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Abstract: Retrieving text embedded within images is a challenging task in real-world settings.
Multiple problems such as low-resolution and the orientation of the text can hinder the extraction of
information. These problems are common in environments such as Tor Darknet and Child Sexual
Abuse images, where text extraction is crucial in the prevention of illegal activities. In this work,
we evaluate eight text recognizers and, to increase the performance of text transcription, we combine
these recognizers with rectification networks and super-resolution algorithms. We test our approach
on four state-of-the-art and two custom datasets (TOICO-1K and Child Sexual Abuse (CSA)-text,
based on text retrieved from Tor Darknet and Child Sexual Exploitation Material, respectively).
We obtained a 0.3170 score of correctly recognized words in the TOICO-1K dataset when we combined
Deep Convolutional Neural Networks (CNN) and rectification-based recognizers. For the CSA-text
dataset, applying resolution enhancements achieved a final score of 0.6960. The highest performance
increase was achieved on the ICDAR 2015 dataset, with an improvement of 4.83% when combining
the MORAN recognizer and the Residual Dense resolution approach. We conclude that rectification
outperforms super-resolution when applied separately, while their combination achieves the best
average improvements in the chosen datasets.

Keywords: text spotting; text recognition; super-resolution; Tor Darknet; computer forensics

1. Introduction

The automatic detection, segmentation and recognition of text in natural images, also known
as text spotting, is a challenging task with multiple practical applications [1–3]. The location and
transcription of text may be a great aid in forensic applications such as the analysis of Child Sexual
Abuse Material (CSAM), the investigation of domains of the Tor network or the retrieval of critical
information from criminal scenes among other tasks [4,5].

Although specialized analysts in forensic laboratories can easily recognize multiple objects and
text in an image with little or no conscious effort, this manual analysis becomes unfeasible within
the proposed time constraints of most investigations [6]. Manual text-spotting is not only a very
time-consuming and expensive task, but it also exposes analysts to sensitive data on a daily basis,
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affecting their emotional state, therefore hindering their performance. Thus, the development and
implementation of fast, automatic and efficient tools for the analysis of images and videos become
crucial for the forensic field [4,5].

Artificial vision techniques [7] allow a high-level understanding of digital images or videos
without the need for a human operator. Furthermore, the availability of huge amounts of data,
hardware resources and machine learning techniques (both traditional and those based on deep
learning) allows for the development of models that can extract meaningful information from
images. Thus, multiple objects can be detected and classified within an image with high performance.
Image classification techniques allow for the identification of specific content [8], which can be further
explored through object detection [9–11] and object recognition techniques [12,13].

Text spotting helps enhance the task of analyzing multimedia material from sensitive
environments, such as CSAM or The Onion Router (Tor) darknet. The concept of darknet refers
to those networks from the Dark Web that require the use of specific browsers to be accessed. The Tor
network is one such darknet inside of the dark web, offering user anonymity thanks to its layered
domains, also known as hidden services. Due to this high level of privacy and anonymity, Tor is
commonly used by journalists to protect their sources, IT professionals to test the security of their
networks and other users wishing to remain anonymous.

However, Tor darknet also hosts suspicious content and services, such as traders selling different
kinds of unregulated products. Al-Nabki et al. [14] reported that 29% of the active domains crawled
from Tor darknet, during their study, contained different kinds of suspicious or potentially illegal
activities. Figure 1 gives examples of content typically found on Tor darknet and which includes
domains with weapons, drug selling, or personal identification counterfeiting.

Figure 1. Images crawled from Tor darknet. Samples from (a) dismantled weapon, (b) fake id, (c) fake
money and (d) credit cards.
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Different research efforts have been made to monitor Tor domains, and insights gained have been
used to develop techniques that allow for the supervision of suspicious activities. These techniques
range from solutions based on Natural Language Processing [15,16], to Computer Vision [17,18] or
Graph Theory [19,20].

However, some of the Computer Vision approaches overlook the analysis of the text found within
the images, which could be an important source of information. In Tor, depending on the context or
activity hosted in the hidden service, images could contain text that provides additional information
such as drug names or seller names, among others, as shown in Figure 1. Likewise, CSAM text retrieval
may provide details regarding the offender, which can be classified afterwards to acquire additional
information relevant to law enforcement agencies [21].

To the best of our knowledge, there are only two works that focus on the application of text
spotting to forensic applications. In the first, Blanco et al. [22] obtained an F-Measure of 0.57 in the text
detection task, but their performance on text recognition with state-of-the-art techniques was much
lower. Through the use of dictionaries and string-matching techniques, Blanco et al. [23] improved the
score of the recognition stage to 0.3970.

We can attribute the lower score obtained in these works [22,23] to different image quality factors,
such as colour distribution, brightness, and partial occlusion, some of which we illustrate in Figure 2.
Other problems affecting the text recognition task include multiple fonts or languages in the same
image, character similarity, lighting conditions or even mistakes when labelling the images [24].
Although these are frequent problems in state-of-the-art datasets, the issues of low resolution and
oriented text are the most remarkable in both CSA and Tor-based images [23]. In Tor images, it is
very common to fit several documents in a single picture to express quantity or product variations.
This problem becomes worse if, after the text is detected, the image is cropped to include only the text
content. In such cases, the quality of the cropped section can decrease further depending on the file
format chosen when saving the image. Such degradations in image quality reduce the performance of
text recognizers.

Figure 2. Common problems found in Tor images. Orientation (left, middle-top and right) and
low-resolution (middle).

In this paper, we address the problem of performing text recognition on non-horizontal
and low-resolution text [25], by enhancing images using two different techniques; rectification
networks [26,27], which correct an image’s orientation to reduce transcription mismatches,
and super-resolution techniques, which improve the image quality before recognition. We combine
these two tasks on CSA focused images as well as on Tor darknet images [22,23] in order to retrieve
information that can be of use to identify potentially illegal activities.

We selected a total of eight text recognition algorithms, studying their performance on four
state-of-the-art datasets and two custom datasets; namely CSA-text, a dataset that contains text
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retrieved from CSA-material, and TOICO-1K, a Tor-based image dataset we released and made publicly
available. We perform text recognition on single-region images, obtained from the ground truth of
each dataset. The two best performing approaches, which are based on rectification networks [26,27],
are later combined with three state-of-the-art super-resolution techniques, increasing text recognition
performance.

The rest of the paper is organized as follows. Section 2 presents related work on text recognition
and text-based super-resolution approaches. Section 3 describes the selected recognizers, rectification
and super-resolution based methods as well as the datasets used, while Section 4 details our
experiments and compares the results of combining these techniques. Lastly, we present our
conclusions and future lines of work for the further improvement of text recognition.

2. Related Work

Text spotting is the joint task of detecting areas inside an image or video that contain text, followed
by their transcription into a legible character sequence. This task can be used in different applications,
such as automatic navigation and document analysis [1]. After extraction, text can be further analyzed
using Natural Language Processing (NLP) techniques [28].

Text retrieval can be hindered by several issues, including lighting problems, character similarity
or curved text. Text can also appear inside images with low resolution, which can be hard to transcribe
accurately. Researchers have studied the most relevant problems in both detection and recognition [1,2],
establishing orientation and segmentation amongst the most common problems [24].

Currently, most approaches focus on the combination of Convolutional Neural Networks (CNN)
with Recurrent Neural Networks (RNN). Shi et al. [29] proposed the first end-to-end recognition
system based on this combination, creating a framework that combined sequence modelling, feature
extraction and transcription. This proposal was able to handle sequences of arbitrary length on a
smaller model while achieving good performance in both lexicon and non-lexicon based recognition.

The combination of both text detection and text recognition into a single system has attracted
great interest from researchers. Liu et al. [30] proposed a unified trainable network that performs better
than separate approaches due to sharing features between both stages using a RoiRotate operator,
reducing computational costs. While these approaches often achieve good performance on most
datasets, they have difficulties treating irregular text, most notably in the recognition stage.

There are two approaches to enhance the recognition step, namely the bottom-up and the
top-down approaches [27]. The former attempts to search for separate characters before joining
them and transcribing the complete sequence [31], while the latter focuses on matching the different
shapes of the text, correcting for orientation and size differences before transcription.

Luo et al. [27] followed a top-down approach by developing a rectification network combined
with an attention-based sequence recognition network. The proposed rectification network helps
to correct for orientation in distorted images, reducing the impact of irregular text in text
recognition. This approach is similar [26], but without the use of a bidirectional decoder to improve
transcription accuracy.

Comparing the performance of text recognizers can be difficult due to the differences in testing and
training datasets, software and hardware limitations, computational efficiency and the particular focus
of each method. Baek et al. [24] detail these issues alongside problems with the datasets, proposing a
unified framework to compare these algorithms.

Their study divides recognition into four stages, which are transformation, feature extraction,
sequence modelling and prediction. Following these stages, the models obtain the final transcripted
string. The authors provide several combinations of techniques and architectures in each stage,
studying their performance and obtaining state-of-the-art results. Furthermore, they analyze the most
relevant problems observed on the datasets, highlighting low resolution, irregular text, wrong labelling
and curved text as the most common ones.
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Low-resolution images present additional challenges to the text recognition problem. Single Image
Super-Resolution (SISR) techniques can be used to solve the low-resolution problem. SISR is used
in a wide variety of fields, most notably surveillance with identification purposes as well as medical
imaging. The resulting high-quality images can be used as input for text recognition algorithms,
improving transcription results.

The ICDAR 2015 Competition on Text Image Super-Resolution [32] reported an improvement of
over 15% when using Optical Character Recognition on super-resolution enhanced images. The highest
scoring method, Super-Resolution Convolutional Neural Network (SRCNN) [33], was based on a deep
CNN approach. It extracts batches from the original image after applying bi-cubic interpolation and
represents them as feature maps that are matched into each other, representing the high-resolution
batch. Following this approach, super-resolution methods have focused on improving performance by
increasing network depth with more convolutional layers or reducing the architecture complexity for
real-time applications [34].

However, these approaches often miss high-frequency image details, which reduces their
performance. More recent works have focused on obtaining a more accurate match between the
original image and the super-resolution variant, by implementing sub-pixel convolutional layers or
using residual learning [35]. The SRGAN method [36] proposes the use of Generative Adversarial
Networks (GAN), implemented with a deep residual network alongside skip-connection. The resulting
work generates photo-realistic images of up to four-times scaling.

3. Methodology

3.1. State-of-the-Art Datasets

To test both the rectification and super-resolution approaches, we used four state-of-the-art
datasets commonly referenced by the most recent text recognizers. The SVT dataset [37] was selected
due to the presence of low-resolution and blurry images, taken from Google’s Street View and
containing a total of 647 text regions. Each image has a 50-word lexicon associated with it, which
allows for the improvement of recognition results through string-comparison techniques when the
output sequence is not identical to the ground-truth.

For the representation of irregular, curved text, we selected the International Conference on
Document Analysis and Recognition (ICDAR) 2015 competition [38] dataset, which contains a total of
2096 images obtained from using Google Glasses in natural environments, containing several noisy
and oriented texts. Over 200 of these images also contain irregular text [27]. No lexicon is associated
with these images.

In addition to this ICDAR dataset, we also chose the 2013 ICDAR dataset [39], which holds over
1093 crops from scene images with no lexicon associated. We did not perform any filtering on this
dataset [27]. Lastly, we added the IIIT5K-Words [40] dataset, which holds 3000 cropped regions from
both scene text and born-digital images. Each image has two different lexicons associated, containing
50 and 1000 words, respectively.

Figure 3 illustrates some of the orientation and resolution-based problems that can be found in
images taken from these datasets.
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Figure 3. Resolution and orientation issues in state-of-the-art datasets.

3.2. Toico-1k

To demonstrate the effectiveness of our approach in low-resolution and oriented images, we used
our custom dataset [22], named in this paper as TOICO-1K, created specifically for the tasks of text
detection and text recognition on images crawled from Tor darknet and which is publicly available
in our group website (http://gvis.unileon.es/dataset/tor_images_in_context-1k/). Figure 4 gives
examples of the images and the labelling process.

Figure 4. TOICO-1K sample images. (a) represents the original image, (b) cropped text regions and (c)
details labelling examples.

The data creation process was semi-automatic. We took 101 images from the TOIC dataset [41],
and generated the first version of TOICO-1K using a text spotting approach, separating both detection
and recognition stages. We used the former to assist the task of text region labelling and generation of
most of the text bounding boxes, and the latter to obtain an initial transcription of the text detected.
Then, we manually inspected the 101 images, and we (i) added missing text regions not automatically

http://gvis.unileon.es/dataset/tor_images_in_context-1k/
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detected, (ii) corrected the predictions made by the text recognizer algorithm and (iii) added additional
information per text region inspired by [38,39].

We exported all the information to a JSON file, which contains: the type of text found (handwritten
or machine-based), whether or not the text is legible, language, number of text regions per image,
image dimensions and bounding box locations. The resulting dataset consists of 1101 documented text
regions. For our experimentation, we only chose the cropped areas labelled as “legible”, reducing the
quantity of cropped regions to 675.

3.3. Csa-Text Dataset

The rapid increase in the use of mobile devices and social media brought about an increase
in the distribution of CSAM, especially in the darknet. Efficient forensic tools are required for the
criminal investigation of such multimedia content and the European funded project Forensic Against
Sexual Exploitation of Children (4NSEEK), to which this research work belongs to, is concerned with
this problem.

We tested our approach on text retrieved from CSA images that have become highly prevalent
worldwide. Many of the CSA images also contain watermark-based text as well as machine printed
text that can help identify specific brands, publishers or names. However, they can also contain more
obscure texts, which can be hard to retrieve.

We created this dataset manually by crawling a total of 232 CSA based images, manually
transcribing the regions that contained text and cropping the relevant areas before detailing the
text found inside. The resulting dataset has a total of 648 text crops that contain low-resolution images
and oriented text. Figure 5 shows examples of text found within this dataset.

Figure 5. Child Sexual Abuse (CSA)-text dataset sample images.

3.4. Recognition Methods

We selected eight methods to establish an initial text recognition baseline. We chose these methods
due to their state-of-the-art results, their focus on computational efficiency [30], their approaches on
oriented text, and their implementation of rectification techniques [24,26,27].

Fast Oriented Text Spotting (FOTS) [30] presents an end-to-end text spotting system trained on
synthetic images that attempts to integrate both detection and recognition as simultaneous tasks that
share information between each other while reducing computational time. The recognition branch
is composed of a custom VGG sequence, a bi-directional Long Short Term Memory (LSTM) network
and a CTC decoder to obtain the final sequence. This approach allows for a real-time text recognition
speed that achieved state-of-the-art results on the ICDAR 2013 and 2015 datasets.

ASTER (Attentional Scene TExt Recognizer with flexible rectification) [26] and MORAN
(Multi-Object Rectified Attention Network) [27] focus on the problem of irregular text, which is
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common in natural scenes and complicates the transcription task. These works resolve this problem
through the use of rectification networks.

This technique is relevant in the context of both Tor and CSA based images, due to the common
presence of multiple oriented items in the same picture used to express quantity. This approach can
also be used to enhance text detectors, correcting the area obtained from the detection and giving
feedback to this task, improving the performance of end-to-end systems.

The ASTER recognizer is composed of two stages, namely the initial rectification and the
recognition network. When an image is fed to the algorithm, it is rectified using Thin-Plate-Spline (TPS)
transformation [42], correcting oriented and perspective text. After the rectified image is obtained,
the recognition network processes it and outputs a character sequence. This output is generated using
a bidirectional decoder in order to improve transcription accuracy, choosing as the final result the
sequence with the highest recognition score.

The MORAN approach is composed of two different networks, the multi-object rectification
network (MORN), which rectifies images, and the attention-based sequence recognition
network (ASRN).

The rectification network is trained using weak-supervision in order to rectify images with greater
distortions. The recognition stage is trained using a custom approach that learns neighbouring features
in training, increasing the robustness of the rectification by taking features from both foreground and
background context. Finally, both networks are then optimized end-to-end.

Out of the models provided by [24], we tested 5 of their pre-trained configurations, of which
2 used the TPS transformation while 3 did not. In the later stages of the pipeline, the methods alternate
using VGG [43] and ResNet [44] as the main feature-extracting neural networks. To improve the
extracted features, they enable the use of Bidirectional LSTM, at the cost of computational time.

Lastly, for the prediction stage, they use Connectionist Temporal Classification (CTC)
and attention-based prediction, although CTC is more common in the proposed combinations.
This approach predicts a character per column of features extracted, modifying blank and repeated
characters before producing the final transcription.

3.5. Super-Resolution Approaches

Since low-resolution images are prevalent in the forensic field, we selected three super-resolution
approaches to try to improve the performance in recognition: (i) Residual Dense Networks (RDN) [35],
(ii) Deep CNN with Skip Connection (DCSCN) [34] and (iii) Neural Enhance (NE).

We chose RDN for its focus on exploiting the hierarchical features from all convolutional layers,
which is valuable on images with differently scaled objects and aspect ratios. We chose DCSCN for its
focus on building a smaller architecture that can lower the computational cost. Finally, we selected NE
for its four different models of enhancing images.

Residual Dense Networks [35] propose the use of hierarchical features using residual dense
blocks. This structure is made of densely connected layers combined with local feature fusion and local
residual learning. The result is a contiguous memory mechanism by acquiring the state of preceding
blocks to each layer of the current one. After extracting these local features, dense feature fusion is
used to process hierarchical global features before upscaling the final. By combining both local and
global features, the proposed structure obtains the final, high-resolution image after upscaling.

The Deep CNN with the Skip Connection algorithm [34] proposes a fully CNN approach in order
to decrease power consumption and processing time, focusing on a smaller model with faster and
more efficient computation that is suitable for less powerful systems. It is comprised of both a feature
extraction network and a reconstruction network.

The extraction network obtains both local and global features using a cascade of CNNs combined
with Skip connection layers, with a decreased number when compared to other similar approaches.
After joining all of the features, DCSCN uses parallelized CNNs in order to reduce the input dimension
before creating the enhanced image.
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Lastly, the open-source approach called Neural Enhance (https://github.com/alexjc/neural-
enhance) is based on multiple super-resolution techniques attempting to combine all of them in a
single implementation. This approach also allows for three different enhance modes (repair, deblur
and default), where the default mode allows the possibility for ×2 and ×4 scaling to obtain higher
quality images. Combining all of the chosen super-resolution methods, we obtain a total of six possible
configurations for resolution enhancement.

4. Experimental Results and Discussion

4.1. Experimental Setup

We evaluated all the methods on an Intel Xeon E5 v3 computer with 128GB of RAM using an
NVIDIA Titan Xp GPU. All methods were implemented under Python3. We ran all of the algorithms
using their default configurations. For ASTER and MORAN, we disabled the use of the rectification
networks. We did not use any lexicons or dictionaries in our experiments.

We measured the performance of each method according to the percentage of Correctly
Recognized Words (CRW). We considered a transcription correct only if both the documented label
and the algorithm output are identical. In order to determine the best performing algorithms, we used
the Levenshtein distance [45] to measure the total and the standard deviation of the edit distance.
The lower the distance, the closer transcribed words are to the documented labels.

After obtaining the initial baseline and identifying the best methods, we separated the images
that were not correctly recognized and enhanced them with the use of the super-resolution algorithms.
For the NE method, we used each of the repair, deblur and default configurations separately.

Lastly, we took the resulting enhanced images and fed them into the ASTER and MORAN
recognizers, both with the rectification enabled and disabled in order to obtain the final transcriptions,
studying how the proposed techniques enhanced performance when combined or applied separately.
A visual representation of our pipeline is shown in Figure 6.

Figure 6. Proposed methodology. Images that were not correctly recognized are enhanced by
super-resolution and rectification techniques standalone and in combination.

4.2. Results and Discussion

The initial recognition results on each of the six datasets are summarized in Table 1. Of the
rectification based algorithms, ASTER obtained the best CRW results in all datasets except for IIIT5K,
for which MORAN achieved a higher score of 0.9243.

https://github.com/alexjc/neural-enhance
https://github.com/alexjc/neural-enhance
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Table 1. Text recognition performance result, using the Correctly Recognized Words (CRW)
measurement. The best score on each dataset is highlighted in bold.

Method TOICO-1K CSA-Text SVT IC15 IC13 IIIT5K

FOTS 0.2074 0.3889 0.5255 0.2499 0.7292 0.5700
MORAN 0.2652 0.5355 0.8671 0.6771 0.8573 0.9243
ASTER 0.2830 0.6883 0.8825 0.7235 0.8829 0.8413

None + ResNet + None + CTC 0.2163 0.5448 0.8377 0.6283 0.8280 0.8397
None + VGG + BiLSTM + CTC 0.2089 0.5417 0.8207 0.6119 0.8289 0.8273

None + VGG + None + CTC 0.1319 0.3858 0.7558 0.5060 0.7749 0.7600
TPS + ResNet + BiLSTM + ATTN 0.2637 0.5417 0.8702 0.6984 0.8545 0.8740
TPS + ResNet + BiLSTM + CTC 0.2385 0.5448 0.8624 0.6733 0.8417 0.8618

Among the methods proposed by [24], the TPS + ResNet + BiLSTM + ATTN combination obtained
the best performance on our TOICO-1K dataset. It also outperformed the MORAN approach on the
CSA-text, SVT and IC15 datasets. The pre-trained models that included the TPS transformation
achieved higher performance than those which did not. This result validates our rectification-based
approach to enhancing text recognition.

Of the methods that did not implement TPS, the Resnet + None + CTC configuration obtained
the best performance on all but the IC13 dataset. The use of the ResNet architecture increased results
significantly when compared to the VGG approach, even when combined with the BiLSTM technique.

Table 2 presents the total edit distance of the words that were not correctly recognized.
This measurement helps indicate how close the methods were on their failure cases, which can
be helpful when comparing methods with similar scores.

Using these values, we were able to make a distinction in the methods proposed by [24],
identifying the Resnet + None + CTC as the second-best recognizer for our CSA-text dataset since it
achieves the least total edit distance. This result implies that the proposed images may not benefit
much from the application of rectification techniques.

In both of our custom datasets, FOTS achieved the lowest total edit distance. When compared to
the rest of the methods in our CSA-text datasets, this approach greatly reduced the standard deviation
of the edit distance. This result suggests that the use of dictionaries alongside FOTS may be desirable
to enhance the performance further.

However, when applied on the state-of-the-art datasets, FOTS obtained the highest edit distance,
with noticeable increases on the IC15 and IIIT5K datasets. Combined with the large difference in the
original recognition scores, ASTER and MORAN remain better approaches despite the reduced word
closeness in our datasets.

Table 2. Total edit distance and standard deviation results per method on each dataset.

Method TOICO-1K CSA-Text SVT IC15 IC13 IIT5K
ED Std ED Std ED Std ED Std ED Std ED Std

FOTS 2859 5.039 957 1.635 846 2.109 5346 2.221 631 1.701 2918 1.709
MORAN 3197 5.367 1783 4.112 203 2.034 1716 2.026 277 1.200 515 2.816
ASTER 2914 5.496 2530 5.405 165 2.003 1522 1.971 248 1.356 774 1.821
None + ResNet + None + CTC 3173 5.595 1386 2.678 190 1.488 1752 1.731 310 1.212 836 1.725
None + VGG + BiLSTM + CTC 3608 6.590 1413 2.864 235 1.618 1934 1.827 314 1.229 978 2.083
None + VGG + None + CTC 3547 5.557 2059 4.446 330 1.598 2439 1.703 421 1.182 1376 1.851
TPS + ResNet + BiLSTM + ATTN 3219 5.832 1568 2.991 169 1.485 1579 2.051 283 1.578 757 2.529
TPS + ResNet + BiLSTM + CTC 3044 5.343 1553 2.975 158 1.396 1567 1.874 287 1.323 701 1.808

Tables 3 and 4 introduce the results of applying the rectification and recognition networks on
ASTER and MORAN, respectively. The ASTER recognizer obtained the highest results with rectification
enabled on the CSA-text and IIIT5K datasets when combined with NE Repair, SVT and TOICO-1K
when using the DCSCN models, and the ICDAR datasets with RDN.



Sensors 2020, 20, 5850 11 of 17

Table 3. CRW metric combining ASTER with super-resolution. Residual Dense Networks (RDN),
Deep CNN with Skip Connection (DCSCN) and (iii) Neural Enhance (NE) combinations are applied
over the baseline. The best score on each dataset is highlighted in bold.

Method TOICO-1K CSA-Text SVT IC15 IC13 IIIT5K

ASTER (Baseline) 0.2830 0.6883 0.8825 0.7235 0.8829 0.8413

ASTER (Baseline) + Rectification 0.3052 0.6914 0.9042 0.7424 0.8984 0.8540

RDN 0.2993 0.6898 0.8934 0.7453 0.8957 0.8483
RDN + Rectification 0.3096 0.6898 0.9042 0.7612 0.9122 0.8557

DCSCN 0.3037 0.6898 0.8995 0.7414 0.8930 0.8470
DCSCN + Rectification 0.3170 0.6944 0.9104 0.7574 0.9076 0.8560

NE Repair 0.2933 0.6960 0.8964 0.7351 0.8939 0.8543
NE Repair + Rectification 0.3007 0.6960 0.9042 0.7487 0.9021 0.8620

NE Deblur 0.2933 0.6914 0.9011 0.7380 0.8911 0.8540
NE Deblur + Rectification 0.3007 0.6914 0.9057 0.7477 0.9039 0.8613

NE Default ×2 0.2993 0.6898 0.8964 0.7453 0.8939 0.8477
NE Default ×2 + Rectification 0.3126 0.6914 0.9042 0.7598 0.9058 0.8580

NE Default ×4 0.3022 0.6898 0.8949 0.7438 0.8893 0.8493
NE Default ×4 + Rectification 0.3096 0.6914 0.9042 0.7593 0.9039 0.8590

Table 4. CRW metric combining MORAN with super-resolution. The best score on each dataset is
highlighted in bold.

Method TOICO-1K CSA-text SVT IC15 IC13 IIIT5K

MORAN (Baseline) 0.2652 0.5355 0.8671 0.6771 0.8573 0.9243

MORAN (Baseline) + Rectification 0.2919 0.5370 0.8733 0.7173 0.8774 0.9430

RDN 0.2785 0.5417 0.8717 0.7018 0.8664 0.9323
RDN + Rectification 0.2993 0.5417 0.8764 0.7255 0.8756 0.9450

DCSCN 0.2785 0.5417 0.8671 0.6936 0.8628 0.9297
DCSCN + Rectification 0.2993 0.5370 0.8764 0.7206 0.8792 0.9443

NE Repair 0.2711 0.5432 0.8733 0.6984 0.8646 0.9327
NE Repair + Rectification 0.2800 0.5432 0.8794 0.7158 0.8747 0.9430

NE Deblur 0.2726 0.5401 0.8748 0.6999 0.8673 0.9347
NE Deblur + Rectification 0.2800 0.5386 0.8810 0.7115 0.8728 0.9417

NE Default ×2 0.2770 0.5448 0.8702 0.7013 0.8692 0.9343
NE Default ×2 + Rectification 0.2889 0.5432 0.8748 0.7255 0.8792 0.9447

NE Default ×4 0.2830 0.5432 0.8794 0.6989 0.8701 0.9353
NE Default ×4 + Rectification 0.2933 0.5432 0.8733 0.7250 0.8756 0.9443

Using ASTER, we obtained a maximum performance score of 0.3170 on TOICO-1K, using the
DSCSN approach with rectification, while the CRW score on our CSA-text dataset achieved a 0.6960
using the NE Repair model, which did not improve with the addition of rectification. This result
suggests that the images present in our dataset may benefit more from image enhancements rather
than orientation correcting techniques.

While the combinations proposed for the MORAN recognizer helped to improve the performance,
they only ever outperform ASTER’s original scores in the IC15 dataset using the enhancements
provided by the Neural Enhance default ×2 and the RDN approaches with rectification enabled, which
obtained a score of 0.7255 over ASTER’s original 0.7235.

Similarly, despite the application of these enhancements, ASTER never surpassed the MORAN
recognizer on the IIIT5K dataset. Thus, the application of these enhancements on the recognizers only
helped surpass ASTER’s original score by a very small margin.
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The MORAN obtained scores of 0.2933 and 0.5448 on our custom TOICO-1K and CSA-text
datasets, using the DSCSN model with rectification enabled and the Neural Enhance Default
respectively. Unlike ASTER, in our CSA-text dataset combining both techniques either did not improve
the performance or decreased it in all the proposed combinations.

Despite this, the MORAN’s rectification network obtained the largest improvement on our chosen
datasets when combining both tasks. The RDN and NE Deblur obtained the best results on the IIIT5K
and SVT datasets, respectively. On the ICDAR datasets, DCSCN obtained the highest score, tied with
the RDN and NE Default approaches for the IC15 and IC13, respectively.

Although the recognition rate increased in all datasets when combining these techniques with
the ASTER recognizer, there were cases when the combination of rectification and resolution tasks
did not obtain higher results than standalone uses of these techniques. On our TOICO-1K dataset,
we obtained a 0.3052 score when applying rectification and 0.2933 using the NE Repair approach.
However, when combining both approaches, we obtained a score of 0.3007, which is lower than the
single application of rectification.

Using ASTER on TOICO-1K, we obtained lower scores than the simple application of rectification
over the combination of both tasks in the NE Repair and Deblur approaches, while for our CSA-text
dataset this only affected the RDN approach. However, we observe that with the MORAN recognizer,
this behaviour also extended to the state-of-the-art image sets, as can be seen in the IC15, IC13 and
IIIT5K datasets.

This performance block could be explained by the alterations of the image carried out by the
resolution techniques. When applied to similar characters, these approaches may highlight these
alterations by deblurring or enhancing key areas, which can potentially penalize similar character
recognition. Such a penalty can be prevented by implementing lexicons, string-matching techniques
and the average-edit distance to measure word closeness better and avoid recognition mistakes [23].

Finally, Tables 5 and 6 show the overall improvements each approach obtains in the given datasets.
We obtained an improvement of 3.41% when combining rectification with the DCSCN approach in
both the ASTER and MORAN recognizers. For the MORAN method, the same improvement was
achieved using RDN and rectification.

Table 5. Text recognition improvement on ASTER, measured as the difference between the best-case
result and the original baseline. Avg presents the average improvement per dataset (columns) and
method (rows).

Approach TOICO-1K CSA-Text SVT IC15 IC13 IIIT5K Avg
Rectification 2.22% 0.31% 2.16% 1.88% 1.56% 1.27% 1.57%

RDN 1.63% 0.15% 1.08% 2.17% 1.28% 0.70% 1.17%
RDN + Rectification 2.67% 0.15% 2.16% 3.77% 2.93% 1.43% 2.19%

DCSCN 2.07% 0.15% 1.70% 1.79% 1.01% 0.57% 1.22%
DCSCN + Rectification 3.41% 0.62% 2.78% 3.38% 2.47% 1.47% 2.36%

NE 1.93% 0.77% 1.85% 2.17% 1.10% 1.30% 1.52%
NE + Rectification 2.96% 0.77% 2.32% 3.62% 2.29% 2.07% 2.34%

Average Improvement 2.45% 0.44% 1.98% 2.82% 1.85% 1.26% /

Table 6. Text recognition score improvements for the MORAN recognizer.

Approach TOICO-1K CSA-Text SVT IC15 IC13 IIIT5K Avg
Rectification 2.67% 0.16% 0.62% 4.01% 2.01% 1.87% 1.89%

RDN 1.33% 0.62% 0.46% 2.46% 0.91% 0.80% 1.10%
RDN + Rectification 3.41% 0.62% 0.93% 4.83% 1.83% 2.07% 2.28%

DCSCN 1.33% 0.62% 0.00% 1.64% 0.55% 0.53% 0.78%
DCSCN + Rectification 3.41% 0.15% 0.93% 4.35% 2.20% 2.00% 2.17%

NE 1.78% 0.93% 0.77% 2.42% 1.28% 1.10% 1.38%
NE + Rectification 2.81% 0.77% 1.39% 4.83% 2.20% 2.03% 2.34%

Average Improvement 2.35% 0.62% 0.75% 3.42% 1.50% 1.42% /
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Overall, ASTER obtained a larger improvement over MORAN in TOICO-1K, with 2.45% over
MORAN’s 2.35%. However, the MORAN obtained a better improvement on our CSA-text dataset,
with a 0.93% over ASTER’s 0.77%. The results of combining resolution and rectification in this dataset
suggest that resolution is more relevant in these types of images.

On average, ASTER benefits more from the resolution-based approaches, while MORAN improves
the performance due to the use of the rectification network. Our experimental results indicate that
the ASTER recognizer performs better on the given datasets, except for the IIIT5K, and that both
super-resolution and rectification techniques are very close in terms of performance, with the MORAN
and ASTER rectification networks obtaining slightly higher results than super-resolution except in
images similar to those contained in the CSA-text dataset.

The MORAN obtained lower scores when adding rectification in addition to the resolution,
while only the DCSCN method helped improve ASTER’s recognition results in this dataset.
The MORAN obtained the highest average improvement on our dataset, with 0.62% over
ASTER’s 0.44%.

While none of the approaches decreased the score established over the baseline, when combining
the MORAN recognizer and the DCSCN model on the SVT dataset, there was no improvement in the
recognition task. This was the only instance in which we did not obtain a higher score when applying
the proposed techniques.

On the state-of-the-art datasets, ASTER obtained better improvements than MORAN in all
configurations of the SVT dataset, with an average improvement of 1.98% over MORAN’s 0.75%.
The highest score in this dataset was obtained using the DCSCN approach combined with rectification.

The RDN approach obtained the best results on the IC15 and IC13 datasets with 3.77% and 2.93%,
respectively. The Neural Enhance approach outperformed the other methods on the IIIT5K-Words,
with an improvement of 2.07%.

The MORAN obtained the highest score improvement over any dataset on the IC15 dataset with
a 4.83% improvement when combined with the RDN and the Neural Enhance approach. On average,
the recognizer outperformed ASTER in both the IC15 and IIIT5K datasets with 3.42% and 1.42%
CRW improvement.

5. Conclusions

In this paper, we address the problem of improving the performance of text recognition for forensic
applications assessing the use of rectification networks together with super-resolution techniques.
We tested our approach on four state-of-the-art datasets and two custom datasets, a Tor-based image
dataset (TOICO-1K), which is publicly available, and a CSAM based dataset, proposing three different
environments for text spotting application.

We applied the Levenshtein distance to further differentiate between methods with similar
performance. Despite FOTS scoring the lowest total distance in our custom datasets, the performance
score difference against the rectification-based approaches is significant enough to ignore word
closeness in favour of full-string match performance. However, as shown in our CSA-text dataset,
methods could benefit from task-specific dictionaries in order to further enhance their performance.

We studied the combination of different techniques in each stage of the recognition task, as
seen in [24]. We identified the combination of the TPS and BiLSTM techniques together with the
ResNet CNN and attention-based decoders as the best approach. For images that do not require
rectification operations, the addition of BiLSTM to the pipeline could be desirable to enhance
recognition performance further. Despite the lower scores achieved by these pipeline combinations,
their use is still recommended for real-time systems.

We obtained the maximum improvement on ICDAR 2015 dataset, 4.83%, combining the RDN and
the rectification network provided by the MORAN recognizer. In TOICO-1K, DCSCN combined with
the rectification improved the baseline results a 3.41% using either of the proposed recognizers. For our
CSA-Text dataset, we improved the recognition by 0.93% using only resolution-based techniques.
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When analyzed separately, rectification slightly outperforms super-resolution methods on average
recognition improvement. Amongst the proposed techniques, Neural Enhance obtained higher results
than the rest of resolution techniques when no rectification was involved, with the deblur and default
×2 scaling parameters as the best configurations. However, when combined with the rectification
networks, DCSCN obtained the highest improvement scores. These results highlight low-resolution as
a relevant challenge for text recognizers, but less relevant than the problem of rotated text.

For our datasets, we conclude that the application of resolution yields better results than
rectification on CSAM, due to the higher presence of machine-printed text in low-quality images.
In Tor-based images, as objects are presented in multiple orientations to express quantity and product
difference, rectification techniques help further enhance the results obtained by text recognizers.

Our results demonstrate that the combination of both tasks improves text recognition in both
our real-world problems as well as state-of-the-art datasets, identifying ASTER as the best text
recognizer for five out of the six chosen datasets. When combined with super-resolution techniques,
ASTER obtained the highest score with a 0.3170 and 0.6960 for TOICO-1K and CSA-text, respectively,
outperforming all other approaches.

Based on our results, we recommend the use of rectification techniques over super-resolution
approaches in state-of-the-art datasets, as the correction of the images obtained higher overall
improvements. However, images similar to those of the IC15 dataset can still benefit from the
standalone use of super-resolution techniques, although the enhancements are lower than those
of the image correction approach.

For Tor-based images, we recommend the use of the DCSCN method, as it obtained higher
average scores when used standalone with the ASTER recognizer, as well as when combined with the
rectification networks. In the case of CSA images, resolution techniques should be prioritized over the
orientation approach.

Our future work will focus on the study of text recognition based problems, such as aspect ratio
and partial occlusion. The evaluation process is also a relevant problem, which can penalize models
that do not fully match words with similar characters, such as the ‘o’ letter and the number zero,
which are common in both TOICO-1K and CSA-text images and the difficult recognition of keywords
linked to illegal activities. After transcription, NLP techniques can be used to process and classify text,
which can be useful to identify sellers and entity names in both the CSA and Tor environments.

Lastly, the labelling of the datasets can also pose a performance decrease for text recognizers,
as multiple state-of-the-art datasets [24] have been reported of including various mistakes on their
documented labels.
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