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A B S T R A C T   

This study aims to apply machine learning methods to predict the compression strength of self- 
compacting recycled aggregate concrete. To obtain this goal, the ensemble methods: Random 
Forest (RF), K-Nearest Neighbor (KNN), Extremely Randomized Trees (ERT), Extreme Gradient 
Boosting (XGB), Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Category 
Boosting (CB) and the generalized additive models: Inverse Gaussian (GAM1) and Poisson 
(GAM2) were applied. For the development of the models, 515 research article samples were 
collected and divided into three subsets: training (360), validation (77), and testing (78). The SCC 
components: cement, water, mineral admixture, fine aggregates, coarse aggregates, and super
plasticizers were taken as input variables and compression strength as output variables. To 
determine the ability of the models to project compressive strength, the following metrics were 
used: R2, RMSE, MAE, and MAPE. The results indicate that the RF (R2 = 0.7128, RMSE = 0.0807, 
MAE = 0.06) and GB (R2 

= 0.6948, RMSE = 0.0832, MAE = 0.0569) models have a strong 
potential to predict the compressive strength of SCC with recycled aggregates. The sensitivity 
analysis of the RF model indicates that cement and water are the variables that have the highest 
impact in predicting the compressive strength, while coarse aggregate has the lowest impact.   

1. Introduction 

Worldwide, the rapid development of the construction industry over the years has led to excessive consumption of natural re
sources, construction and demolition waste (C&DW) has been accumulated in a huge content, discarding the recycled aggregates (RA) 
in landfilling can result in environmental damage [1–4]. Particularly in the last decades, in the European Union, the construction 
industry has had exponential growth, and as a consequence of this growth, the production of C&DW has been increasing [5,6]. With 
this great development of the construction industry, the rate of demolition is increasing day by day, this makes it necessary to 
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effectively reuse C&DW [7,8]. In general, this waste composition contains concrete, masonry, wood, metal asphalt, ceramic materials, 
among others [3,8]. This development of the construction industry makes concrete one of the most widely used products worldwide [3, 
9,10], due to its various advantages over other materials, e.g., integrity, durability, modularity, economy [11]. Concrete is mainly 
composed of fine aggregates (sand) and coarse aggregates (stone), these aggregates account for approximately 75% of the total 
concrete [3,12]. 

Since concrete is the most widely used construction material worldwide and intending to take advantage of this construction waste 
to minimize the environmental impact, the construction industry has developed advanced techniques for concrete design [8,10,13] 
thus achieving different types of concrete containing different mineral admixtures. Recently, the construction industry is widely 
applying a variety of specialty concrete, including self-compacting concrete (SCC) and high-performance concrete [10]. The intro
duction of SCC provides an allowable potential and attracts interest in exploiting substitute materials, waste, by-products, and sec
ondary materials such as mineral admixtures. 

Self-compacting concrete is a fluid concrete characterized by increased flow capacity, good segregation resistance and slump under 
its own weight. This is why this type of concrete allows the formwork to be filled without the need for mechanical vibration, so that it 
can be easily used in complicated formwork, reinforced structural elements and areas of difficult access. Thus, it avoids bleeding and 
segregation and maintains stability at the same time [14,15]. In this sense, it is used in the construction of civil works around the world, 
taking advantage of its ability to be compacted by the action of gravity [2,15–17]. 

The quality of SCC is generally established according to its compressive strength, which gives a general reference to the quality of 
concrete, since it is directly related to the structure of the hardened mixture [18]. Generally, the way to obtain the compressive 
strength of SCC is by physical experiments, which are expensive and time consuming to obtain results, so the working efficiency will be 
very low [11]. That is why, technological advances allow solving engineering problems at a lower cost by other methods, such as 
empirical regression, numerical simulation and the use of machine learning methods [11,19]. These methods allow predicting the 
compressive strength of SCC with the proportion of the designed mixture of different components (cement, admixture, water, coarse 
aggregates, fine aggregates and superplasticizers). 

In this regard, there is a trend of using artificial intelligence through machine learning (ML) techniques to predict the compressive 
strength of SCC [3,9,20–22], these techniques can be used for various purposes, such as regression, classification, correlation, clus
tering. Therefore, with the development of ML techniques, it becomes easier to predict the compressive strength of SCC [19], as well as 
other mechanical properties of concrete [20,23]. Thus, to evaluate the mechanical properties of concrete with recycled aggregates Xu 
et al. [23] used multiple nonlinear regression and neural networks; Xu et al. [20] employed a probabilistic calibration method based on 
Bayesian theory and Markov Chain Monte Carlo (MCMC) method as well as Xu et al. [24] developed four different types of models: the 
multivariate regression (MNR) model and the two neural networks (i.e., BP-ANN and GA-ANN) to predict the behavior of RAC under 
triaxial loading. 

Specifically the prediction of the compressive strength of self-compacting concrete is an application of the ML regression function, 
through the application of certain methods that can learn from the input data and provide very accurate results. Currently, a variety of 
ML methods are employed to predict the compressive strength of self-compacting concrete, including ensemble methods [21,25], 
neural networks [23,24], regression models [10,24,25] and generalized additive models (GAM) [25–27]. 

Therefore, the research objective of this work is to apply machine learning methods to predict the compressive strength of self- 
compacting concrete with recycled aggregates. 

1.1. Self-compacting concrete (SCC) with recycled aggregates 

Self-compacting concrete is defined as a special type of concrete able to be compacted by the action of its weight, which can settle in 
the highly reinforced and deep sections, filling the formworks and runs between difficult to access structures or complex molds, 
without the need for vibrating or any other compaction method [28–30]. This type of concrete, developed in Japan in the 1980 s with 
the advances in concrete technologies, has spread all over the world. Once hardened, it is dense, homogeneous, and has the same 
engineering properties and durability as traditional vibrated concrete [16,29,31,32], due to a studied dosage and the use of specific 
superplasticizer [28–30]. It presents the characteristic of being homogeneous as well as maintaining its cohesion during its placement, 
without segregation or bleeding, blockage of coarse aggregates, or exudation of the slurry [15,16,28,33]. 

For the preparation of the SCC mix, the same components are used as those used for conventional concrete: cement, fine aggregates, 
coarse aggregates, binder, and water [5,28,34–36], in the correct proportions to obtain a homogeneous mix. In addition to these 
materials, additives such as superplasticizers and modular viscosity additives (chemical admixture), in different proportions, are 
included in the preparation of SCC to help reduce segregation and exudation during pouring on-site as well as sensitivity to the 
variation of other elements of the mix [4,25,30]. 

The rapid development of the construction industry has generated a great demand for concrete, resulting in excessive use of natural 
assets, as is the case of natural stone aggregates, the material used in the production of concrete, as well as an increase in construction 
and demolition waste. For this reason, the construction industry has seen the need to exploit less natural resources, reduce the 
environmental impact and take advantage of C&DW, which has been achieved thanks to the use of recycled aggregates from concrete 
waste [1,2,16,37,38]. 

The recycling of C&DW for the preparation of recycled aggregates, to replace natural aggregates, allows the elaboration of SCC with 
recycled aggregates [5,30,39,40], which has been recognized as a way to reduce construction waste and conserve the environment, in 
addition to a decrease in the cost of construction Works [16,37]. 

The mechanical properties of SCC with recycled aggregates, such as compressive strength, tensile strength, elasticity, flexural 
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strength, are hardly affected concerning those of conventional concrete [5,39,40]. Martínez-García [5] points out that a 20% sub
stitution of recycled aggregates has little impact on the properties and characteristics of concrete with recycled aggregates compared to 
those of conventional concrete. EHE-8 [28] recommends the 20% weight proportion of recycled aggregates as the maximum allowable 
weight limit of the use of recycled aggregates in the concrete mix. 

1.2. Compressive strength 

Compressive strength is one of the main mechanical characteristics of concrete. Compressive strength is calculated by the ultimate 
load divided by the cross-sectional area resisting the load and is expressed in megapascals (MPa) [41]. It is considered a conventional 
value established through a standardized test and referred to as the stress for which exhaustion is reached. The concrete compression 
strength of concrete is subject to the proportion of recycled aggregates incorporated in the mix [18,38,42] so its proper dosage has a 
considerable impact on the compression strength. 

1.3. Machine learning 

Machine Learning (ML) is one of the key approaches to artificial intelligence (AI). Machine learning is currently used in several 
research fields. It is characterized by the ability to improve behavior, called learning, based on previous experience. This improvement 
consists of establishing logical rules that lead a given system to make more assertive decisions for a given context. Machine learning 
deals with systems that are trained from data rather than explicitly programmed; it uses algorithms to learn from data patterns [43,45]. 
Machine learning methods allow the analysis of large amounts of data, being exceptionally systematic in terms of computing and 
progressing time [1,46], providing faster and more accurate results, thus reducing error rates to negligible levels. Machine learning 
methods can be divided into 3 categories: supervised learning; unsupervised learning (Clustering algorithms, Principal Component 
Analysis, among others), and reinforcement Learning [44,47]. Supervised learning methods are exposed to large amounts of labeled 
data, including input and output variables. The algorithm finds patterns among the data, learns from the observations, and generates 
predictions until the error has been sufficiently minimized. Supervised learning is divided into two types: classification and regression 
[48]. Classification uses algorithms to recognize specific patterns within the data set to define predictions. Among the most common 
classification algorithms are: ensemble methods, Decision trees, Nearest neighbors. Regression is utilized to understand the rela
tionship between dependent and independent variables and is often used to make projections. Among the most common regression 
algorithms are: generalized linear models (GLM), generalized additive models (GAM), logistic regression, among others. Unsupervised 
learning methods employ data sets that are not classified with the aim of finding patterns in data fragments by recognizing similarities 
and grouping data by categories [48]. 

Reinforcement methods are trial-and-error learning. The system interacts with its environment producing actions that discover 
errors, the algorithms automatically determine the ideal behavior within a specific context seeking to maximize its performance [48]. 
Particularly in this paper, to predict the compressive strength of SCC with recycled aggregates supervised learning methods are used, 
specifically nine ensemble methods: Random Forest (RF), K-Nearest Neighbor (KNN), Extremely Randomized Trees (ERT), Gradient 
Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB), Category Boosting (CB) and the gener
alized additive models: Inverse Gaussian (GAM1) and Poisson (GAM2). 

1.3.1. Ensemble methods 
Ensemble Methods are learning algorithms that combine multiple differential machine learning models to improve prediction 

performance [49–51]. The result is a final model that performs better than individual models Among the ensemble methods are: 
Boosting and Bagging. 

Bagging (bootstrap aggregating), seeks to improve classification by combining the prediction results of independently trained 
models into randomly generated training sets. In Bagging methods, the idea is to construct several independent estimators and 
calculate the mean of the predictions. This results in an estimator with a lower variance compared to independent estimators. Among 
the Bagging methods proposed are K-Neighbor Regressor (KNN), Random Forest (RF), and Extretrees Regressor (ERT) [19,25,47, 
52–54]. K-Neighbor Regressor (KNN) seeks to explore a set of training specimens close to a new query point and predict its value [55]. 
Random Forest (RF) is a method that takes into account several random decision trees and fits them based on several subsamples of the 
training data. RF uses the average of the decision trees to better predict and control overfitting [56]. Extretrees Regressor (ERT) is 
similar to RF, differing only in the way random splits are performed on the trees [57]. 

Boosting is an ensemble meta-algorithm that combines a set of weak classifiers to create a strong classifier. It builds an ensemble 
incrementally by iteratively training a new model to emphasize misclassified training samples from previous models. Estimators are 
built sequentially while seeking to decrease the bias of the final combined estimator. Among the methods employed are Gradient 
Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB), and Category Boosting (CB) [49,52,53]. 
GB progressively builds a model using differentiable loss function optimization [58]. At each step, a regression tree is fitted following 
the negative gradient of the loss function. LGBM is a variation of GB that uses trees based on learning algorithms. As a result, LGBM has 
a speed value at the training stage, ensuring higher efficiency [59]. XGB is a variation of GB and has an optimization algorithm for 
splitting trees integrated with a regularization component (to avoid overfitting) [60]. CB is also a variation of GB, which: uses sym
metric trees to provide faster execution, allows the use of parallel processing, and uses ordered boosting to avoid overfitting [61]. 
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1.3.2. Generalized additive models 
Generalized additive models (GAM) are an extension of generalized linear models. The GAM is a generalized linear model, in which 

the output variable is given by a linear combination of unknown smooth functions of some predictor variables. GAM models do not 
restrict the relationship between the response variable and the explanatory variable to the linear form, but allow this relationship to 
have an unknown form, using Exponential Family distributions for the response variable. In this paper, the Inverse Gaussian (GAM1) 
and Poisson (GAM2) exponential distributions are used to build the GAM model [48,62,63]. 

2. Materials and methods 

2.1. Experimental database 

The data collected through the research article search contains the results of 515 samples of SCC hardened with recycled aggre
gates. Table 1 summarizes the database including the amount of data (no.) contributed by each article as well as its proportion 
(percentage) in the data. 

From these published papers on the compression strength of SCC with RA, Table 2 shows the average, minimum and maximum 
values of the input (Cement, Mineral Admixture, Water, Fine aggregate, Coarse aggregate, Superplastificizer) and output (Feature 
compression know) variables used for modeling the compression strength of SCC with RA, through the use of Machine Learning 
techniques. 

2.2. Exploratory data analysis 

The correlation coefficient (r) between the input variables: cement, mineral admixture, water, fine aggregate, coarse aggregate, and 
superplasticizer and the output variable feature compression know (fck) was calculated to evaluate the dependence of the variables on 
each other. A high absolute value of r between the variables would indicate that there is a correlation between them, so only one of 
them would be taken into account and the others would be excluded. For the calculation of r the following equation was used (1): 

r =
∑

[(xi − x)(yi − y) ]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − x)2
∗
∑

(yi − y)2
√ (1)  

where, xi = input variable, xi = mean of input variable, yi = fck(output variable), yi = mean fck experimental, i = 1,…, n y n = Total 
data number. 

A correlation (|r|>0.8) between input variables could point out the present multicollinearity between variables [116], which would 

Table 1 
Experimental database.  

No Reference no. percentage No Reference no. percentage 

1 Ali et al. [64]  18  3.49 29 Nili et al. [65]  10  1.94 
2 Aslani et al. [66]  15  2.91 30 Pan et al. [67]  6  1.17 
3 Babalola et al. [68]  14  2.72 31 Pereira-de-Oliveira et al. [69]  4  0.78 
4 Bahrami et al. [70]  10  1.94 32 Poongodi et al. [71]  9  1.75 
5 Barroqueiro et al. [72]  6  1.17 33 Revathi et al. [73]  5  0.97 
6 Behera et al. [74]  6  1.17 34 Revilla Cuesta et al. [75]  5  0.97 
7 Bidabadi et al. [76]  11  2.13 35 Sadeghi-Nik et al. [77]  12  2.33 
8 Chakkamalayath et al. [78]  6  1.17 36 Salesa et al. [79]  4  0.78 
9 Duan et al. [80]  10  1.94 37 Sasanipour et al. [81]  5  0.97 
10 Fiol et al. [82]  12  2.33 38 Sasanipour et al. [83]  5  0.97 
11 Gesoglu et al. [84]  24  4.66 39 Señas et al. [2]  6  1.17 
12 Grdic et al. [85]  3  0.58 40 Sharifi et al. [86]  6  1.17 
13 Guneyisi et al. [87]  5  0.97 41 Silva et al. [88]  5  0.97 
14 Guo et al. [89]  27  5.24 42 Singh et al. [90]  10  1.94 
15 Kapoor et al. [91]  8  1.55 43 Singh et al. [92]  12  2.33 
16 Katar et al. [37]  4  0.78 44 Sua-iam et al. [93]  20  3.88 
17 Khafaga, S.A. [94]  10  2.91 45 Sun et al. [95]  10  1.94 
18 Khodair et al.[96]  20  3.88 46 Surendar et al. [97]  7  1.36 
19 Kou et al.[98]  13  2.52 47 Tang et al. [99]  5  0.97 
20 Krishna et al. [100]  5  0.97 48 Thomas et al. [101]  4  0.78 
21 Kumar et al. [102]  4  0.78 49 Tuyan et al. [103]  12  2.33 
22 Li et al. [104]  4  0.78 50 Uygunoglu et al. [105]  8  1.55 
23 Long et al. [106]  4  0.78 51 Wang et al. [107]  5  0.97 
24 Mahakavi and Chitra, [108]  25  4.85 52 Yu et al. [109]  3  0.58 
25 Manzi et al. [110]  4  0.78 53 Yu et al. [111]  6  1.17 
26 Martínez-García et al. [6]  4  0.78 54 Yu et al. [112]  21  4.07 
27 Mo et al. [113]  5  0.97 55 Zhou et al. [114]  6  1.17 
28 Nieto et al. [115]  22  4.27 Total 515  100  
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affect the modeling results, causing the model to be biased. 
The heat map of the correlation coefficients is shown in Fig. 1. It can be seen that there is no significant correlation between the 

input variables and that no correlation is higher than 0.8, which indicates that there is no multicollinearity between the input 
variables. 

2.3. Dataset splitting 

Machine learning methods require data sets to be divided into subsets of training, validation, and testing, for benchmarking [1,9, 
25,52]. During the training process, the model performance is assessed with the validation dataset to optimize the hyperparameters of 
the model. Finally, to show the accuracy of the model in predicting the compressive strength, the test data set is used. 

For the modeling of the compressive strength of self-compacting concrete with recycled aggregates, a total of 515 samples were 
randomly divided into: 360 samples (70%) for the training process, 77 samples (15%) for the validation process and 78 samples (15%) 
for the testing process. Table 3 shows the mean, minimum and maximum values of the input (Cement, Mineral Admixture, Water, Fine 
aggregate, Coarse aggregate, Superplasticizer) and output (Feature compression know) variables for the training, validation, and test 
data sets. 

2.4. Models development 

In this study, nine ML methods, described in Section 2.3 (KNN, RF, ERT, GB, LGBM, XGB, CB, GAM1, GAM2), were organized to 
project the compression strength of self-compacting concrete with recycled aggregates. After data preparation, the input variables are 
introduced into the learning methods. The training set containing 70% of the total data was used to develop a prediction model for each 
method selected in this research, while the validation set consisting of 15% of the data was used for hyperparameter fitting. It should be 
noted that, in the following sections, the best hyperparameter obtained for the validation data is highlighted in bold. 

2.4.1. Bagging methods 
KNN, The hyperparameters that were adjusted for this algorithm were: number of neighbors to be used for query, ’n_neighbors’ =

Table 2 
Mean, maximum and minimum values of input and output variables.  

Variables Abbreviation Mean Minimum Maximum 

Input Cement (kg/m3) C  375.84  78.00  635.00 
Mineral Admixture (kg/m3) A  135.17  0.00  515.00 
Water (kg/m3) W  176.87  45.50  277.00 
Fine aggregate (kg/m3) FA  845.10  532.20  1200.00 
Coarse aggregate (kg/m3) CA  784.91  328.00  1170.00 
Superplasticizer (kg/m3) SP  4.50  0.00  16.00 

Output Feature compression know (MPa) FCK  44.94  7.17  87.00  

Fig. 1. Heat map for the correlation coefficient between the input and output variables.  
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[1–5,10,20,50]; query point weights, which can be uniform (the same for all points) and proportional to the inverse of the distance to 
the query point, weights = [’uniform’, ’distance’]; algorithm used to compute the nearest neighbors, algorithm = [’auto’, ’ball_tree’, 
’kd_tree’, ’brute’]. 

RF was developed with the following hyperparameters: the number of trees, n_estimators = [2,3,5,10,20,50,100,150,200]; the 
maximum depth of each tree, max_depth = [2,3,5,10,20,50,100,150,200]; function to measure the quality of splitting a tree, criterion 
= [’squared_error’, ’absolute_error’, ’poisson’]. 

ERT was developed with the same hyperparameters that were used are RF: the number of trees, n_estimators = [2,3,5,10,20,50, 
100,150,200]; the maximum depth of each tree, max_depth = [2,3,5,10,20,50,100,150,200]; function to measure the quality of 
splitting a tree, criterion = [’squared_error’, ’absolute_error’, ’poisson’]. 

2.4.2. Boosting methods 
GB was developed using the hyperparameters: number of boosting stages, n_estimators= [2,3,5,10,20,50,100,150,200,500]; 

maximum depth in order to limit the number of nodes in the tree, max_depth = [2,3,5,10,20,50,100,150,200]; the learning rate, 
learning_rate = [0.01, 0.1, 0.5, 0.6, 0.65, 0.7, 1]. 

LGBM, the hyperparameters that were adjusted for this algorithm were: number of boosting stages, n_estimators = [5,10,20,50,90, 
120,200,300,400,500]; number of tree leaves, n_leaves = [5,10,20,50,100,150,200]; the learning rate, learning_rate = [0.01,0.1,0.25, 
0.5,0.75,1]. 

XGB was developed using the hyperparameters: number of boosting stages, estimators = [2,3,5,10,20,50,100,150,200]; the 
maximum depth, max_depth = [2,3,5,10,20,50,100,150,200]; the learning rate, learning_rate = [0.01, 0.1, 0.5, 0.6, 0.65, 0.7, 1]. 

CB was developed using the hyperparameters: number of iterations of the algorithm, iterations = [50]; maximum tree depth, depth 
= [2,3,5,10,12,16]; the learning rate, learning_rate = [0.01,0.1,0.25,0.5,0.75,1]. 

2.4.3. GAM models 
GAMs models, the hyperparameter used to fit the GAMs was the number of smooth functions, spline. For GAM1 we have n_spile 

= [5,10,20,50,100,150,200,300,500], and for GAM2 we have n_spile = [5,10,20,50,100,150,200,300,500]. 

2.5. Metrics for evaluating the performance of machine learning methods 

Four statistical performance metrics were utilized to determine the efficiency and accuracy of the predictions of all the machine 
learning methods used to predict the compressive strength of self-compacting concrete with recycled aggregates: Coefficient of 
Determination (R2) (Eq. (2)), Root Mean Square Error (RMSE) (Eq. (3)), Mean Absolute Percentage Error (MAPE) (Eq. (4)) and Mean 
Absolute Error (MAE) (Eq. (5)) [10,13,25,52]. 

R2 = 1 −
∑

(yi − ŷi)
2

∑
(yi − yi)

2 (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

(yi − ŷi)
22

√

(3) 

Table 3 
Mean, maximum and minimum values of the input (kg/m3) and output (MPa) variables of the data sets: training, validation, and testing.  

Split Variables Mean Minimum Maximum 

Training Input Cement  377.78  94.00  635.00 
Mineral Admixture  131.42  0.00  390.00 
Water  176.15  45.50  277.00 
Fine aggregate  847.52  532.20  1200.00 
Coarse aggregate  786.41  328.00  1170.00 
Superplasticizer  4.61  0.00  16.00 

Output Feature compression know (MPa)  45.01  7.17  87.00 
Validation Input Cement  391.35  130.00  635.00 

Mineral Admixture  130.65  0.00  390.00 
Water  179.51  45.50  277.00 
Fine aggregate  846.37  532.20  1200.00 
Coarse aggregate  769.58  328.00  1170.00 
Superplasticizer  4.14  0.00  16.00 

Output Feature compression know (MPa)  45.21  21.00  87.00 
Testing Input Cement  351.56  78.00  635.00 

Mineral Admixture  156.98  0.00  515.00 
Water  177.59  45.50  277.00 
Fine aggregate  832.68  581.00  1200.00 
Coarse aggregate  793.12  502.10  1170.00 
Superplastificizer  4.36  0.00  14.00 

Output Feature compression know (MPa)  44.34  12.07  78.00  
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MAE =
1
n
∑

|(yi − ŷi) | (4)  

MAPE =
100
n

∑
⃒
⃒
⃒
⃒
(yi − ŷi)

yi

⃒
⃒
⃒
⃒ (5)  

where, yi = fck(output variable), ŷi = fck estimated, yi = mean fck experimental and n = Total data number. 
Particularly RMSE and MAE have the same units (Mpa) as compressive strength (FCK), while R2 and MAPE are expressed in 

percent. The lower values of RMSE, MAE, and MAPE, as well as the higher values of R2, indicate a good accuracy of the prediction 
result of the compressive strength prediction of SCC with RA using ML [9,11,33,51]. 

3. Results and discussion 

The capacity of Bagging (KNN, RF, ERT), Boosting (GB, LGBM, XGB, CB), and GAM (GAM1, GAM2) methods to predict the 
compression strength of SCC with RA for training, validation, and test data set was thoroughly evaluated by the metrics: coefficient of 
determination (R2), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE). 
However, the R2 value also known as the coefficient of determination is observed as the best of them for model assessment [46]. R2 

values from 0.60 and 0.75 indicate satisfactory results, values from 0.75 and 0.95 indicate good model prediction and values above 
0.95 indicate excellent prediction, while values below 0.60 indicate unsatisfactory Results [13,52,117]. In addition, sensitivity 
analysis was also carried out. The results of these analyses are presented in detail in the following sections. 

3.1. Predictive performance of machine learning models 

3.1.1. Predictive performance of bagging models 
Table 4 shows the results of R2, RMSE, MAE, and MAPE for the training, validation, and test data set values of the Bagging models: 

K-Neighbor Regressor (KNN), Random Forest (RF), Extretrees Regressor (ERT), for the compression strength of SCC with RA. In 
general, the errors in the training data set present the adequacy of the developed model, while the errors in the test data present the 
generalization ability of the developed model. It can be observed that all models: KNN, RF, and ERT, show good concordance with the 
training data since the coefficients of determination R2 are all higher than 90%, demonstrating that these models can predict the 
compressive strength of SCC with RA close to the experimentally determined values. 

Comparing the metrics of the KNN, RF, and ERT methods for the test data, in Table 4, it can be observed that Random Forest (RF) 
outperforms the KNN and ERT models in terms of prediction accuracy and its ability to generalize, by observing a satisfactory value of 
R2 = 0.7128, as well as low values of MAE = 0.060 and MAPE, = 13.0784, these are considered satisfactory results to select RF as a 
good model. Despite the fact that the statistical metrics of the KNN, RF, and ERT models on the testing data do not differ much, Fig. 2(a) 
shows that the RF model overcomes the other models. Regarding performance, RMSE and MAE values lower than 0.10 indicate a good 
fit (Fig. 2(b)) in compressive strength prediction [46,117–119]. 

In Fig. 3, it can be seen that the methods: KNN, RF, and ERT seem to predict well the actual measurements. However, it can be 
appreciated that for the model performed with RF the predicted values were quite similar to the measured data, this is reflected in the 
prediction graph where the values are grouped along the prediction line and present less dispersion compared to the KNN and ERT 
models. These results indicate that RF shas a strong capacity to learn from the training data. In general, it can be said that Random 
Forest (RF) can predict compressive strength, generating reliable results with a high degree of adequacy compared to the actual values, 
which is similar to the findings of previous studies [1,120]. The superior performance of the RF model can be attributed to its structure 
[1]. 

Table 4 
Performance metrics of the proposed Bagging Methods.  

Datasets Metrics Methods 

KNN RF ERT 

Training R2  0.9633  0.9388  0.9653 
RMSE  0.0322  0.0415  0.0313 
MAE  0.0130  0.0285  0.0121 
MAPE  2.9935  6.8785  3.0697 

Validation R2  0.4155  0.5766  0.5066 
RMSE  0.1248  0.1062  0.1147 
MAE  0.0810  0.0739  0.0770 
MAPE  19.6506  17.6191  18.2424 

Testing R2  0.6832  0.7128  0.6739 
RMSE  0.0848  0.0807  0.0860 
MAE  0.0582  0.0600  0.0586 
MAPE  12.8782  13.0784  13.0738  
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3.1.2. Predictive performance boosting models 
Table 5 presents a summary of the precision metrics of the Boosting models: Gradient Boosting (GB), Light Gradient Boosting 

Machine (LGBM), Extreme Gradient Boosting (XGB), Category Boosting (CB), from the training, validation, and test data sets. It can be 
seen that, in the training data set, the R2 values for all models were greater than 0.95, so all models show good agreement with the 
training data. This indicates that these models can perform excellent [13,52,117] projection of the compression strength of SCC with 
RA. 

Now, to evaluate the predictive performance of the model, the metrics are based on the test data set, which serves as a more 
objective basis for an unbiased evaluation of the model’s accuracy in predicting compressive strength. Table 5 shows that, for the test 
data, in all four models the R2 values are greater than 0.65, which indicates that these models predict the compressive strength 
satisfactorily. However, the GB model (Fig. 4) presents an R2 = 0.6948 higher than that of the models: LGBM, XGB, and CB, as well as 
low values of RMSE = 0.0832, MAE = 0.0569 that indicate a good fit in the predictions by being lower than 0.10 [118,119]. 

These results can be corroborated in Fig. 5, where it can be seen that for the GB model the estimated values are quite close to the 
prediction line, these present a lower dispersion than in comparison with the LGBM, XGB, and CB models. 

3.1.3. Predictive performance of GAM models 
Table 6 shows the precision metrics of the GAM models: Inverse Gaussian (GAM1) and Poisson (GAM2), for the training, validation, 

and test data sets. It can be appreciated that for the training data the GAM1 model presents an R2 = 0.3534, the similar result presents 
GAM2 with an R2 = 0.3630, these results are unsatisfactory to predict the compressive strength, being values lower than 0.6 [13,52, 
117]. Therefore, models GAM1 and GAM2 are poor for projecting the compression strength of SCC with RA. 

3.1.4. Predictive performance of the best machine learning models 
Once the Bagging, Boosting, and GAM models were analyzed, it was obtained as results that the best models to project the 

compression strength of SCC with RA are the Gradient Boosting (GB) and Random Forest (RF) models. Table 7 presents the metrics of 
the GB and RF models, where it can be observed that for the training data, both models present R2 values higher than 0.90, indicating 
that GB and RF are good predictors of compressive strength [13,52]. However, when evaluating the predictive performance of the 
models, through the comparison of the metrics for the test data, it can be appreciated that the RF model presents a value of R2 = 0.7128 
higher than GB (Fig. 6), as well as low values of MAE = 0.060 and RMSE = 0.0807 that indicate a good fit in the predictions of 
compressive strength [46,117,119]. 

Fig. 7 shows how in the RF model the estimated values are more similar to the experimental results, these are grouped along the 
prediction line, presenting less dispersion concerning the GB predictive model. In summary, the Random Forest (RF) model showed a 
better prediction capacity, therefore it is considered the best model to predict the compression strength of SCC with RA. 

Fig. 2. R2, RMSE, MAE and MAPE Bagging Methods: (a) R2, (b) RMSE, MAE and MAPE.  
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Fig. 3. Comparison of compressive strength prediction with Bagging Methods: (a) KNN, (b) RF, and (c) ERT, from the testing dataset.  

Table 5 
Performance metrics of the proposed Boosting methods.  

Datasets Metrics Methods  

GB LGBM XGB CB 

Training R2  0.9653  0.9530  0.9648  0.9644 
RMSE  0.0313  0.0364  0.0315  0.0317 
MAE  0.0134  0.0205  0.0148  0.0164 
MAPE  3.1342  4.4857  3.5297  3.8346 

Validation R2  0.5257  0.5455  0.4783  0.4551 
RMSE  0.1124  0.1100  0.1179  0.1205 
MAE  0.0771  0.0788  0.0791  0.0833 
MAPE  18.2233  18.2537  18.7161  19.7652 

Testing R2  0.6948  0.6905  0.6643  0.6837 
RMSE  0.0832  0.0838  0.0873  0.0847 
MAE  0.0569  0.0592  0.0595  0.0614 
MAPE  12.8259  13.2913  12.6654  13.6472  

J. de-Prado-Gil et al.                                                                                                                                                                                                  



Case Studies in Construction Materials 16 (2022) e01046

10

3.2. Sensitivity analysis 

Sensitivity analysis is the technique that helps to understand the impact of each input variable on the output variable. Input 
variables with high sensitivity values have a greater impact on the output variable. According to Ahmad et al. [13], the input variables 
have a considerable effect on the prediction of the output variable. 

To evaluate the contribution of each of the input variables: cement, Mineral admixture, water, fine aggregates, coarse aggregates, 
and superplasticizers on the uncertainty of the output variable, compressive strength (fck), sensitivity analysis was employed. The 
sensitivity of compressive strength to each input variable was determined by Eqs. (6) and (7): 

Si =
Ni

∑n

i=1
Ni

∗ 100 (6)  

Ni = f max(xi) − f min(xi) , i = 1,…, n (7)  

where, fmax(xi)andfmin(xi) are the estimated maximum and minimum compressive strength concerning the input variable. 
Each of the input variables: cement, mineral admixture, water, fine aggregates, coarse aggregates, and superplasticizers have a 

significant role in predicting the compression strength of SCC with RA. Fig. 8 shows the results of this sensitivity analysis, it can be seen 
that cement and water are the most influential input variables in predicting the compression strength of SCC with RA. Cement has a 
contribution of 28.39% and water of 23.47%. In this regard, Ahmad et al. [13] affirmed that cement is a decisive factor influencing the 
prediction of compressive strength. On the other hand, it can be appreciated that the input variables: mineral admixture, super
plasticizer, and fine aggregates have a contribution in similar levels of 14.51%, 12.61%, and 11.79% respectively. The results of the 
analysis showed that coarse aggregates (9.23%) are the least effective variable in contributing to the prediction of compressive 
strength, these results agree with the findings of previous research [21]. 

4. Conclusion 

For the projection of the compression strength of SCC with RA, six input variables were taken into account: cement, water, mineral 
admixture, fine aggregates, coarse aggregates, and superplasticizer. The predictive ability of the models was evaluated through the 
following metrics: R2, RMSE, MAE, and MAPE. 

Fig. 4. R2, RMSE, MAE and MAPE Boosting Methods: (a) R2, (b) RMSE, MAE and MAPE.  
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1. This study has described the application of the Bagging models: KNN, RF, and ERT; Boosting: GB, LGBM, XGB, and CB, as well as the 
GAM models: GAM1 and GAM2 for the projection of the compression strength of SCC with RA. For the development of these 
models, a database of 515 samples from various experimental studies was obtained and divided into 3 groups: training (70%), 
validation (15%), and test (%). 

Fig. 5. Comparison of compressive strength prediction with Boosting Methods: (a) GB, (b) LGBM, (c) XGB, and (d) CB, from the testing dataset.  
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Table 6 
Performance metrics of the proposed GAM Models.  

Datasets Metrics Methods 

GAM1 GAM2 

Training R2  0.3534  0.3630 
RMSE  0.1351  0.1340 
MAE  0.1073  0.1070 
MAPE  24.8118  25.0538 

Validation R2  0.2593  0.2755 
RMSE  0.1405  0.1389 
MAE  0.1124  0.1113 
MAPE  23.0691  23.0500 

Testing R2  0.2722  0.2662 
RMSE  0.1285  0.1290 
MAE  0.0978  0.0989 
MAPE  23.7784  24.2997  

Table 7 
Performance metrics of the proposed Best Methods.  

Datasets Metrics Methods 

GB RF 

Training R2  0.9653  0.9388 
RMSE  0.0313  0.0415 
MAE  0.0134  0.0285 
MAPE  3.1342  6.8785 

Validation R2  0.5257  0.5766 
RMSE  0.1124  0.1062 
MAE  0.0771  0.0739 
MAPE  18.2233  17.6191 

Testing R2  0.6948  0.7128 
RMSE  0.0832  0.0807 
MAE  0.0569  0.0600 
MAPE  12.8259  13.0784  

Fig. 6. R2, RMSE, MAE and MAPE the best Models ML: (a) R2, (b) RMSE, MAE and MAPE.  
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2. The results of the test data set showed that the Bagging RF (R2 = 0.7128, RMSE = 0.0807, MAE = 0.06) and Boosting GB (R2 =

0.6948, RMSE = 0.0832, MAE = 0.0569) models presented the highest performance with high prediction accuracy. However, it 
was also evidenced that the GAM1 (R2 = 0.2722) and GAM2 (R2 = 0.27662) models are not good models for predicting 
compression strength, this was proven by the presented values of R2 being much lower than 0.60.  

3. The Random Forest (RF) model (R2 = 0.7128, RMSE = 0.0807, MAE = 0.06) developed is the best model for the prediction of 
compression strength, compared to the other models. 

Fig. 7. Comparison of compressive strength prediction with best Models: (a) GB and (b) RF, from the testing dataset.  

Fig. 8. Contributions of the input variables to compressive strength in the RF model.  
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4. The sensitivity analysis of the RF model indicates that cement with a contribution of 28.39% is the main variable influencing the 
compressive strength. In the same context, water is present with a contribution of 23.47% as another important variable in the 
prediction of compressive strength. On the other hand, the variable with the lowest incidence was coarse aggregate (9.23%). All 
this indicates that the compressive strength of SCC with RA increases more with cement and water, while coarse aggregate de
creases it. On the other hand, mineral admixture, fine aggregates, and superplasticizers contribute modestly to the development of 
the RF model. Thus, the level of contribution of each input variable is identified by the RF model. 
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[18] L. García, Propiedades mecánicas y reológicas de hormigones autocompactantes sometidos a carga a edades muy tempranas y tempranas, Universitat 
Politecnica de Valencia,, 2015 https://riunet.upv.es/bitstream/handle/10251/63274/-Garc%EDa-PROPIEDADES MEC%C1NICAS Y REOL%D3GICAS DE 
HORMIGONES AUTOCOMPACTANTES SOMETIDOS A CARGA A ED.pdf;jsessionid=C26CD9855317CFF1F3D5E15E678D3FCA?sequence=1. 

[19] P.F.S. Silva, G.F. Moita, V.F. Arruda, Machine learning techniques to predict the compressive strength of concrete, Rev. Int. Metod. Numer. Para. Calc. Y. Disen. 
En. Ing. 36 (2020) 1–14, https://doi.org/10.23967/j.rimni.2020.09.008. 

[20] J.J. Xu, W.G. Chen, C. Demartino, T.Y. Xie, Y. Yu, C.F. Fang, M. Xu, A Bayesian model updating approach applied to mechanical properties of recycled 
aggregate concrete under uniaxial or triaxial compression, Constr. Build. Mater. 301 (2021) 141–149, https://doi.org/10.1016/j.conbuildmat.2021.124274. 

[21] W. Ahmad, A. Ahmad, K. Ostrwski, F. Aslam, P. Joyklad, P. Zajdel, Materials (2021) 5762, https://doi.org/10.3390/ma14195762. 
[22] T. Xie, G. Yang, X. Zhao, J. Xu, C. Fang, A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary 

cementitious materials, J. Clean. Prod. 251 (2020), 119752, https://doi.org/10.1016/j.jclepro.2019.119752. 
[23] J. Xu, X. Zhao, Y. Yu, T. Xie, G. Yang, J. Xue, Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled 

aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks, Constr. Build. Mater. 211 (2019) 479–491, https://doi.org/ 
10.1016/j.conbuildmat.2019.03.234. 

[24] J. Xu, Y. Chen, T. Xie, X. Zhao, B. Xiong, Z. Chen, Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial 
neural network techniques, Constr. Build. Mater. 226 (2019) 534–554, https://doi.org/10.1016/j.conbuildmat.2019.07.155. 

[25] M.A. DeRousseau, E. Laftchiev, J.R. Kasprzyk, B. Rajagopalan, W.V. Srubar, A comparison of machine learning methods for predicting the compressive 
strength of field-placed concrete, Constr. Build. Mater. 228 (2019), https://doi.org/10.1016/j.conbuildmat.2019.08.042. 

[26] A. Huertas Mora, 2020. Algoritmos de aprendizaje supervisado utilizando datos de monitoreo de condiciones: Un estudio para el pronóstico de fallas en 
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