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Abstract: The composition of self-compacting concrete (SCC) contains 60–70% coarse and fine
aggregates, which are replaced by construction waste, such as recycled aggregates (RA). However,
the complexity of its structure requires a time-consuming mixed design. Currently, many researchers
are studying the prediction of concrete properties using soft computing techniques, which will
eventually reduce environmental degradation and other material waste. There have been very
limited and contradicting studies regarding prediction using different ANN algorithms. This paper
aimed to predict the 28-day splitting tensile strength of SCC with RA using the artificial neural
network technique by comparing the following algorithms: Levenberg–Marquardt (LM), Bayesian
regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB). There have been very
limited and contradicting studies regarding prediction by using and comparing different ANN
algorithms, so a total of 381 samples were collected from various published journals. The input
variables were cement, admixture, water, fine and coarse aggregates, and superplasticizer; the data
were randomly divided into three sets—training (60%), validation (10%), and testing (30%)—with
10 neurons in the hidden layer. The models were evaluated by the mean squared error (MSE) and
correlation coefficient (R). The results indicated that all three models have optimal accuracy; still, BR
gave the best performance (R = 0.91 and MSE = 0.2087) compared with LM and SCG. BR was the best
model for predicting TS at 28 days for SCC with RA. The sensitivity analysis indicated that cement
(30.07%) was the variable that contributed the most to the prediction of TS at 28 days for SCC with
RA, and water (2.39%) contributed the least.

Keywords: artificial neural network; self-compacting concrete; recycled aggregates; tensile strength;
Levenberg–Marquardt; Bayesian regularization; scaled conjugate gradient backpropagation

MSC: 68T07

1. Introduction

Concrete is the most widely used construction material in the world. One of the
main arduous tasks is to produce durable concrete without excessive voids and with a
long service life [1]. Due to extensive research, concrete design technology has improved
in past years by adding certain admixtures [2,3]. Self-compacting concrete, created in
Japan in the 1980s to achieve high-performance, long-lasting concrete buildings, is one
of the outcomes of improved concrete design technology [4–6]. The main distinction
between self-compacting concrete and conventional concrete is the mixing proportions of
the materials [7–9]. SCC is known as the innovative concrete of the era and has the property

Mathematics 2022, 10, 2245. https://doi.org/10.3390/math10132245 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132245
https://doi.org/10.3390/math10132245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8071-1341
https://orcid.org/0000-0002-4895-2946
https://orcid.org/0000-0002-8974-5759
https://doi.org/10.3390/math10132245
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132245?type=check_update&version=2


Mathematics 2022, 10, 2245 2 of 21

of self-settlement in construction areas without vibratory force. SCC settles under its weight
by making its path like fluid [10–12]. SCC is considered innovative because it can easily be
used in congested areas where concreting is not easy. In SCC, noise pollution reduces and
improves the filling capability and enhances the construction speed [13–15]. The population
is growing at an alarming rate worldwide, along with the adoption and implementation
of new concrete design technologies, resulting in increased resource consumption and
environmental degradation. In consequence, there has been an increase in the amount of
building and construction waste [16,17]. In terms of the composition of concrete, coarse
aggregate (natural crushed stone) and fine aggregate (sand) make up most of the self-
compacting concrete, approximately 60–70% [18–20]. Simultaneously, natural resources are
being depleted at a high speed due to modern urbanization [21–23]. The primary source
of well-quality aggregates, i.e., mountains, are being depleted at an alarming rate [24–26].
Because of this, natural catastrophes have struck many countries worldwide [27–29]. On the
other hand, many buildings are demolished yearly due to earthquakes or after completing
their service life [19,27,30]. Therefore, a considerable amount of construction waste is
generated annually. To counter such things, the most sustainable revolution is to use
recycled aggregates in self-compacting concrete. Recycled aggregates (RA) are abundant
waste products developed by demolishing the building and then crushing, sieving, and
adequately cleaning [31]. The second procedure is to bypass all these experimental works,
thus reducing environmental degradation and other wastage of natural materials.

Currently, many researchers are working on using soft computing techniques. One
such method is using an artificial neural network (ANN) to validate and predict specific
parameters of concrete. The artificial neural network technique is generally motivated by
the human brain, which is composed of billions of neurons. The ANN works similarly,
learning from experiences and then utilizing the data to predict different parameters [32,33].

2. Background Literature
2.1. Artificial Neural Network

Artificial neural networks (ANNs) are a fundamental technique in deep learning.
Deep learning (DL) is a subset of machine learning (ML) that allows for the computation
of multi-layer neural networks. Machine learning is a subset of artificial intelligence (AI)
that uses statistical methods to enable computers to develop over time, unlike the primary
subject of AI, which allows machines to mimic human behavior. The primary difference
between ML and DL is that in deep learning, the machine performs feature extraction and
classification. Still, in machine learning, we must perform the feature extraction ourselves,
and the machine performs the classification and prediction [34].

An artificial neural network (ANN) is a mathematical or computer model inspired
by the human brain’s enormous biological neural network [35]. It can improve its perfor-
mance by learning from its mistakes, which is how an artificial neural network receives
information, i.e., by learning. It comprises several functions and weights that operate as
artificial neurons and are connected in a network. They are primarily used in artificial
intelligence projects that solve complicated and complex issues [32]. ANN can be operated
using specific algorithms that are unique in their way. From this paper’s point of view, LM,
BR, and SCGB are discussed below.

2.1.1. Levenberg–Marquardt Algorithm

The Levenberg–Marquardt (LM) algorithm is a procedure composed of several iter-
ations. These iterations are used to find the minimum value of a multivariate function
written as the sum of squares of non-linear real-valued functions [36,37]. Researchers
recently adopted this approach to solve nonlinear least square complex problems across a
wide range of fields [38]. In the LM algorithm, two methods are combined to speed up the
iterations and minimize errors, i.e., the steepest descent and the Gauss–Newton method.
When the present outcome is correct, the algorithm becomes the Gauss–Newton method
faster than another. When the outcome is incorrect, it behaves like the steepest descent,
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which is relatively slow but always converges [39]. This algorithm generally uses more
memory but less time.

2.1.2. Bayesian Regularization

Standard backpropagation nets are less reliable than Bayesian regularized artificial
neural networks (BRANNs), which can decrease or eliminate the requirement for prolonged
cross-validation [40]. In the same way that ridge regression makes a nonlinear regression
into a “well-posed” statistical issue, Bayesian regularization does the same for nonlinear
regression. It takes more time, but the model has numerous benefits over complex data [41].
The advantage of using BRANNs is that the models are reliable, and a validation procedure
is not required [40,42]. These networks address various issues that emerge in Quantitative
Structure–Activity Relationship (QSAR) modeling, including model selection, robustness,
validation set selection, and network architectural optimization [43]. Bayesian criteria
are stopped during training by empirical processes, making the network impossible to
over train.

2.1.3. Scaled Conjugate Gradient Backpropagation

The weights are attuned in the steepest descent direction, i.e., the most negative of the
gradients, via the fundamental backpropagation method. This is the fastest reducing path
for the performance function. It is noted that while the function reduces the quickest along
with the negative of the gradient, this does not lead to the fastest convergence [44].

The conjugate gradient algorithms search in a path that generally yields quicker
convergence than the sharpest descent direction while sustaining the error reduction made
in the previous phases [45]. The conjugate direction is the name given to this direction.
The step size is modified in most conjugate gradient algorithms through each iteration. A
search is conducted along the conjugate gradient direction to calculate the step size that will
lessen the performance function along the line [46]. It is also reasonable to approximate the
step size using a method other than the line search methodology. The goal is to merge the
Levenberg algorithm’s model trust region method with the conjugate gradient technique.
SCG is the name given to this method, which was first described in the literature by Møller
(1993) [47]. At every iteration user, design parameters are updated independently, which
is critical for the algorithm’s success. This is an essential benefit of line search-based
algorithms [47].

3. Research Significance

This research aimed to validate and predict the splitting tensile strength of self-
compacting concrete incorporated with recycled aggregates by artificial neural networks.
From the author’s best information related to the present literature, no significant studies
have been conducted on applying different deep learning methods to predict the split
tensile strength of SCC with RA. For this purpose, different algorithms were implemented,
namely Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate
Gradient Backpropagation (SCGB) algorithms. The best model was selected after compar-
ing them using statistical indicators: correlation coefficient (R-value) and mean squared
error (MSE). In the end, sensitivity analysis was performed to see how each input variable
affected the output variable.

4. Methodology
4.1. Data Collection

The data were collected from various research articles. Table 1 shows the database
containing a total of 381 samples comprised of the tensile strength of self-compacting
concrete with recycled aggregates with several variables, such as water, cement, admixtures,
coarse aggregates, water, fine aggregates, and superplasticizers. The database includes the
Sr No., indicating the total number of research papers, authors’ references, amount of data
(# data) contributing from each article, and percentage (% data) of the overall data.
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Table 1. Experimental database.

No. Reference # Data % Data No. Reference # Data % Data

1 Ali et al., 2012 [48] 18 4.72 22 Nieto et al., 2019 [49] 22 5.77
2 Aslani et al., 2018 [50] 15 3.94 23 Nili et al., [51] 10 2.62
3 Babalola et al., 2020 [52] 14 3.67 24 Pan et al., 2019 [53] 6 1.57
4 Bahrami et al., 2020 [54] 10 2.62 25 Revathi et al., 2013 [55] 5 1.31
5 Behera et al., 2019 [56] 6 1.57 26 Revilla Cuesta et al., 2020 [57] 5 1.31
6 Chakkamalayath et al., 2020 [58] 6 1.57 27 Sadeghi-Nik et al., 2019 [59] 12 3.15
7 Duan et al., 2020 [60] 10 2.62 28 Señas et al., 2016 [61] 6 1.57
8 Fiol et al., 2018 [62] 12 3.15 29 Sharific et al., 2013 [63] 6 1.57
9 Gesoglu et al., 2015 [64] 24 6.30 30 Khafaga, S.A., 2014 [65] 15 3.94
10 Grdic et al., 2010 [66] 3 0.79 31 Silva et al., 2016 [67] 5 1.31
11 Guneyisi et al., 2014 [68] 5 1.31 32 Singh et al., 2019 [69] 12 3.15
12 Guo et al., 2020 [70] 11 2.89 33 Sun et al., 2020 [71] 10 2.62
13 Katar et al., 2021 [72] 4 1.05 34 Surendar et al., 2021 [73] 7 1.84
14 Khodair et al., 2017 [74] 20 5.25 35 Tang et al., 2016 [75] 5 1.31
15 Kou et al., 2009 [76] 13 3.41 36 Thomas et al., 2016 [77] 4 1.05
16 Krishna et al., 2018 [78] 5 1.31 37 Tuyan et al., 2014 [79] 12 3.15
17 Kumar et al., 2017 [80] 4 1.05 38 Uygunoglu et al., 2014 [81] 8 2.10
18 Long et al., 2016 [82] 4 1.05 39 Wang et al., 2020 [83] 5 1.31
19 Mahakavi and Chitra, 2019 [84] 25 6.56 40 Yu et al., 2014 [85] 3 0.79
20 Manzi et al., 2017 [86] 4 1.05 41 Zhou et al., 2013 [87] 6 1.57
21 Martínez-García et al., 2020 [88] 4 1.05 Total 381 100

Table 2 presents the statistical characteristics, such as the minimum, maximum, mean,
median, mode, and standard deviation, of certain variables as inputs (water, cement, ad-
mixtures, coarse aggregates, water, fine aggregates, and superplasticizers) and one possible
output from these published research articles, i.e., the tensile strength of self-compacting
recycled aggregate concrete. Their graphical representation is shown in Figures 1 and 2.
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Figure 1. Statistical characteristics of input variables.

4.2. Data Visualization

The correlation between the input variables—i.e., water, cement, admixtures, coarse
aggregates, water, fine aggregates, and superplasticizers—and output—i.e., splitting tensile
strength (TS)—was investigated to see whether there was a link between them; this statisti-
cal analysis assisted in the creation of the predictive model by increasing the accuracy of the
outcome’s prediction [89]. For this purpose, the Pearson correlation matrix (heat map) was
generated, as shown in Figure 3, which analyzed the correlation between the independent
input variables. A correlation (|r| > 0.8) between input variables might indicate that there
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is currently multicollinearity between variables, which could alter modeling findings and
bias the model. As seen in the heat map, although there was a substantial connection
between some of the characteristics, such as between admixtures and cement (r = −0.608)
and between coarse aggregates and fine aggregates (r = −0.685), none of the characteristics
had a correlation greater than 0.80, showing that multicollinearity did not occur [90,91].
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Figure 2. Statistical characteristics of the output variable.

Table 2. Statistical characteristics of input and output variables.

Variables Abbreviation Minimum Mean Maximum Median Mode Standard
Deviation

Input
(kg/m3)

Cement C 78.00 368.73 550.00 385.00 500.00 98.38
Admixture A 0.00 138.27 515.00 123.00 0.00 94.95

Water W 45.50 167.29 246.00 172.00 172.00 31.02
Fine Aggregates FA 532.20 844.71 1200.00 846.00 919.00 130.52

Coarse Aggregates CA 328.00 196.05 1170.00 803.00 803.00 154.06
Super Plasticizer SP 0.00 5.07 16.00 4.55 7.50 3.12

Output (MPa) Tensile Strength TS 0.96 3.52 7.20 3.37 2.70 1.00
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4.3. Artificial Neural Network for the Training, Validation, and Prediction of the Tensile Strength

An artificial neural network (ANN) is a mathematical or computational model influ-
enced by biological neural networks’ structural and/or functional characteristics. It can
improve its performance by learning from its mistakes. Artificial neural networks, like
human brains, acquire knowledge through learning. They are made up of a network of
artificial neurons that communicate with one another and analyze data using a connec-
tionist approach to computation. They are primarily employed to simulate complicated
input–output interactions or data patterns in data [14]. Training, validation, and testing are
the three phases of ANNs. The model is repeated until it reaches the desired outcome in the
training phase. The validation step’s mistakes are detected during the training phase [92].

An ANN model generally comprises several layers, the first of which is input and
output, which contains input and output data. Depending on the model, one or more
hidden layers exist between these layers. It is made up of neurons that are linked by
weights. The output of each neuron is determined by its activation function. Activation
functions come in several different forms. Nonlinear activation functions, such as sigmoid
and step, are commonly employed [1]. The general structure of an ANN is shown in
Figure 4.
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A variety of factors must be considered while creating an ANN model. The first step
is selecting the most appropriate structure for the ANN model. Then, the data are inserted
into the selected ANN model in terms of input and output. Then, in the activation function,
the number of layers and the number of hidden layers, as well as some neurons in each
hidden layer, must be selected by experience [93,94].

In this research, concerning Tables 1 and 2, the network was made utilizing six input
parameters and one output parameter with one hidden layer. The input layer consists of
variables such as cement, admixtures, water, fine and coarse aggregates, and superplasti-
cizer. The output parameter was selected by splitting the tensile strength of self-compacting
recycled aggregate concrete. The feedforward backpropagation neural network was used
in this study. The architecture of the current research on ANN is shown in Figure 5.

It should be noted that three algorithms were used and compared in this study,
namely Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate
Gradient backpropagation (SCG). Designing and performing the network were performed
on MATLAB software. The Levenberg–Marquardt algorithm usually necessitates more
memory, but it takes less time. Training terminates when generalization stops improving,
as demonstrated by an increase in the mean square error of the validation samples. But in
the case of Bayesian regularization, although this technique takes longer, it can provide
strong generalization for complex, tiny, or noisy datasets. Adaptive weight reduction
causes training to come to an end (regularization). On the other hand, the Scaled Conjugate
Gradient Backpropagation algorithm uses less memory than the previous one. Training
automatically terminates when generalization stops improving, as shown by a rise in the
mean square error of the validation sample [45,46,94,95].
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The models were developed and performed in MATLAB. The network was divided
into three phases, i.e., training, validation, and testing. Sixty percent of data was selected
for training, and the remaining 10% and 30% of data were selected for the validation and
testing stage, respectively. In the training stage, 10 neurons were selected for the hidden
layer. The network randomly chose data for training, validation, and testing according
to its selected percentage, with 229 samples for training, 38 samples for validation, and
114 samples for the testing stage. In the case of Bayesian regularization (BR), validation is
not required, so the numbers of samples taken for training and testing were 267 and 114,
respectively. This is because validation is often employed as a type of regularization, while
BR algorithms have their built-in form of validation. The splitting of data is summarized in
Table 3.

4.4. ANN Network Model Evaluation

Using the ANN tool to develop the neural network; the models’ performance was
assessed using two measures; coefficient of correlation (R-value) and mean squared error
(MSE) [96,97], as given in Equation (1).

MSE =
1
n ∑(yi− ŷi)

2 (1)

where n = number of data points, yi = observed values, and ŷi = predicted values.
Regression is considered the best evaluation measurement to check the accuracy of

the overall network. The correlation between outputs and predicted targets was measured
using R-values. A strong relationship has an R-value of 1, whereas a random relationship
has an R-value of 0 [48,96].

The average squared discrepancy between outputs and objectives is known as the
mean squared error. The lower the value, the better. There is no error if the value is zero.
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Table 3. Data split for model testing.

Step Percentage % No. of Specimens

Levenberg–Marquardt Algorithm
Train 60 229

Validation 10 38
Test 30 114
Total 100 381

Bayesian Regularization
Train 70 267

Validation - 0
Test 30 114
Total 100 381

Scaled Conjugate Gradient Backpropagation
Train 60 229

Validation 10 38
Test 30 114
Total 100 381

5. Results and Discussion

The model was run on the basis of three algorithms, namely LM, BR, and SCG,
separately, and their results are compared and discussed below.

5.1. Levenberg–Marquardt Algorithm

The network was trained again and again to find the best-fit model. The performance
of the model is shown in Figure 6 with 10 neurons. The plot contains different colored lines
indicating training, validation, and testing. The model started training with a high MSE,
which was eventually reduced by the validation parameters preventing overfitting data. It
shows that after 44 epochs, the training error was still decreasing, but the validation and
testing errors were increasing. Therefore, after six more epochs, the model training was
stopped, and an optimized model was produced with minimum MSE.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 22 
 

 

5.1. Levenberg–Marquardt Algorithm 

The network was trained again and again to find the best-fit model. The performance 

of the model is shown in Figure 6 with 10 neurons. The plot contains different colored 

lines indicating training, validation, and testing. The model started training with a high 

MSE, which was eventually reduced by the validation parameters preventing overfitting 

data. It shows that after 44 epochs, the training error was still decreasing, but the valida-

tion and testing errors were increasing. Therefore, after six more epochs, the model train-

ing was stopped, and an optimized model was produced with minimum MSE. 

 

Figure 6. LM algorithm model performance. 

The model error histogram is shown in Figure 7 between training, validation, and 

testing. The graph shows that the error bars converge to the zero-error line. The perfor-

mance criteria results show that the model is suitable for predicting the outcomes of split-

ting tensile strength of SCC with RA. 

 

Figure 7. LM algorithm model error histogram. 

Figure 6. LM algorithm model performance.

The model error histogram is shown in Figure 7 between training, validation, and test-
ing. The graph shows that the error bars converge to the zero-error line. The performance
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criteria results show that the model is suitable for predicting the outcomes of splitting
tensile strength of SCC with RA.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 22 
 

 

5.1. Levenberg–Marquardt Algorithm 

The network was trained again and again to find the best-fit model. The performance 

of the model is shown in Figure 6 with 10 neurons. The plot contains different colored 

lines indicating training, validation, and testing. The model started training with a high 

MSE, which was eventually reduced by the validation parameters preventing overfitting 

data. It shows that after 44 epochs, the training error was still decreasing, but the valida-

tion and testing errors were increasing. Therefore, after six more epochs, the model train-

ing was stopped, and an optimized model was produced with minimum MSE. 

 

Figure 6. LM algorithm model performance. 

The model error histogram is shown in Figure 7 between training, validation, and 

testing. The graph shows that the error bars converge to the zero-error line. The perfor-

mance criteria results show that the model is suitable for predicting the outcomes of split-

ting tensile strength of SCC with RA. 

 

Figure 7. LM algorithm model error histogram. Figure 7. LM algorithm model error histogram.

After that, a regression analysis was performed. Figure 8a–c shows the correlation
of training, validation, and testing between the input and output values of the model.
The model’s overall accuracy, i.e., correlation, is shown in Figure 8d. In each scenario, a
black-colored linear fit is displayed. It should be noted that the overall R-value was found
to be 0.86, which shows that the correlation was very close to a linear fit, confirming a good
model for predicting values of the splitting tensile strength of SCC using RA. Finally, all
the performance parameters results, i.e., the R-value and MSE of the overall model with
training, validation, and testing, are summarized in Table 4. Overall, these results indicate
that the Levenberg–Marquardt algorithm is a good algorithm for predicting the splitting
tensile strength of self-compacting recycled aggregate concrete.

Table 4. Summary of different model evaluation parameters of LM Algorithm.

Step Function MSE R

Training trainlm 0.1508 0.9267
Validation trainlm 0.3992 0.7899

Testing trainlm 0.3282 0.8294
Overall trainlm 0.2927 0.8573

5.2. Bayesian Regularization

In the same manner, the model was trained using the Bayesian regularization approach.
The model’s performance is shown in Figure 9 with the same number of neurons. The plot
consists of two colored lines indicating training and testing only, as BR does not need a
validation step because it has a built-in form of validation in the training step. The model
started training with high MSE, which was eventually reduced by the training parameters
preventing overfitting data. As BR takes more time, the graph shows that the model
took several epochs, and after 100 epochs, training and testing error lines were reduced
considerably and approximately became a straight line. The model is trained further to
validate thoroughly, and training is stopped at 190 epochs. An optimized model has a
0.14403 performance indicator at 189 epochs.
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Figure 8. LM algorithm regression graphs between the experimental and predicted tensile strength:
(a) training; (b) validation; (c) testing, and (d) overall dataset.
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The model error histogram is shown in Figure 10 between training and testing. The
graph shows that the bins convergence to the zero-error line is excellent, and the error is
also small compared to the LM algorithm. The results of this performance criteria are shown
that the model is perfect for predicting the outcomes of splitting tensile strength of SCC
with RA. After that, a regression analysis is performed in the same manner. Figure 11a,b
show the correlation of training and testing between the input and output values of the
model. Overall correlation is shown in Figure 11c. In each scenario, a black-colored linear
fit is displayed. It is noted that the overall R-value is found to be 0.91. The model trained by
Bayesian regularization has excellent accuracy for predicting output, i.e., splitting tensile
strength of SCC with RA. Finally, all the performance parameters results, i.e., R-value and
MSE of the overall model with training and test, are summarized in Table 5. Overall, these
results indicate that Bayesian regularization can be adopted for predicting the splitting
tensile strength of self-compacting recycled aggregate concrete.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 10. BR model error histogram. 

  

(a) (b) 

 
(c) 

Figure 10. BR model error histogram.

Table 5. Summary of different model evaluation parameters of BR.

Step Function MSE R

Training trainbr 0.1440 0.9254
Testing trainbr 0.2734 0.8638
Overall trainbr 0.2087 0.9049

5.3. Scaled Conjugate Gradient Backpropagation

The model is trained by using the Scaled Conjugate Gradient Backpropagation ap-
proach. The performance of the model is shown in Figure 12 with 10 neurons. The plot
contains different color lines indicating training, validation, and testing. The model starts
training with high MSE, which is eventually reduced by the validation parameters prevent-
ing overfitting data. The graph shows that MSE did not reduce much compared with the
other two algorithms. It shows that after 66 epochs, the training errors were decreasing,
but the validation and testing errors were increasing a little bit. Therefore, after eight more
epochs, the model training was stopped, and an optimized model was produced, with a
minimum MSE achieved.
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Figure 11. Bayesian regularization regression graphs between the experimental and predicted tensile
strength: (a) training, (b) testing, and (c) overall dataset.

The model error histogram is shown in Figure 13 between training, validation, and
testing. The graph shows that the error bar bins converge to the zero-error line with low
accuracy. The results of this performance criteria indicate that the model has high error
values compared with other algorithms and is below par for predicting the outcomes of
splitting tensile strength of SCC with RA. After that, a regression analysis was performed.
Figure 14a–c show the correlation of training, validation, and testing between the input
and output values of the model. The model’s overall accuracy, i.e., correlation, is shown in
Figure 14d. In each scenario, a maroon-colored linear fit is displayed. It should be noted
that the overall R-value was found to be 0.64, which shows that the correlation was far
from a linear fit, confirming a below-par or average model for predicting values of splitting
tensile strength of SCC using RA.
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Finally, all the performance parameters results, i.e., the R-value and MSE of the overall
model with training, validation, and testing, are summarized in Table 6. These results
indicate that Scaled Conjugate Gradient Backpropagation is rated as a below-par algorithm
compared with LM and BR for predicting the splitting tensile strength of self-compacting
recycled aggregate concrete.

Table 6. Summary of different model evaluation parameters of SCGB algorithm.

Step Function MSE R

Training trainscg 0.4588 0.6920
Validation trainscg 0.5189 0.6616

Testing trainscg 0.8925 0.5425
Overall trainscg 0.6234 0.6368
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Figure 14. SCG algorithm regression graphs between the experimental and predicted tensile strength:
(a) training; (b) validation; (c) testing, and (d) overall dataset.

5.4. Comparison of LM and SCG Approaches

The comparison between all three algorithms was performed on the basis of the
experimental results and predicted results by ANN. Figure 15a–c shows the comparison
between the experimental and predicted values of a model trained by LM, BR, and SCG
approaches, respectively. On the y-axis, the blue line indicates the predicted values, and the
red line shows the experimental values of tensile strength of SCC with recycled aggregates.
On the x-axis, the data set of 381 samples is given.

All graphs indicate that values predicted from the three algorithms correlated well
with the experimental values. The more significant difference between the two lines
indicates a high error between the two parameters. The overall R-value and mean squared
error of all three algorithms are summarized in graphical format, as shown in Figure 16.
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Figure 15. Comparison of experimental and predicted values by ANN of (a) LM, (b) BR, and
(c) SCGB algorithms.

Thus, Figures 15a–c and 16 confirm that the best fitting graph is that of Bayesian
regularization (Figure 15b), which has a more significant R-value and minimum MSE. The
BR approach performed better because of the heterogeneity of the data, as it can provide
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strong generalization for complex datasets [98]. It was concluded that among all three
algorithms, i.e., Levenberg–Marquardt, Bayesian regularization, and Scaled Conjugate
Gradient Backpropagation, Bayesian regularization had the highest accuracy (>90%) and
could accurately predict the splitting tensile strength of self-compacting concrete with
recycled aggregates.
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Figure 16. R-value and MSE of LM, BR, and SCGB algorithms.

5.5. Sensitivity Analysis

The sensitivity analysis allows us to see how each input variable affects the output
variable. The more significant the influence of the input variables on the output variable,
the higher the sensitivity values. As per Shang et al. [99], the variables of input have a
significant influence on the prediction of the output variable. Sensitivity analysis was used
to examine the impact of each input variable—fine-aggregate cement, coarse-aggregate
superplasticizer, water, and superplasticizers—on the variability of splitting tensile strength
of self-compacting concrete with recycled aggregates. Equations (2) and (3) were used to
determine the sensitivity analysis:

Si =
Ni

∑n
i=1 Ni

× 100 (2)

Ni= fmax(xi)−fmin(xi) , i = 1, . . . , n (3)

where fmax(xi) and fmin(xi) are the input variables projected highest and lowest splitting
tensile strength.

As indicated in the graph (Figure 17), each of the variables of input—coarse-aggregate
cement, water, superplasticizers, water, fine aggregate, and mineral admixture—had a
considerable impact in forecasting the splitting tensile strength of self-compacting concrete
with recycled aggregates. The most significant contributions to the estimate of splitting
tensile strength of self-compacting concrete with recycled aggregates were cement (30.07%),
fine aggregate (22.83%), and mineral admixture (22.08%). According to Shang et al. [99],
cement is a factor that significantly impacts the prediction of the tensile strength of SCC
with RA. The input variables of coarse aggregate and superplasticizer had contributions of
13.02% and 9.61%, respectively. On the other hand, water was the least efficient variable in
predicting the tensile strength of SCC with RA (2.39%); these findings are consistent with
prior studies [98].
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Figure 17. Contribution of input variables to split tensile strength of SSSC with RA in BR approach.

6. Conclusions

This study aimed to predict and compare the results of predicting the tensile strength
of SCC modified with RA using different algorithms of artificial neural networks, namely
LM, BR, and SCG. The model was trained with six input parameters: cement, water,
admixtures, coarse and fine aggregates, and superplasticizer. For evaluation, two metrics
were used: R-value and MSE. From this study, the following conclusions were drawn.

1. A dataset of 381 samples was collected through journals and randomly divided into
60%, 10%, and 30% for training (267), validation (38), and testing (114), respectively,
for the development of the LM, BR, and SCG models. However, in the case of BR, the
ratio was 70% for training and 30% for testing due to the built-in validation function
in the training step.

2. Different algorithms, namely LM, BR, and SCG, were trained and tested for this study
and gave an overall accuracy of 85%, 91%, and 64% with MSEs of 0.2927, 0.2087,
and 0.6234.

3. It is evident that out of all three, the SCG algorithm was a poor model for predicting
the tensile strength of SCC, with RA having the lowest R-value and the highest MSE.

4. Bayesian regularization gave the best performance with a high coefficient of correla-
tion (R > 90%) and a minimal MSE (0.2087) concerning LM and SCG.

5. The results showed that the BR algorithm is a good model and can be adopted for the
prediction of the 28-day tensile strength of self-compacting concrete modified with
recycled aggregates

6. According to the sensitivity analysis, cement is the essential input variable in predict-
ing the 28-day tensile strength of SCC with RA (30.07%). On the other hand, water
had the smallest influence on the 28-day tensile strength of SCC with RA (2.39%).

There are some limitations in this research regarding the collection of data. As there
were not enough experimental data, we could not gather large datasets for this research.
As a result, more datasets must be collected for future research on this topic to avoid this
limitation and make a more accurate prediction model. With more data, various inputs and
outputs can be further examined.
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