
tively, various standard toy problems have been implemented
[2–7]. A number of software suites provide training environments for
https://doi.org/10.1016/j.simpa.2021.100061
Received 28 January 2021; Received in revised form 6 February 2021; Accepted 8 February 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2021.100061
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100061&domain=pdf
https://github.com/PierreExeter/rl_reach
https://github.com/SoftwareImpacts/SIMPAC-2021-9
https://codeocean.com/capsule/4112840/tree/
https://rl-reach.readthedocs.io/en/latest/index.html
mailto:pierre.aumjaud@ucd.ie
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:pierre.aumjaud@ucd.ie
https://doi.org/10.1016/j.simpa.2021.100061
http://creativecommons.org/licenses/by/4.0/


P. Aumjaud, D. McAuliffe, F.J. Rodríguez Lera et al. Software Impacts 8 (2021) 100061

W
a

t
p
t
e
3
b
R
e
p
r
t

2

a
a
r

Fig. 1. The training environment with live visualisation of the end-effector and target position.

continuous control tasks in robotics, such as dm_control [8,9], Meta-
orld [10], SURREAL [11], RLBench [12], D4RL [13], robosuite [14]

nd robo-gym [15].
We introduce rl_reach, a self-contained, open-source and easy-

o-use software package for running reproducible RL experiments ap-
lied to robotic reaching tasks. Its objective is to allow researchers
o quickly investigate and identify promising sets of training param-
ters for a given task. rl_reach is built on top of Stable Baselines

[16] – a popular RL framework. The training environments are
ased on the WidowX MK-II robotic arm and are adapted from the
eplab project [17], a benchmark platform for running RL robotics
xperiments. rl_reach encapsulates all the necessary elements for
roducing a robust performance benchmark of RL solutions for simple
obotics reaching tasks. We aim to promote reproducible experimenta-
ion practice in RL research.

. Functionalities and key features

The rl_reach software has been designed to quickly and reli-
bly run RL experiments and compare the performance of trained RL
gents against algorithms, hyperparameters and training environments.
l_reach’s key features are:

• Self-contained : rl_reach packs together a widely-used RL
framework – Stable Baselines 3, training environments, evalu-
ation and hyperparameter tuning scripts (Fig. 2). In addition
to its ease of usability, only a few other packages offer such
self-contained code.

• Free and open-source : The source code is written in Python 3
and published under the permissive MIT license, with no com-
mercial licensing restrictions. rl_reach only makes use of free
and open-source projects such as the deep learning library Py-
Torch [18] or the physics simulator Pybullet [19]. Many RL
frameworks require a paid MuJoCo license, which can be an
obstacle for sharing research results. Code quality and legibility is
guaranteed with standard software development tools, including
the Git version control system, Pylint syntax checker, Travis
continuous integration service and automated tests.

• Easy-to-use : A simple command-line interface is provided to
train agents, evaluate policies, visualise the results and tune
hyperparameters. Documentation is provided to assist end-users
with the installation and main usage of rl_reach. The soft-
ware and its dependencies can be installed from source with the
Github repository and Conda environment provided. Portability is

maximised across platforms by providing rl_reach as a Docker
image, allowing it to run on any operating system that supports
Docker. Finally, a reproducible code capsule is available online
on the CodeOcean platform.

• Customisable training environments : rl_reach comes with
a number of training environments for solving the reaching task
with the WidowX robotic arm. These environments are easily
customisable to experiment with different action, observation
or reward functions. While many similar software packages ex-
ploit toy problems as benchmark tasks, rl_reach provides its
users with a training environment that is closer to an industrial
problem, namely reaching a target position with a robotic arm.

• Stable Baselines inheritance : Since rl_reach is built on top
of Stable Baselines 3 [16] and its ‘‘Zoo’’, it comes with the same
functionalities. In particular, it supports recent model-free RL
algorithms such as A2C, DDPG, HER, PPO, SAC and TD3 and
automatic hyperparameter tuning with the Optuna optimisation
framework [20].

• Reproducible experiments : Each experiment (with a unique
identification number) consists of a number of runs with identical
training parameters but initialised with different initialisation
seeds. The evaluation metrics are averaged across all the seed runs
to promote reproducible, reliable and robust experiments.

• Straightforward benchmark : When a trained policy is evalu-
ated, the evaluation metrics, environment’s variables and training
hyperparameters are automatically logged in a CSV format. The
performance of a selection of experiment runs can be visualised
and compared graphically (Fig. 4).

• Debugging tools : It is possible to produce a 2D or 3D live plot of
the end-effector and goal positions during an evaluation episode
(Fig. 1), as well as a number of physical characteristics of the
environment such as the end-effector and the target position, the
joint’s angular position, reward, distance, velocity or acceleration
between the end-effector and the target (Fig. 3). It is also possible
to plot the training curves for each individual seed run (Fig. 5).
These plots have proven useful for debugging purposes, especially
when testing a new training environment.

3. Impact overview

Reinforcement Learning is a recent and highly active research field,
with a relatively large number of RL solutions published every year.

Accurately evaluating and objectively comparing novel and existing RL

2



P. Aumjaud, D. McAuliffe, F.J. Rodríguez Lera et al. Software Impacts 8 (2021) 100061

R
r
a
u
t

Fig. 2. rl_reach’s flowchart and components.

Fig. 3. An example of metadata plot after the evaluation of a trained policy.

approaches is crucial to ensure continued progress in the field. Repro-
ducing RL experimental results is often challenging due to stochasticity
in the training process and training environments [1]. By providing
a systematic tool for carrying out reproducible RL experiments, we
hope that rl_reach will promote better experimental practice in the

L research community and improve reporting and interpretation of
esults. Since rl_reach’s interface is straightforward, intuitive and
llows for a quick graphical comparison of experiments, it can be
sed as an educational platform for learning the practicalities of RL
raining.

Training RL agents is highly dependent on a number of intrinsic (e.g.
initialisation seeds, reward functions, action shape, number of time
steps) and extrinsic (algorithm hyperparameters) variables. Identifying
the critical parameters that control a successful training can be a daunt-
ing task. Thanks to its easily customisable learning environments and
extensive logging of training parameters, rl_reach offers a unique
solution to explore the effects of both intrinsic and extrinsic parameters
on the training performance.

Finally, rl_reach provides learning environments designed to
train a robotic manipulator to reach a target position. This task is
3



P. Aumjaud, D. McAuliffe, F.J. Rodríguez Lera et al. Software Impacts 8 (2021) 100061

m
i
o

t
i
s

Fig. 4. An example of visualisation plot that compares the performance of different RL experiments.

Fig. 5. An example of training curve plot.

ore industrially-relevant than many of the toy problems considered
n other benchmark packages, thus allowing straightforward transfer
f RL applications from academic research to industry.

A peer-reviewed article [21] has emanated from this software where
he performance of robotics RL agents trained to reach target positions
s compared. The trained policies were successfully transferred from the
imulated to the physical robot environment.

4. Conclusion and potential improvements

We chose to focus on the reaching task as it is one of the sim-
plest tasks to solve with a robotic arm, which allows users to run
experiments with relatively low computing resources, while still being
industrially relevant. Moreover, the reaching task allows the user to
shape the reward easily and to implement training environments with
both dense and sparse rewards. However, rl_reach would benefit
from supporting more complex and diverse manipulation tasks such as
stacking, assembly, pushing or inserting. It also does not include the
classic toy problems used traditionally for benchmarking RL agents. Fi-
nally, an implementation of the training environments for the physical
WidowX arm would help validate the performance of policies trained
in simulation.

rl_reach has been designed as a self-contained tool, packaging
both the training environments and the RL framework Stable Baselines
3 for convenience purposes. However this does not offer the flexibil-
ity to experiment with RL algorithms that are not supported by this
framework. A potential future improvement would consist in producing
a modular implementation of rl_reach where both the training
environments and the RL agents could be easily interchangeable.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

4



P. Aumjaud, D. McAuliffe, F.J. Rodríguez Lera et al. Software Impacts 8 (2021) 100061
Acknowledgements

This Career-FIT project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No. 713654.

References

[1] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, D. Meger, Deep
reinforcement learning that matters, in: 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018, 2018, pp. 3207–3214, arXiv:1709.06560.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.
Zaremba, OpenAI Gym, CoRR abs/1606.0. arXiv:1606.01540.

[3] M.G. Bellemare, J. Veness, The Arcade Learning Environment : An Evaluation
Platform for General Agents, vol. 47, 2013, pp. 253–279, arXiv:1207.4708v2.

[4] C. Beattie, J.Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, A. Lefrancq, S.
Green, A. Sadik, J. Schrittwieser, K. Anderson, S. York, M. Cant, A. Cain, A.
Bolton, S. Gaffney, H. King, D. Hassabis, S. Legg, S. Petersen, DeepMind Lab,
2016, pp. 1–11. arXiv:1612.03801v2.

[5] A. Nichol, V. Pfau, C. Hesse, O. Klimov, J. Schulman, Gotta learn fast: A new
benchmark for generalization in RL, arxiv, 2018, pp. 1–21. arXiv:1804.03720.

[6] K. Cobbe, C. Hesse, J. Hilton, J. Schulman, Leveraging procedural generation to
benchmark reinforcement learning, arXiv arXiv:1912.01588.

[7] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney,
T. Lattimore, C. Szepezvari, S. Singh, B. van Roy, R. Sutton, D. Silver, H.
van Hasselt, Behaviour suite for reinforcement learning, arxiv, 2019, pp. 1–19.
arXiv:1908.03568.

[8] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D.D.L. Casas, D. Budden, A.
Abdolmaleki, J. Merel, A. Lefrancq, T. Lillicrap, M. Riedmiller, F. Benchmarking,
DeepMind Control Suite, arXiv:1801.00690v1.

[9] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, P. Trochim, S. Liu, S. Bohez,
J. Merel, T. Erez, T. Lillicrap, N. Heess, Dm_control : Software and Tasks for
Continuous Control, vol. 6, 2020, pp. 1–34. arXiv:2006.12983v2.

[10] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, S. Levine, Meta-world:
A benchmark and evaluation for multi-task and meta reinforcement learning,
arXiv (CoRL), 2019, pp. 1–18. arXiv:1910.10897.

[11] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa, S. Savarese,
L. Fei-Fei, SURREAL: Open-Source reinforcement learning framework and robot
manipulation benchmark, in: A. Billard, A. Dragan, J. Peters, J. Morimoto (Eds.),
Proceedings of the 2nd Conference on Robot Learning, Vol. 87 of Proceedings of
Machine Learning Research, PMLR, 2018, pp. 767–782, URL http://proceedings.
mlr.press/v87/fan18a.html.

[12] S. James, Z. Ma, D.R. Arrojo, A.J. Daviso, Davison, RLBench: The robot learning
benchmark & learning environment, arXiv, vol. 5(2), 2019, pp. 3019–3026,
arXiv:1909.12271.

[13] J. Fu, A. Kumar, O. Nachum, G. Tucker, S. Levine, D4RL: Datasets for deep
data-driven reinforcement learning, arxiv, 2020, pp. 1–15. arXiv:2004.07219.

[14] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, robosuite: A Modular
Simulation Framework and Benchmark for Robot Learning arXiv:2009.12293.

[15] M. Lucchi, F. Zindler, S. Mühlbacher-Karrer, H. Pichler, Robo-gym – An open
source toolkit for distributed deep reinforcement learning on real and simulated
robots, in: 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2020), 2020, arXiv:2007.02753.

[16] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, Y.
Wu, Stable Baselines, GitHub repository. URL https://github.com/hill-a/stable-
baselines.

[17] B. Yang, J. Zhang, V. Pong, S. Levine, D. Jayaraman, REPLAB: A Repro-
ducible Low-Cost Arm Benchmark Platform for Robotic Learning, International
Conference on Robotics and Automation (ICRA) arXiv:1905.07447.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch:
An imperative style, high-performance deep learning library, arXiv (NeurIPS).
arXiv:1912.01703.

[19] E. Coumans, Y. Bai, PyBullet, a Python Module for Physics Simulation for Games,
Robotics and Machine Learning, URL https://pybullet.org/.

[20] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation
hyperparameter optimization framework, 2019, pp. 2623–2631, http://dx.doi.
org/10.1145/3292500.3330701, arXiv:1907.10902.

[21] P. Aumjaud, D. McAuliffe, F.J. Rodríguez-Lera, P. Cardiff, Reinforcement learning
experiments and benchmark for solving robotic reaching tasks, 2021, pp.
318–331, arXiv:2011.05782, 10.1007/978-3-030-62579-5_22.
5

http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1207.4708v2
http://arxiv.org/abs/1612.03801v2
http://arxiv.org/abs/1804.03720
http://arxiv.org/abs/1912.01588
http://arxiv.org/abs/1908.03568
http://arxiv.org/abs/arXiv:1801.00690v1
http://arxiv.org/abs/2006.12983v2
http://arxiv.org/abs/1910.10897
http://proceedings.mlr.press/v87/fan18a.html
http://proceedings.mlr.press/v87/fan18a.html
http://proceedings.mlr.press/v87/fan18a.html
http://arxiv.org/abs/1909.12271
http://arxiv.org/abs/2004.07219
http://arxiv.org/abs/2009.12293
http://arxiv.org/abs/2007.02753
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1905.07447
http://arxiv.org/abs/1912.01703
https://pybullet.org/
http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.1145/3292500.3330701
http://arxiv.org/abs/1907.10902
http://arxiv.org/abs/2011.05782
http://dx.doi.org/10.1007/978-3-030-62579-5_22

	rl_reach: Reproducible reinforcement learning experiments for robotic reaching tasks
	Context and motivations
	Functionalities and key features
	Impact overview
	Conclusion and potential improvements
	Declaration of competing interest
	Acknowledgements
	References


