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Abstract: Wildfires represent a significant threat to both ecosystems and human assets in Mediter-
ranean countries, where fire occurrence is frequent and often devastating. Accurate assessments of
the initial fire severity are required for management and mitigation efforts of the negative impacts of
fire. Evapotranspiration (ET) is a crucial hydrological process that links vegetation health and water
availability, making it a valuable indicator for understanding fire dynamics and ecosystem recovery
after wildfires. This study uses the Mapping Evapotranspiration at High Resolution with Internalized
Calibration (eeMETRIC) and Operational Simplified Surface Energy Balance (SSEBop) ET models
based on Landsat imagery to estimate fire severity in five large forest fires that occurred in Spain and
Portugal in 2022 from two perspectives: uni- and bi-temporal (post/pre-fire ratio). Using-fine-spatial
resolution ET is particularly relevant for heterogeneous Mediterranean landscapes with different
vegetation types and water availability. ET was significantly affected by fire severity according to
eeMETRIC (F > 431.35; p-value < 0.001) and SSEBop (F > 373.83; p-value < 0.001) metrics, with reduc-
tions of 61.46% and 63.92%, respectively, after the wildfire event. A Random Forest machine learning
algorithm was used to predict fire severity. We achieved higher accuracy (0.60 < Kappa < 0.67) when
employing both ET models (eeMETRIC and SSEBop) as predictors compared to utilizing the conven-
tional differenced Normalized Burn Ratio (dNBR) index, which resulted in a Kappa value of 0.46.
We conclude that both fine resolution ET models are valid to be used as indicators of fire severity in
Mediterranean countries. This research highlights the importance of Landsat-based ET models as
accurate tools to improve the initial analysis of fire severity in Mediterranean countries.

Keywords: evapotranspiration; eeMETRIC; SSEBop; fire severity; Mediterranean

1. Introduction

Mediterranean countries are frequently disturbed by wildfire events [1–5]. Wildfires
have diverse impacts on various elements within forest ecosystems. They may contribute to
the depletion of biomass through processes such as soil erosion [6,7] and water runoff [8,9].
Similarly, wildfires have effects on landscape dynamics by shaping forest composition and
structure [10,11], negatively influencing ecosystem multifunctionality [12] and ecosystem
biodiversity [13]. Alterations in land use in the last few decades (abandonment of traditional
agriculture, increased unmanaged forest plantations, abandonment of forest as a resource,
among others) combined with anthropogenic climate change (increasing heat waves and

Remote Sens. 2024, 16, 361. https://doi.org/10.3390/rs16020361 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16020361
https://doi.org/10.3390/rs16020361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6204-2319
https://orcid.org/0000-0002-6065-3981
https://orcid.org/0000-0002-3555-4842
https://doi.org/10.3390/rs16020361
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16020361?type=check_update&version=1


Remote Sens. 2024, 16, 361 2 of 16

droughts) is leading to an increase in the severity and extent of fire events, in addition to
their frequency [14,15].

The assessment of fire impact is crucial for post-fire forest management, in particular
to (i) identify priority areas with post-fire restoration needs [16], (ii) evaluate the efficacy of
pre-fire fuel treatments [17], and (iii) characterize pre-fire conditions conducive to high fire
affectation [18]. Fire severity is the most commonly used measure of fire’s effects on soils
and vegetation [19–21]. The initial assessment of fire severity focusses on fire’s impacts
on vegetation immediately after fire, whereas extended fire severity assessment aims to
evaluate vegetative delayed mortality and recovery potential [22]. The excessive costs in
time and resources that are required to field-measure fire severity in extensively burned
areas make the use of remote sensing data and techniques more cost-effective [22,23]. In
particular, fire severity is traditionally estimated from fire-induced changes in vegetation
that are observed in red, near-infrared (NIR) and short-wave infrared (SWIR) spectral bands
of remotely sensed multispectral data [24–28]. Specifically, the differenced Normalized
Burn Ratio (dNBR [22]) computed from NIR and SWIR bands is a standard used to measure
fire severity from remote sensing data. It is used in many studies, e.g., [24,26,29–31], and by
operational programs such as the European Forest Fire Information System (EFFIS) (Rapid
Damage Assessment module) and the Monitoring Trends in Burn Severity (MTBS) in the
United States [32,33].

The dNBR index is usually categorized using thresholds to estimate the fire severity
levels. It is possible, however, to use other classifiers. Parametric classifiers show lower
accuracy and efficiency when compared to nonparametric supervised classifiers [34], like
Random Forest (RF [35]). The RF algorithm offers a range of advantages, including compu-
tational efficiency, strong performance across several applications, and its ability to provide
valuable insights into the importance of input variables, thereby enhancing accuracy in the
classification process [36]. For this reason, the use of RF models in post-fire studies [37] is
increasing and it has resulted in improved assessments of fire damage [21,27,38–41].

Apart from altering the remotely sensed signal using satellite sensors, wildfires also
impact the variables of the energy balance equation [42,43]. In particular, latent heat flux
or evapotranspiration (ET) is greatly influenced by modifications in vegetation, including
changes in both species composition and structure resulting from fire events [44,45]. Differ-
ent studies [46–52] have found a decrease in ET immediately after fire that can be observed
for several years following the wildfire event. However, there are very few that use ET as an
indicator of fire severity. Fernández-Manso et al. (2020) [53] and Quintano et al., (2020) [54]
considered for the first time post-fire ET as a predictor of fire severity in Mediterranean
countries. Previous studies on dNBR (and its derived indices) scarcely addressed a main
drawback: the dNBR is considered as a proxy variable, which makes its eco-physical inter-
pretation nonintuitive [53]. Hence, it would be highly beneficial to explore methodologies
that, while retaining the simplicity of calculation, can be expressed in direct physical units,
much like ET is (liters/day). ET is directly related to the physical and biogeochemical
processes occurring in ecosystems [55], which make it more relevant for understanding
the effects of fire on vegetation and the hydrological cycle [56]. ET can be used to directly
assess fire’s impacts on specific aspects such as water availability, vegetation health, and
soil quality [54]. Nowadays, ET can be estimated consistently over time and across different
geographic areas [43], allowing the comparison of data across multiple regions (or wild-
fires). This capability proves crucial for evaluating long-term trends and making informed
decisions regarding fire mitigation and post-fire restoration efforts.

Many prior studies examining the relationship between fire effects and ET have re-
lied on field-measured surface fluxes [47,48,57,58]. This approach was chosen because
estimating ET accurately and at an appropriate spatial resolution from satellite data has
been challenging [59]. Among the remote sensing-based ET models, the majority of ET
estimation models rely on either complete or simplified versions of the energy balance
equation, which consider the energy expended in converting liquid water within soil and
plants into water vapor, and then subsequently liberated into the atmosphere [60]. Some
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models such as the Google Earth Engine (GEE) implementation of the Mapping Evapotran-
spiration at High Resolution with Internalized Calibration (eeMETRIC, [61,62]), the GEE
Implementation of the Surface Energy Balance Algorithm for Land (geeSEBAL, [63,64]) and
Atmosphere–Land Exchange Inverse/Disaggregation of the Atmosphere–Land Exchange
Inverse (ALEXI/DisALEXI, [65,66]) estimate energy balance variables using both optical
(shortwave) and thermal (longwave) data. In contrast, simplified approaches such as
Operational Simplified Surface Energy Balance (SSEBop [67–69]) and the Priestley–Taylor
Jet Propulsion Laboratory (PT-JPL [70]) do not estimate some parameters of the energy
balance equation, or calculate them using simplified assumptions. ET serves also as a
crucial variable within the ECOsystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS) mission [71,72]. Pascolini-Campbell et al. (2022) [73] included
it as a measure of pre-fire vegetation water stress, together with evaporative stress index
(ESI) and water use efficiency (WUE). Their study showed that plant water stress was
the dominant predictor of burn severity for the Southern California Mountain 2020 fires.
Presently, the ECOSTRESS mission records data exclusively for the continental United
States (CONUS) along with crucial biomes and agricultural regions. Validation sites are
chosen from the FLUXNET network [74].

Accordingly, our study aims to estimate fire severity using two daily ET models,
a complete one (eeMETRIC) and a simplified one (SSEBop), using an RF classification
algorithm. METRIC is a widely recognized surface energy balance-based model [60], which
justifies its selection. Fernandez-Manso et al. in 2020 and Quintano et al. in 2020 [53,54]
already demonstrated that a post-fire METRIC ET image can be used to estimate fire severity
in Mediterranean countries. In this paper, we validate a simplified ET model to estimate
fire severity and compare its performance to that of the well-known METRIC model. As
our study area has a non-complex topography, based on [75], our hypothesis is that both
ET models should yield comparable estimations of fire severity. Additionally, this study
can be thought of as a continuation of the first approaches made in this field by [53,54], as
there is a need to test the use of ET in a set of study areas representing different bioclimatic
situations, using new or different ET models for estimating fire severity. For this purpose,
we chose five wildfires that impacted several vegetation types across the northwestern
part of the Iberian Peninsula, and conducted the analysis from two perspectives: uni-
temporal (post-fire) and bi-temporal (post/pre-fire ratio). Fire severity estimation using the
dNBR index was used as a benchmark. In this context, we sought to answer the following
research questions: (1) How did the studied wildfires influenced ET both at the wildfire
level and the reference plot level? (2) Can the selected ET Landsat-based models estimate
fire severity more accurately than a standard methodology based on dNBR spectral index?
(3) To what extent do uni- and bi-temporal approaches, as well as the type of ET model
(eeMETRIC/SSEBop), exert influences on the above two issues?

2. Material and Methods
2.1. Study Sites

We selected five wildfires that occurred during the summer season of 2022 in the
western region of the Mediterranean basin, specifically in northwestern Spain and Portugal
(Figure 1). These fire events propagated under meteorological conditions marked by
unprecedented drought periods and heat waves in the months preceding the wildfires.

The affected sites span a wide range of environmental conditions, as described in
detail in Table 1. In general, the terrain is not complex, which is relevant for the SSEBop
model. Focusing on forest ecosystems, conifer forests dominated by maritime pine (Pinus
pinaster Ait.) were found at lower elevations, while Scots pine (Pinus sylvestris L.) was the
predominant conifer species at higher elevations. On the other hand, hardwood forests
were mostly composed of species such as holm oak (Quercus ilex L.), Pyrenean oak (Quercus
pyrenaica Willd.) and chestnut (Castanea sativa Mill.).
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Figure 1. Location of the Courel (A), Valdeorras (B), Valdueza (C), Figueruela (D) and Vila Real (E)
wildfires in the northwestern Iberian Peninsula (Portugal and Spain). The background image is a
Landsat-8 false color composite (R = band 7; G = band 5; B = band 4).
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Table 1. Location and characteristics of the five wildfires considered in this study: Courel (A),
Valdeorras (B), Valdueza (C), Figueruela (D) and Vila Real (E).

Courel Valdeorras Figueruela Valdueza Vila Real

Characteristics

Location NW Spain NW Spain NW Spain NW Spain N Portugal
Wildfire size (km2) 136.12 127.35 11.86 15.00 76.41
Wildfire alarm date 14 July 2022 15 July 2022 15 July 2022 17 July 2022 17 July 2022
Elevation range (m) 500–1350 508–1525 700–930 950–1600 600–1100

Slope (%) range 20–150 10–130 0–151 0–152 0–100
Mean annual precipitation (mm) 1697 998 807 821 975
Mean annual temperature (◦C) 10.1 8.8 11.2 10.2 12.4

Plant communities (% of forest
total area)

Cs (20)
Pp (30)
Ps (30)

Cs (20)
Pp (15)
Qi (10)

Qi (25)
Pp (20)
Ps (5)

Qp (40)
Qi (30)
Ps (20)

Pp (30)
Qr (5)

Dataset

Pre-fire ET scene date 8 July 2022 8 July 2022 8 July 2022 8 July 2022 8 July 2022
Post-fire ET scene date 9 August 2022 9 August 2022 9 August 2022 9 August 2022 9 August 2022

Post-fire SPOT6/7 image date 21 July 2022
24 July 2022

21 July 2022
28 July 2022 27 July 2022 23 July 2022 21 July 2022

Qp: Quercus pyrenaica; Qi: Quercus ilex; Pp: Pinus pinaster; Ps: Pinus sylvestris; Cs: Castanea Sativa;
Qr: Quercus robur.

2.2. Datasets

The five wildfires almost coincided in date and were located reasonably close together.
For that reason, only two cloud-free images, one pre-fire (8 July 2022) and one post-fire
(9 August 2022), of daily ET, with spatial resolutions of 30 m, were obtained for the ee-
METRIC (EEFlux application [76]) and SSEBop [77] products. In addition, we downloaded
USGS Landsat-8 Operational Land Imager (OLI) surface reflectance images (Level 2, Col-
lection 2, Tier 1, trajectory/row 204/32) acquired on the same dates as the ET products to
calculate the dNBR index.

The official wildfire perimeters were obtained from Copernicus Emergency Manage-
ment Service (EMS) maps, verified by the Center for Forest Fire Studies (Portugal) and
by the Spanish Autonomous Governments (Junta de Castilla y León and Xunta de Gali-
cia). SPOT 6 and 7 images provided by Copernicus-EMS at a spatial resolution of 1.5 m
resolution were used to obtain ground reference fire severity data (Table 1).

2.3. Brief Comparative of eeMETRIC and SSEBop ET Models

Both the eeMETRIC and SSEBop models have demonstrated their ability to estimate ET
accurately in a variety of applications [78]. The two ET models are energy balance models;
thus, they calculate ET by solving the surface energy balance equation (Equation (1)) on
a pixel-by-pixel basis. The latent heat flux (energy consumed by the ET process, or heat
energy used by water in its phase change from liquid to gas) is calculated as the difference
between the net radiation to the surface and losses due to the sensible heat flux (energy
used to heat the air) and ground heat flux (energy stored in the surface) [75].

LE = Rn − G − H (1)

where LE represents latent heat flux (energy consumed by ET) (W m−2); Rn is net radiation
flux density (W m−2); G is ground heat flux density (W m−2); H is sensible heat flux density
(W m−2). In both ET models Rn, G and H are derived from satellite data. Specifically, Rn is
estimated from surface land temperature (LST) and reflectance data; G from LST, vegetation
indices and previously calculated Rn and H from surface roughness, wind speed and LST
ranges [61]. More detailed information about the METRIC model can be found in [61,79,80].
Similarly, detailed information about the SSEBop model can be found in [80–83].
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Both ET models share numerous similarities, such as their theoretical foundation in the
surface energy balance model and the capacity to incorporate both fine- (30 m) and coarse
(1 km)-spatial-resolution data from Landsat and MODIS [78]. Nevertheless, they diverge
significantly in terms of data prerequisites, implementation complexity, and associated
costs. In summary, the eeMETRIC model is more accurate than the SSEBop model, but it
has also a more complex mode of implementation, and thus, higher associated costs [75].
Regarding the eeMETRIC ET model, its main advantages are: (i) it computes all components
of the energy balance model; (ii) it needs almost no ground-based measurements; and
(iii) it is applicable to complex terrain. Its main limitations include: (i) it is very costly in
terms of both computational time and monetary resources; (ii) it is owned by a University
(Idaho, in particular) rather than by a state agency; and (iii) its uncertainty arises from
the user’s choice of hot and cold reference pixels. In contrast, the main advantages of
the SSEBop ET model include: (i) no ground-based measurements or manual selections
of hot and cold reference pixels are required; (ii) minimal computational time; (iii) it is
cost-effective; and (iv) it is owned by the United States Geological Survey (USGS). Among
the main limitations of the SSEBop model, we can identify: (i) it is not applicable to complex
terrain and (ii) it does not calculate sensible or ground heat fluxes of the surface energy
balance equation. A more complete comparison of these two models can be found in [75,78].

2.4. Data Analysis

First, we computed the dNBR index from pre- and post-fire Landsat-8 OLI data
using bands 5 (NIR) and 7 (SWIR). dNBR will be used as a benchmark to compare the ET
performance in four scenarios, defined by the combination of two perspectives (uni- and
bi-temporal) and two ET models (eeMETRIC and SSEBop). Similarly, the post-/pre-fire
ratio was calculated for both eeMETRIC ET and SSEBop ET.

Second, a stratified random experimental design was adopted [84]. We defined
355 plots of 30 m × 30 m distributed over the five wildfires as ground reference data
(111 low-fire-severity plots, 114 moderate-fire-severity plots, and 130 high-fire-severity
plots). We used the coincident eeMETRIC/SSEBop/Landsat grid to randomly establish the
plots. The classification of each reference plot was established through visual inspection
based on the post-fire SPOT6/7 images (Table 1), relying on the predominant fire severity
level observed within the plot. Specifically, a reference plot was assigned to the low-fire-
severity category if its dead tree proportion was less than 50%, to the moderate-fire-severity
category if the proportion ranged between 50 and 90%, and to the high-fire-severity category
if the proportion was higher than 90% [23]. Next, values of dNBR, post-fire eeMETRIC ET,
post-fire SSEBop ET, pre-/post-fire eeMETRIC ET ratio, and pre-/post-fire SSEBop ratio, at
a 30 m spatial resolution, were extracted for each reference plot.

Third, we conducted a statistical exploratory analysis of pre- and post-fire ET (ee-
METRIC and SSEBop) and dNBR at both the wildfire and reference plot levels. We also
implemented a one-way Analysis of Variance (ANOVA) to assess significant differences
in ET products and dNBR between the fire severity categories. In this way, we could
determine the number of fire severity categories that may be discriminated with statisti-
cal significance by each input. Consequently, we identified the inputs that could act as
indicators of fire severity.

Finally, we implemented an RF classification algorithm (univariate model) to evaluate
the capacities of the two ET models (and the two temporal perspectives) to predict fire sever-
ity, using dNBR as a benchmark. The selection of the RF classification algorithm was based
on its ability to effectively capture non-linear relationships between the dependent variable
and predictors, as well as to address complex interactions among these variables [85,86]. To
ensure prediction stability, the RF hyperparameter ntree was set to a value of 2000 [87]. The
mtry RF hyperparameter was set to one because of the univariate nature of the models. The
performance of the RF classification was evaluated by computing the average confusion
matrix across 10-fold cross-validation resamples. We took into consideration the following
accuracy parameters: overall accuracy (OA; %), Kappa index, user’s accuracy (UA; %),
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and producer’s accuracy (PA; %). We used a Z-test based on the Kappa index to compare
the accuracy of the obtained fire severity estimates from each ET model and perspective.
This allowed us to verify whether the differences in the Kappa index had statistical signif-
icance [84]. Note that zc = 1.96 at the 95% confidence level, and that the null hypothesis
H0: (κ1 − κ2) = 0 is rejected when Z > zc. Additionally, wall-to-wall fire severity prediction
maps at the wildfire scale were generated from RF model objects and raster images of the
corresponding predictors.

All analyses were conducted in R [88] using the RandomForest [89], caret [90] and
raster [91] packages.

3. Results

Pre- and post-fire eeMETRIC ET estimates were higher than SSEBop estimates (Table 2).
eeMETRIC and SSEBop ET estimates were consistent at both the wildfire and reference plot
levels, as was the dNBR index. In the reference plots, ET was reduced by 61.46% and 63.92%
in the post-fire situation with respect to the pre-fire scenario according to eeMETRIC and
SSEBop estimates, respectively (Table 2). ET was significantly affected by fire severity ac-
cording to eeMETRIC (F > 431.35; p-value < 0.001) and SSEBop (F > 373.83; p-value < 0.001)
post-fire and ratio metrics. The strongest relationships were seen between fire severity and
eeMETRIC ET estimates, particularly for the post-fire metric. The dNBR index also showed
significant differences between severity categories (F = 266.44; p-value < 0.001). Post-fire
ET and post- to pre-fire ET ratio gradually significantly decreased (p-values < 0.05) from
low- to high-fire-severity scenarios (Figure 2).

Table 2. Summary of descriptive statistics for eeMETRIC and SSEBop ET estimates, as well as for the
dNBR index, at both the wildfire and reference plot levels.

Variable Mean Range Interquartile Range

Wildfire-level

eeMETRIC pre-fire ET (mm) 4.62 0.00–10.92 3.56–5.81
eeMETRIC post-fire ET (mm) 1.71 0.00–8.73 0.93–2.46

SSEBop pre-fire ET (mm) 3.45 0.00–5.91 2.96–4.05
SSEBop post-fire ET (mm) 0.89 0.00–5.22 0.00–1.55

dNBR 456.61 −594.20–1170.18 334.82–589.16

Reference plot-level

eeMETRIC pre-fire ET (mm) 5.06 0.49–8.55 4.04–6.21
eeMETRIC post-fire ET (mm) 1.95 0.00–5.61 0.63–3.15

SSEBop pre-fire ET (mm) 3.88 1.43–5.49 3.39–4.44
SSEBop post-fire ET (mm) 1.40 0.00–4.66 0.02–2.28

dNBR 433.89 −439.24–1149.89 214.19–647.79

eeMETRIC post-fire ET and the post- to pre-fire ET ratio featured a slightly higher accu-
racy (OA > 76.26% ± 2.19%; Kappa > 0.65 ± 0.02) than SSEBop metrics (OA > 74.09% ± 1.20%;
Kappa > 0.61 ± 0.01) in predicting fire severity through RF classification models, though
these differences had no statistical significance (Table 3). The accuracy of fire severity
estimates using the dNBR index was rather low (OA = 63.95%; Kappa = 0.46), and it was
significantly different from that of any ET-based estimate. Post-fire and ratio products
had similar accuracy for eeMETRIC and SSEBop. For eeMETRIC products, the greatest
confusion was observed between low and moderate fire severity categories, whereas the
moderate fire severity category in SSEBop was misclassified more frequently into high
fire severity. The latter category showed consistently high accuracy across all ET products
(Table 3).
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Figure 2. Boxplots depicting the relationships between ET estimates and dNBR index, and fire
severity. We also show one-way ANOVA results. Lowercase letters denote significant differences
between fire severity categories at the 0.05 level.

Table 3. Accuracy metrics of fire severity RF classification through ET estimates and the dNBR index.

Accuracy Parameters

eeMeTRIC
Post-Fire ET

eeMeTRIC
ET Ratio

SSEBop
Post-Fire ET

SSEBop
ET Ratio

dNBR
Index

OA % 78.31 75.78 73.24 74.93 63.95

Kappa 0.67 0.64 0.60 0.62 0.46

σκ 0.0003 0.0003 0.0003 0.0003 0.0003

Margin of Error (CI) 0.04 0.04 0.04 0.04 0.04

Lower Bound 0.63 0.60 0.56 0.58 0.42

Upper Bound 0.71 0.68 0.64 0.66 0.50

Low 76.58 83.78 72.97 79.28 73.87
PA % Moderate 69.30 63.16 60.53 60.63 42.11

High 87.69 80.11 84.62 83.85 74.62

Low 80.95 76.86 77.89 79.28 67.77
UA% Moderate 67.52 62.07 61.61 67.65 47.53

High 85.71 86.67 79.14 76.76 72.93

Z-Test

eeMeTRIC
Post-Fire ET

eeMeTRIC
ET Ratio

SSEBop
Post-Fire ET

SSEBop
ET Ratio

dNBR
Index

eeMeTRIC post-fire ET 1.46 1.67 1.93 * 8.48

eeMeTRIC ET ratio 1.46 1.55 0.56 * 7.02

SSEBop post-fire ET 1.67 1.55 0.99 * 5.42

SSEBop ET ratio 1.93 0.56 0.99 * 6.42

dNBRindex * 8.48 * 7.02 * 5.42 * 6.42

PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy. * Statistical significance at the 95%
confidence level.

The spatial patterns of the classified fire severity maps are consistent with the perfor-
mances of the individual ET and dNBR products. Maps derived from the ET metrics show
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lower noise from isolated pixels than dNBR maps for all wildfires (Figure 3). The high noise
(i.e., granularity) in the dNBR maps is consistent with the high classification confusion
between fire severity categories when using this product (Table 3). The area classified as
high fire severity was larger in SSEBop than in eeMETRIC. In both ET products, the area
classified as low fire severity was higher in the ratio than in the post-fire metric, especially
for the Valdeorras and Figueruela wildfires (Figure 3).
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4. Discussion
4.1. Question 1: How Did the Studied Wildfires Influence ET?

All of the studied wildfires resulted in a decrease in ET relative to the pre-fire situation
immediately after the fire event, both at the wildfire level and the reference plot level. This
finding aligns with prior research indicating that ET tends to decrease following a fire
event (e.g., [43,47,49,52,54,92,93]) because of fire’s impacts on vegetation, microclimate,
water infiltration and runoff processes [45,57,94,95]. While high-severity fires lead to the
death of nearly all existing vegetation, low-severity fires result in minimal damage to
aboveground vegetation. This reduction in the transpiration of leaf surface area increases
bare ground cover, evaporation from soil, and surface runoff immediately after fire. High-
severity fires may alter the equilibrium between evaporation and transpiration for extended
periods, ranging from years to decades, as vegetation gradually regenerates following the
fire [45,50,52,53,93,96,97]. In particular, our study observed an immediate post-fire decrease
in daily ET that ranged between 61% and 74% depending on both the ET metric and study
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level (wildfire or plot), which agrees with the post-fire ET reduction reported by other
studies: among others, Fernández-Manso et al. (2020) [53] reported an ET decrease of 75%
after a large wildfire in Central Portugal; Mankin and Patel (2023) [52] observed an ET
decrease of up to 63% in the four wildfires in South Central USA; and Ma et al. (2020) [50]
found an ET reduction in the first year after fire of between 31% and 50% of pre-fire ET in
the California’s Sierra Nevada (USA).

4.2. Question 2: Can the Selected ET Landsat-Based Models Estimate Fire Severity More
Accurately Than a Standard Methodology Based on dNBR Spectral Index?

Our results confirm that the analyzed ET Landsat-based models can estimate fire
severity more accurately than the standard methodology based on the dNBR spectral
index (Kappa = 0.46). In particular, the most accurate estimation was based on eeMETRIC
post-fire ET (Kappa = 0.67) followed by eeMETRIC post/pre-fire ET ratio (Kappa = 0.64).
This result is consistent with previous research. Quintano et al. (2020) [54] used an RF
multivariate model to estimate fire severity in Central Portugal (0.71 < Kappa < 0.79),
with ET being ranked as one of the most important predictors, followed by char fraction.
Fernández-Manso et al. (2020) [53] estimated fire severity from ET using a simple classifier
based on thresholds in the Iberian Peninsula. The accuracy of fire severity estimates based
on post-fire ET (Kappa = 0.63) was slightly lower than that of the dNBR-based estimate
(Kappa = 0.66). The low mean accuracy value of our dNBR-based fire severity estimation
is partly caused by the high diversity in the pre-fire vegetation types of the five studied
wildfires. This low transferability across space and time has already been documented [98],
and relative dNBR indexes have been proposed and shown higher performance [99,100].
The high confusion in the dNBR classification between fire severity categories, as has also
previously been documented in relative indexes [101], may arise from signal saturation
at high fire severities measured in the field [101,102], and the inability to resolve mixed
spectral responses of partially scorched canopies using the limited spectral information
inherent to spectral indexes’ formulation [103]. ET encompasses valuable information
regarding changes in the energy/water balance caused by fire, so it holds physically
meaningful connections to fire damage [47]. Using ET metrics (that have a physical base)
instead of dNBR-based indexes adds a better interpretability of the ecosystem changes due
to wildfires. To the best of our knowledge, there are no further studies that utilize ET as a
variable to estimate fire severity. However, the accessibility of fine-scale Landsat-based ET
data could potentially make it a suitable fire severity indicator in future research.

4.3. Question 3: To What Extent Do Uni- and Bi-Temporal Approaches, as Well as the Type of ET
Model (eeMETRIC/SSEBop), Exert Influence on the above Two Questions?

The results based on the SSEBop simplified ET model follow generally the same trend
as those based on the eeMETRIC ET model. Thus, our study validated the use of SSEBop as
a useful indicator of fire severity. We did not observe a clear tendency when comparing uni-
and bi-temporal approaches. Bi-temporal fire severity estimates based on the eeMETRIC ET
displayed a lower accuracy than the uni-temporal one, whereas the reverse was observed
using SSEBop ET, but these differences (mainly observed in the low and moderate fire
severity categories) had no statistical significance. However, the uni-temporal approach
seems to be more consistent among the five wildfires, probably due to the high dependence
on pre-fire vegetation of the pre-fire ET data.

4.4. Concluding Remarks and Future Work

Most of the previous research examining the influence of fire on the surface energy
balance fluxes relied on surface flux measurements obtained in the field [47–49,96]. How-
ever, their findings are applicable only at very local scales. Other studies have relied on
temperature variables from satellites with coarse spatial resolutions, such as MODIS, and
are only applicable at a global scale [43,104,105]. The arrival of finer-spatial-resolution ET
products (based on Landsat thermal data) is making possible studies at local–regional scales
with an appropriate accuracy [50,52–54,56,106–108]. Our study underscores the importance



Remote Sens. 2024, 16, 361 11 of 16

of fine-spatial-resolution ET products used to conduct environmental assessments at local
to regional scales, including fire severity assessments. While this study serves as an initial
introduction to the SSEBop ET model, showing its adequate performance in estimating fire
severity in Mediterranean environments, our results suggest that fine-temporal-and-spatial-
resolution ET products may play a pivotal role in addressing critical scientific questions in
the current context of extreme wildfire events.

We demonstrated that eeMETRIC and SSEBop ET models could effectively discrimi-
nate, with low confusion, three fire severity levels involving initial assessments, considering
both uni- and bi-temporal perspectives, as the most commonly used dNBR index does.
ANOVA proved that both ET metrics and the dNBR index had different mean values for
each fire severity level. However, the number of plots correctly classified was higher using
ET metrics than the dNBR index, particularly in moderate and high categories. Unlike
spectral indices, ET possesses a tangible physical significance, rendering it more straight-
forward to interpret. In this context, wildfires disrupt the energy and water balance in
forest ecosystems by partially or totally removing the vegetation cover and altering the
volume of stored water [109]. As a result of this disruption, the LST increases due to the
removal of the cooling effect produced by vegetation cover [110], reductions in soil moisture
decreases [111], and increases in soil erosion [112], which have important implications for
surface hydrology [109,113]. Altogether, these changes imply a differential ET behavior as a
function of vegetation consumption by fire, which explains the higher accuracy of fire sever-
ity estimates using a physical magnitude rather than a proxy for fire-induced changes, e.g.,
the dNBR. Consequently, the utilization of procedures that rely on fine-spatial-resolution ET
data can potentially reduce the excessive dependence on spectral indices for assessing fire
severity [114], overcoming their known shortcomings [115,116]. Our study has validated
a novel methodology to estimate fire severity from fine-resolution ET METRIC models,
in particular from the SSEBop ET model, which is similar to the eeMETRIC but has a less
complex implementation and lower associated costs. In addition, it is owned by USGS and
can be easily downloaded. However, it warrants further validation across a broader range
of fire events. It is essential to verify the potential use of ET products as indicators of fire
severity across different biomes other than Mediterranean, and distinct ecosystem types
and fire regimes.

5. Conclusions

Spectral indexes are commonly used to map post-fire effects, and, in particular, fire
severity. However, wildfires have a great impact on energy (water) balance as well. A
physical energy-related variable such as ET has already proven its strong relationship to fire
severity in different ecosystems around the world. Our study has verified the usefulness of
two fine-resolution ET models (eeMETRIC and SSEBop) to estimate fire severity in five wild-
fires occurring in Mediterranean countries using an RF classifier. The accuracy of ET-based
fire severity estimates (both from uni- and bi-temporal perspectives) (0.67 > Kappa > 0.60)
was substantially higher than that of dNBR-based estimates (Kappa = 0.46). A clear ad-
vantage of these novel ET products versus the commonly used spectral indices is that, in
addition to being useful fire severity indicators for extreme wildfires in Mediterranean
countries, they may provide critical information about how the energy balance changes due
to fire. The clear physical meaning of ET facilitates the understanding of its relationship
to fire severity. This higher interpretability makes it easier to understand fire severity
estimates for scientists and forest managers. Additionally, the proposed methodology
could capitalize on the new missions that will offer high-resolution ET images on a global
scale. Furthermore, ET-based fire severity estimates might be extended to fires occurring in
different biomes and ecosystems because of their physical basis.
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