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SUMMARY

Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environ-

mental changes and threats caused by different attackers. These systems integrate different signals into

overreaching triggering pathways which coordinate developmental and defence-associated responses. The

plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an

essential component of plant monitoring systems, thus expanding its function as a passive defensive bar-

rier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse

set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive

plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns

(DAMPs). These DAMPs function as ‘danger’ alert signals activating DAMP-triggered immunity (DTI), which

shares signalling components and responses with the immune pathways triggered by non-self microbe-

associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the

expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some

plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defen-

sive and growth responses. Our current understanding of how these alterations of CWI are perceived by the

wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The

identification of these CWI sensors and PRR–DAMP pairs will help us to understand the immune functions

of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural

strategies that would enhance crop disease resistance.

Keywords: Arabidopsis, cell wall, DAMP, PRR, cell wall mutant, immunity, wall sensor, cell wall integrity,

disease resistance.

INTRODUCTION

In their natural environments, plants are under continuous

biotic stresses caused by different attackers and are also

exposed to abiotic stresses that compromise their survival

and offspring. To cope with these environmental chal-

lenges, plants have evolved a variety of complex and effi-

cient mechanisms of resistance, which include diverse

molecular monitoring systems that perceive stress-derived

signals triggering specific resistance responses (Atkinson

and Atkinson and Urwin, 2012; Engelsdorf and Hamann,

2014). The general assumption is that resistance of plants

to environmental stresses is costly, and that the constitu-

tive expression of defensive mechanisms may not always

be the best strategy for plants to cope with their potential

colonization by pathogens/pests, most likely because allo-

cation of defensive metabolites for resistance may con-

strain other physiological processes and have a negative

impact on plant traits such as biomass and seed produc-

tion (Manzaneda et al., 2010; Viola et al., 2010; Antonovics

et al., 2011; Kempel et al., 2011; Denanc�e et al., 2013;

Lozano-Duran and Zipfel, 2015; de Vries et al., 2017; Major
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et al., 2017; Wasternack, 2017). These physiological con-

straints on plants have driven the evolution of cell-autono-

mous monitoring systems to perceive these stress-derived

signals and to fine-tune defensive responses for environ-

mental adaptation (Wolf et al., 2012a; Lozano-Duran and

Zipfel, 2015).

One of these plant monitoring systems is the plant cell

wall, the physicochemical properties of which change

upon exposure of the plant to different stresses/pathogens,

and this strongly influence a plant’s ability to grow and to

cope with these adverse scenarios. Moreover, plants have

developed an innate immunity system that is based on

sets of plasma membrane-anchored pattern-recognition

receptors (PRRs) that detect ‘non-self’ microbe-associated

molecular patterns (MAMPs), activating pattern-triggered

immunity (PTI). The plant immune system also recognizes

microbial effectors (Avr proteins), via cytoplasmic proteins

encoded by the resistance genes, and ‘plant-self’ derived

damage-associated molecular patterns (DAMPs) (Boutrot

and Zipfel, 2017). DAMPs comprise molecules released

from the plant cell wall (e.g. wall-derived glycans) and pep-

tides that upon exposure of the plant to different stresses

are either de novo synthesized or processed to produce a

mature active ligand.

THE PLANT CELL WALL: MORE THAN A PASSIVE

DEFENSIVE BARRIER

The first obstacle encountered by pathogens attempting to

colonize plant tissues is the plant cell wall, which is some-

times covered with a cuticle. Pathogens have evolved an

arsenal of tools to penetrate and break down this barrier.

Among these colonization tools are the secretion of cell

wall-degrading enzymes (CWDEs) that modify wall glycans

or hydrolyse the linkages between glycan moieties, and

the formation of appressoria, penetration-specific struc-

tures that exert turgor pressure on the plant wall.

The plant cell wall is a dynamic and highly controlled

structure that is essential for growth and development

(Srivastava et al., 2017). The molecular mechanisms

behind synthesis and modifications of the plant cell wall,

and how these modifications are communicated to the

plant cell, are only partially understood. All plant cells in

developmental expansion are surrounded by a primary cell

wall mainly consisting of carbohydrate-based polymers

(cellulose, pectins and hemicelluloses) that might harbour

different types of biochemical modifications, such as acety-

lations, esterifications or methylations (Figure 1a; Carpita

and McCann, 2000). In addition, those cells that have

completed their cellular expansion and need to reinforce

the wall structure for functional reasons (e.g. xylem forma-

tion) might deposit new layers of material in the inner face

constituting the secondary cell wall that also contains

cellulose, but is enriched in lignin and xylans (Figure 1a;

Sarkar et al., 2009).

Cellulose is the main load-bearing component in all

plant cell walls, whereas different types of hemicelluloses

and pectins are found in different plant phylogenetic

groups (e.g. xyloglucan in dicots versus arabinoxylan in

monocots; Carpita and Gibeaut, 1993). Moreover, there is a

considerable variability in the fine structures of wall poly-

mers (e.g. the degree of xylan/pectin acetylation or pectin

methylation) among a given phylogenetic group of plants,

and even between different tissues (e.g. leaves versus

stems) of a given plant. All these chemical differences have

an obvious impact on the three-dimensional architectures

and physicochemical properties of plant walls. This wall

heterogeneity is reflected in the diversity of mechanisms

that pathogens have evolved to breach plant cell walls,

including the secretion of numerous CWDEs, such as cellu-

lases, polygalacturonases or xylanases (Annis and Good-

win, 1997). CWDEs represent a significant proportion of

the encoded proteins of the genomes of plant-pathogenic

fungi, further indicating their relevance for breaching the

wall and suggesting that this fungal CWDE repertoire

might determine plant-host specificity (Kubicek et al.,

2014). Similarly, it has been shown by genome-wide asso-

ciation studies (GWAS) that some plant loci related to plant

cell wall integrity influence, together with defence-asso-

ciated loci, the variation of leaf microbial communities

(fungi and bacteria) of Arabidopsis thaliana (Horton et al.,

2014).

ALTERATIONS TO PLANT CELL WALL INTEGRITY AFFECT

DISEASE RESISTANCE

Plant cell wall alterations, either by impairing or over-

expressing cell wall-related genes, have been demon-

strated to have a significant impact on disease resistance

and/or on abiotic stresses (Bellincampi et al., 2014; Mali-

novsky et al., 2014; Miedes et al., 2014; Kesten et al., 2017).

It was initially thought that these disease resistance pheno-

types associated with alterations to cell wall integrity (CWI)

were due to the inability of mis-adapted pathogens to

overcome the genetically modified wall compositions/

structures in the plant mutants or over-expressor lines.

However, this view was an oversimplification of the dis-

ease resistance phenotypes of these plant genotypes since

it considered the wall to be just a passive barrier, whereas

it has been found that activation of defensive signalling

pathways does take place in mutants/transgenic plants

with wall alterations (Miedes et al., 2014; Nafisi et al.,

2015; Houston et al., 2016). In this section, we describe

examples of the impact on disease resistance phenotypes

of modifications of the main plant cell wall components,

with a particular focus on published data for Arabidopsis

genotypes (mutants and over-expressor lines) with altered

wall composition (Table 1, Figure 1). We mainly focus on

the modification of the wall’s carbohydrate counterpart,

since the role of cell wall phenolics (e.g. lignin) on the
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resistance of plants to pathogens has been recently

reviewed in detail (Miedes et al., 2014). Moreover, we also

summarize the most significant disease resistance pheno-

types that have been described in genotypes from other

plant species – including crops – with modified wall com-

position due to the impairment or over-expression of cell

wall-related genes (Table S1 in the online Supporting Infor-

mation).

Impairment of cellulose biosynthesis activates differential

defence responses

Cellulose plays a central role in determining the mechani-

cal properties of plant cell walls, thus affecting many

aspects of plant life and fitness (Somerville, 2006).

Cellulose is synthesized at the plasma membrane by large

protein complexes, known as cellulose synthase com-

plexes (CSC); every CSA contains between 18 and 24 cellu-

lose synthase (CESA) proteins that each synthesize an

individual b-1,4-glucan chain (Guerriero et al., 2010; Kumar

et al., 2017). Remodelling of primary and secondary cell

walls by impairing the function of CESA genes has a speci-

fic impact on pathogen resistance and tolerance to abiotic

stresses. Arabidopsis irregular xylem (irx) 5/3/1 cell wall

mutants defective in CESA subunits (CESA4/7/8, respec-

tively) required for secondary cell wall formation show

enhanced resistance to different pathogens, including the

necrotrophic fungi Plectosphaerella cucumerina and Botry-

tis cinerea, the vascular bacterium Ralstonia solanacearum

Figure 1. Alterations of Arabidopsis thaliana cell wall integrity triggers disease resistance responses. (a) The cell wall of Arabidopsis wild-type plants is com-

posed of cellulose, pectin polysaccharides (homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II) and two main hemicelluloses, xyloglucan

and xylan, together with minor proportions of mannan and glucomannan. In some plant tissues, cells also deposit a secondary cell wall that is mainly com-

posed of cellulose, hemicelluloses (mostly xylans) and lignin. (b) Alterations in cellulose biosynthesis from primary (left) or secondary (right) cell wall trigger

specific defensive responses, such as those mediated by the hormones jasmonic acid (JA), ethylene (ET) or abscisic acid (ABA), activate biosynthesis of antimi-

crobial compounds (like Trp-derived metabolites), but also might attenuate pattern triggered immunity (PTI) responses. (c) Alterations of wall pectins, either in

their overall content (left), their degree of acetylation (middle) or methylation (right) activate specific defensive responses, such as those regulated by JA or SA,

and trigger PTI responses, probably mediated by damage-associated molecular patterns like oligogalacturonides (OGs). (d) Alteration of wall hemicelluloses

content (right) or the degree of acetylation (left) trigger defensive responses such as the activation of brassinosteroid (BR) and ABA signalling pathways, the

biosynthesis of antimicrobial compounds, but also might attenuate PTI responses. (e) Callose deposition in the cell wall is a typical response that takes place at

pathogen penetration sites. Callose deposition strengthens the plant cell wall and might activate the salycylic acid (SA) defensive pathway.

© 2017 The Authors
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and the vascular fungus Fusarium oxysporum (Table 1,

Figure 1b; Hern�andez-Blanco et al., 2007; Escudero et al.,

2017). In line with these results, an Arabidopsis mutant

defective in the MYB46 transcription factor that directly

regulates the expression of several secondary cell wall-

related genes, including CESA4/7/8, also showed enhanced

resistance to necrotrophic fungi (Table 1; Ram�ırez et al.,

2011).

The disease resistance phenotype of irx5, irx3, irx1 and

myb46 plants is in part explained by the constitutive acti-

vation of plant immune responses, such as the abscisic

acid (ABA) signalling pathway and the synthesis of antimi-

crobial compounds like peptides and tryptophan-derived

metabolites (Figure 1b; Hern�andez-Blanco et al., 2007;

Escudero et al., 2017). The constitutive activation of these

defensive pathways in irx1/3/5 plants probably explains

their trade-off phenotypes (dwarf plants and reduced seed

yield) (Hern�andez-Blanco et al., 2007; S�anchez-Vallet et al.,

2010; Ram�ırez et al., 2011). Despite the broad-spectrum

resistance of irx1-6 plants, some PTI responses, like pro-

duction of reactive oxygen species (ROS) and phosphoryla-

tion of mitogen-activated protein kinases (MAPKs), are

attenuated in the MAMP-treated irx1-6 mutant compared

with wild-type plants, indicating that CWI-mediated immu-

nity might be sufficient to compensate partially defective

PTI responses (Escudero et al., 2017). Of note, irx1-6 plants

show enhanced resistance to several abiotic stresses like

drought and salinity, which is in accordance with the con-

stitutive activation of the ABA pathway and the accumula-

tion in these plants of stress-associated metabolites,

including some osmolites (Chen et al., 2005; Hern�andez-

Blanco et al., 2007; Escudero et al., 2017). Of note, impair-

ment of ABA signalling, as occurs in the P. cucumerina-

resistant aba1-6 mutant, resulted in reduced cellulose and

increased uronic acid in its cell wall (Table 1; S�anchez-Val-

let et al., 2012).

Plant resistance to pathogens is also altered in Ara-

bidopsis mutants affected in CESA subunits required for

cellulose biosynthesis of the primary cell wall, such as the

CESA3-defective isoxaben resistant (ixr1)/constitutive

expression of VSP (cev1) mutants. ixr1/cev1 plants, which

display constitutive activation of ethylene (ET) and jas-

monic acid (JA) signalling, were more resistant than wild-

type plants to B. cinerea, Pseudomonas syringae and dif-

ferent powdery mildew fungal isolates, whereas their

resistance to R. solanacearum and P. cucumerina did not

differ from that of wild-type plants (Table 1, Figure 1b;

Ellis et al., 2002; Hern�andez-Blanco et al., 2007). These

results with Arabidopsis CESA mutants illustrate that

specific cell wall damage (CWD) of either the primary or

secondary cell wall causes differential wall alterations,

activating distinct immune responses. However, impair-

ment of cellulose synthesis does not always lead to dis-

ease resistance since transient silencing of barleyT
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Cellulose Synthase Like D2 (CSLD2) has been described to

enhance susceptibility to powdery mildew (Table S1;

Douchkov et al., 2016).

Cellulose biosynthesis can be impaired genetically but

also by chemical inhibition upon treatment of the plant

with specific inhibitors (for a recent review see Tateno

et al., 2016). Such inhibitors can target specific CESAs (e.g.

isoxaben) or affect biosynthesis indirectly by altering the

movement of CSCs at the plasma membrane (e.g. dichlobe-

nil). Chemical inhibition of cellulose biosynthesis in plants

causes CWD and consequently the alteration of CWI, which

leads to the ectopic production of JA, ROS, lignin and

pectin, resulting in the activation of disease resistance

responses and inhibition of plant growth (Ellis et al.,

2002; Ca~no-Delgado et al., 2003; Manfield et al., 2004;

Hamann et al., 2009; M�elida et al., 2015; Largo-Gosens

et al., 2016).

The synthesis and degree of modification of pectins

influence plant disease resistance

Pectins are a complex family of Golgi-synthesized plant

cell wall polysaccharides and/or glycan domains that con-

tain galacturonic acid (a-D-GalA) linked at both the 1 and

4 positions (Driouich et al., 2012; Atmodjo et al., 2013).

Pectins have important functions, such as promoting cell–
cell adhesion, providing structural support in primary

walls and influencing secondary wall formation in fibres

and woody tissues (Ogawa et al., 2009; Singh et al., 2009;

Hongo et al., 2012). Pectic polysaccharides are built using

up to 12 different monosaccharides and can generally be

grouped into three major types: homogalacturonan (HG),

rhamnogalacturonan I (RG-I) and the substituted galactur-

onan rhamnogalacturonan II (RG-II). This structural diver-

sity is reflected in a complex biosynthetic process which

requires at least 67 different transferases, including glyco-

syltransferases, methyltransferases and acetyltransferases

(Mohnen, 2008). Interestingly, a recent screening of

mutants with alterations in content or modification of

specific cell wall monosaccharides indicated an important

function of pectic polymers for penetration resistance and

hyphal growth of Colletotrichum higginsianum during its

biotrophic phase (Engelsdorf et al., 2017b). However,

given the numerous functions of pectins and the number

of players involved in their complex biosynthesis many

examples of disease susceptibility/resistance phenotypes

can be found in the literature. Here we will illustrate some

of the most recent examples, since the complex contribu-

tion of pectin amount/structure to the regulation of plant

innate immunity has been nicely reviewed in several

recent publications that also describe the different viru-

lence mechanisms used by pathogens to modify or

degrade pectins in order to favour plant colonization (Fer-

rari et al., 2012; Lionetti et al., 2012; Bellincampi et al.,

2014).

Impairment of pectin biosynthesis, either directly though

mutations on glucuronate 4-epimerases (GAEs) required to

generate the nucleotide sugar used as donor in the biosyn-

thesis, or indirectly through AtERF014, a nuclear-localized

transcriptional activator, impaired disease resistance

against P. syringae and B. cinerea (Table 1, Figure 1c;

Bethke et al., 2016; Zhang et al., 2016). In particular, gae1

gae6 double-mutant plants were more susceptible to both

pathogens, whereas AtERF014-RNAi plants exhibited

increased susceptibility to P. syringae but enhanced resis-

tance to B. cinerea. On the other hand, examples of Ara-

bidopsis mutants with pectin-enriched cell walls

are powdery mildew-resistant 5 and 6 (pmr5 and pmr6),

which were more susceptible to P. syringae than wild-type

plants, while the penetration frequency of powdery mildew

fungi and C. higginsianum was impaired in these mutants

(Table 1; Vogel et al., 2002, 2004; Engelsdorf et al., 2017b).

The synthesis of pectins and xylans has also been shown

to be reduced in Arabidopsis starch-deficient mutants,

such as phosphoglucomutase (pgm), and accordingly

these mutants were found to be impaired in penetration

resistance against C. higginsianum (Engelsdorf et al.,

2017b). Enhanced susceptibility to this fungus was also

observed in Arabidopsis mur8-1 mutants, which display

reduced cell wall rhamnose and RG-I content compared

with the wild type (Engelsdorf et al., 2017b).

Pectic complexity is evenly increased by post-synthetic

decorations such as acetylation and/or methylesterification

(Atmodjo et al., 2013). Pectin methylesterification status is

strongly altered in response to necrotrophic fungal infec-

tions (Lionetti et al., 2012). The methylesterification of

pectin is controlled mainly by pectin methylesterases

(PMEs), whose activity is post-transcriptionally regulated

by endogenous protein inhibitors (PMEIs). As demon-

strated recently in Arabidopsis, PME activity and pectin

methylesterification are dynamically modulated by PMEIs

during B. cinerea infection, pointing to AtPMEI10, AtP-

MEI11 and AtPMEI12 as mediators of maintenance of CWI

in plant immunity (Table 1; Lionetti et al., 2017). Notably,

some of the Arabidopsis PMEI over-expressing lines were

found to be more susceptible to viral infection, indicating

the differential effect of the degree of pectin methylesterifi-

cation on disease resistance (Lionetti et al., 2014). Pectin

complexity and the degree of methylesterification are also

regulated by the activity of pectate lyases (PL), and it has

been shown that impairment of some PL-like (PLL) genes

in Arabidopsis affects the development and maintenance

of syncytia during the colonization of roots by cyst nema-

todes (Table 1; Wieczorek et al., 2014). Also, reduction of

the degree of pectin acetylation in Arabidopsis by over-

expression of Aspergillus nidulans (AnRAE) acetylase leads

to specific defensive responses (e.g. callose deposition)

and enhanced resistance to B. cinerea (Table 1; Pogorelko

et al., 2013).

© 2017 The Authors
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Polygalacturonases (PG) are glycosyl hydrolases that

depolymerize the pectic HG (D’Ovidio et al., 2004). These

enzymes are normally defined as pathogenicity factors pro-

duced at the earlier stages of a microbial infection and

insect attack (Caprari et al., 1993). However, they are also

endogenously present in plants. Arabidopsis and wheat

plants with increased PMEI activity or Arabidopsis plants

with reduced PME activity exhibited increased resistance

to some necrotrophic pathogens, suggesting that a high

degree of methylesterification either reduces accessibility

to pectin and its degradation by fungal PG or interferes

with fungal penetration by altering cell wall stiffness

(Table 1, Lionetti et al., 2007; Raiola et al., 2011). More-

over, a recent report shows that, in addition to pathogen-

secreted PGs, P. syringae can promote pectin degradation

by induction of the expression of the Arabidopsis IDA-like

6 (IDL6) gene which, in turn, induces the expression of the

plant PG gene ADPG2 (Wang et al., 2017). Arabidopsis

ADPG2 knockdown mutants and over-expression lines

show decreased and increased resistance to P. syringae,

respectively, further suggesting that such bacterially

induced pectin degradation in plants is an efficient mecha-

nism developed by microbes for colonizing plants (Table 1,

Wang et al., 2017). One of the defensive responses of

plants to microbial PGs is the synthesis of polygalactur-

onase-inhibiting proteins (PGIPs; Spadoni et al., 2006) to

inhibit microbial and insect PGs. The over-expression of

PGIPs in different plant species improves their resistance

to necrotrophic fungi and bacteria (Tables 1 and Table S1;

Aguero et al., 2005; Ferrari et al., 2012).

In summary, the complexity of pectins is such that we

are still far from understanding the details of their contri-

bution to CWI-mediated immunity. However, most of the

resistance phenotypes found with altered pectic composi-

tion and structures could, at least partially, be explained by

the enhanced accumulation of pectin-derived DAMP oligo-

mers of a-galacturonosyl residues linked by a-1,4-glycosi-
dic linkages, referred to as oligogalacturonides (OGs). OGs

are perceived in Arabidopsis by wall-associated kinase 1

(WAK1), which functions as a PRR triggering plant immune

responses (Figure 2, Table 2; He et al., 1996; Wagner and

Kohorn, 2001; Brutus et al., 2010; Ferrari et al., 2013).

The content and degree of acetylation of hemicellulose

polysaccharides determine plant disease resistance

Hemicelluloses are plant cell wall polysaccharides that

have b-1,4-linked backbones with an equatorial configura-

tion. Diverse polysaccharides, very different from each

other structurally and in physicochemical properties, such

as xyloglucans, xylans, mannans, glucomannans and b-
1,3-1,4-glucans, can be grouped under this definition

(Scheller and Ulvskov, 2010).

The alteration of wall xylose content, the moiety that is

present in xylans and xyloglucans, affects the resistance of

Arabidopsis to pathogens. For example, plants with

enhanced levels of wall-bound xylose, as occurs in the Ara-

bidopsis de-etiolated3 (det3) and irx6 mutants (Brown

et al., 2005; Rogers et al., 2005), or with modifications in

the xyloglucan structure, as in the case of the Arabidopsis

xyl1-2 mutant (Sampedro et al., 2010), show an enhanced

resistance to the necrotrophic fungus P. cucumerina

(Table 1, Figure 1d; Delgado-Cerezo et al., 2012). Similarly,

barley transgenic plants co-expressing glycosyltrans-

ferase-encoding genes responsible for xylan biosynthesis

affected penetration resistance against Blumeria graminis

(Table S1; Chowdhury et al., 2017). In contrast, Arabidop-

sis er plants, impaired in ERECTA receptor-like kinase that

harbours a leucine-rich repeat (LRR) ectodomain (ED), and

agb1 and agg1 agg2 mutants, impaired in the Gß and Gc
subunits of heterotrimeric G proteins, have – besides

other cell wall alterations – a reduced xylose content, and

are hyper-susceptible to the necrotrophic fungus P. cuc-

umerina (Table 1; Llorente et al., 2005; S�anchez-Rodr�ıguez

et al., 2009; Delgado-Cerezo et al., 2012). Although the

reasons for such resistance phenotypes are largely

unknown, together these data suggest that shifts in the

xylose content of the cell wall have a deep impact on CWI

and susceptibility to pathogens.

Hemicelluloses can be acetylated. Four Reduced Wall

Acetylation genes (RWA1–RWA4) are involved in the

acetylation of xylan during secondary wall biosynthesis.

Remarkably, the Arabidopsis rwa2 mutant, with about

20% less polysaccharide O-acetylation, is more resistant

than wild-type plants to the necrotrophic fungus B.

cinerea and the biotroph Hyaloperonospora arabidopsidis

whereas its resistance to P. cucumerina is not affected

(Table 1; Manabe et al., 2011; Pawar et al., 2016). The rel-

evance of the degree of xylan acetylation in plant resis-

tance to pathogens is further supported by the enhanced

resistance to necrotrophic fungi of transgenic plants with

reduced xylan acetylation due to over-expression of a

fungal xylan acetylesterase (Table 1; Pogorelko et al.,

2013). In addition to RWA proteins, members of the TRI-

CHROME BIREFRINGENCE (TBR) and TBR-LIKE (TBL) pro-

tein families are involved in the O-acetylation of wall

polysaccharides (Gille and Pauly, 2012). The Arabidopsis

powdery mildew resistant5 (pmr5) mutant, impaired in a

TBL member, is more resistant than wild-type plants to

powdery mildew fungi and C. higginsianum, whereas its

resistance to P. syringae is similar to that of wild-type

plants (Table 1; Vogel et al., 2004; Gille and Pauly, 2012;

Engelsdorf et al., 2017b;. Another recent example of the

activation of specific cell wall-triggered immune

responses comes from the alteration of cell wall xylan

acetylation caused by another TBL member, Eskimo1

(ESK1), which encodes a plant-specific polysaccharide O-

acetyltransferase involved in xylan acetylation (Xu et al.,

2014; Escudero et al., 2017). In this case, the alterations

© 2017 The Authors
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in the degree of acetylation were minor, illustrating that

subtle CWI impairments are sensed and trigger defence

responses. Such impairment in xylan acetylation was

accompanied by enhanced accumulation of ABA, the con-

stitutive expression of genes encoding antimicrobial pep-

tides and enzymes involved in the biosynthesis of

tryptophan-derived metabolites, and the accumulation of

disease resistance-related secondary metabolites and dif-

ferent osmolites, which might help explain the enhanced

freezing, drought and salinity resistance phenotype of

esk1 plants (Xin et al., 2007; Lugan et al., 2009; Xu et al.,

2014; Escudero et al., 2017). Some of the transcriptional

and metabolomic changes observed in esk1-7 overlapped

with those observed in the irx1-6 mutant and might con-

tribute to explaining the restoration to wild-type levels of

the defective PTI responses of agb1-2 plants observed in

abg1-2 esk1-7 and agb1-2 irx1-6 double mutants (Escud-

ero et al., 2017). Despite the similarities of the constitu-

tively activated defence responses of esk1-7 and irx1-6,

the first showed enhanced resistance to P. cucumerina

but not to H. arabidopsidis, which contrasted with the

increased resistance of irx1-6 to both pathogens (Table 1;

Hern�andez-Blanco et al., 2007; Escudero et al., 2017).

A severe reduction in secondary wall thickness of

fibre, but not that of xylem vessels, as occurs in the

Arabidopsis walls are thin 1 (wat1) mutant, also increased

resistance to pathogens, such as the vascular bacteria

R. solanacearum and Xanthomonas campestris pv. cam-

pestris, the soil-borne and vascular fungi Verticillium

dahliae and Verticillium alboatrum, and the necrotrophic

fungus P. cucumerina (Table 1; Denanc�e et al., 2013).

This resistance phenotype was explained by the higher

salicylic acid (SA) content measured in wat1 plants

and by a general repression of indole metabolism (in-

cluding Trp) in wat1 roots. In support of this hypothesis,

it was shown that introduction in wat1 plants of NahG,

the bacterial gene coding for a SA-degrading hydroxy-

lase, restored full susceptibility to the bacterium R. sola-

nacearum, and that crossing wat1 with the trp5 mutant,

an over-accumulator of Trp, partially restored the sus-

ceptibility of wat1 to the bacterium (Denanc�e et al.,

2013).

Figure 2. Plant cell wall sensing monitoring systems. Sensors and pattern recognition receptors (PRRs) that have been described to be involved in plant wall

sensing mechanisms are shown. The different extracellular domains of these PRRs are indicated in the inset. The immune responses activated/repressed by the

indicated PRR/sensor are indicated by arrows. Some key damage-associated molecular patterns and signalling components of the responses activated by these

PRRs/sensors are also shown. For additional details and abbreviations see the main text.
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Strengthening the wall door: CWI alterations triggered

callose synthesis

Callose, a linear b-1,3-glucan polymer with hundreds of

glucose units, can be accumulated in specialized plant cell

walls, such as the cell plate that separates dividing cells

and growing pollen tube walls, and also performs impor-

tant functions during abiotic and biotic stress responses

(Stone and Clarke, 1992). In particular, papillae, which are

callose-enriched dome-shaped appositions between the

epidermal wall and the plasma membrane synthesized as

a plant cell wall reinforcement near the site of pathogen

penetration, are structures of special interest in a CWI con-

text (Figure 1e; Huckelhoven, 2007; Albersheim et al., 2011;

Chowdhury et al., 2014). Formation of papillae is an early

defence response which apparently slows down pathogen

invasion in the attacked tissue, gaining time for the induc-

tion of additional defence responses (Schwessinger and

Ronald, 2012). However, the extent to which papillae and

the deposited callose would contribute to the plant’s innate

immunity and penetration resistance has been subject to

an ongoing discussion (Voigt, 2014).

Callose, like cellulose, and in contrast to other wall

polysaccharides which are synthesized in the Golgi, is syn-

thesized at the plasma membrane by callose synthases

(CalS or GSL for GLUCAN SYNTHASE-LIKE) (Gudesblat

et al., 2012). GSL gene family members comprise 12 mem-

bers in Arabidopsis that fall into two major groups (Verma

and Hong, 2001): (i) fertility and cell division (GSL1, GSL2,

GSL6, GSL8, GSL10) and (ii) structural cell wall reinforce-

ment (GSL5, GSL7, GSL12). Disruption mutants that lack

the stress-induced callose synthase GSL5 (also known as

Powdery Mildew Resistant 4, PMR4) do not deposit callose

at sites of attempted fungal penetration (Table 1). How-

ever, the Arabidopsis gsl5 mutant showed an increased

resistance to Golovinomyces cichoracearum and Golovino-

myces orontii which was contradictory to what would be

expected (Jacobs et al., 2003; Nishimura et al., 2003).

Additional analyses revealed that the over-expressed SA

pathway caused the high resistance to adapted powdery

mildews in gsl5 mutants (Figure 1e; Nishimura et al.,

2003). Ellinger et al. generated 35S::GSL5 Arabidopsis

over-expressor lines which in fact were able to accumu-

late enlarged callose deposits at sites of attempted fungal

penetration (Ellinger et al., 2013). Interestingly, in this

case, Arabidopsis 35S::GSL5 showed a resistance pheno-

type to G. cichoracearum and B. graminis without trigger-

ing JA or SA pathways. More recently, double-stranded

RNA interference (dsRNAi)-mediated silencing of HvGSL6,

the functional orthologue of AtGSL5 in barley, was shown

to accumulate less callose and to be more susceptible to

B. graminis penetration (Chowdhury et al., 2016). In view

of latest evidence, and considering the early contradic-

tions, it could be reasoned that callose synthesized by

GSL5 and its orthologues makes a positive contribution to

immunity.

MOLECULAR MECHANISMS FOR THE PERCEPTION OF

CWI ALTERATIONS AND THE ACTIVATION OF DEFENCE

RESPONSES

Modification of plant CWI by external threats or internal

developmental cues is monitored by the plant CWI mainte-

nance system. Several reports implicate the plant CWI

maintenance mechanism in the regulation of growth,

immune responses and resource allocation between

Table 2 Cell wall-related DAMPs and receptors identified in Arabidopsis thaliana

DAMP Receptor Ectodomain Signalling hallmarks Reference

Peptides
PEP1 PEPR1/2 LRR Ca2+, MAPK3, MAPK6, ET, NO, ROS Krol et al. (2010), Bartels, et al. (2013)
RALF1, RALF23 FER Malectin RAC/ROP GTPases, Ca2+, ROS Engelsdorf and Hamann (2014),

Haruta et al. (2014), Stegmann et al. (2017)
Carbohydrates
Pectins PERK4 Proline-rich Ca2+ Bai et al. (2009a,b)

WAK2 EGF-like repeat MAPK3 Kohorn et al. (2009)
OGs DP10-16 WAK1 EGF-like repeat Ca2+, ROS, MAPK3, MAPK6, ANPs Wagner and Kohorn (2001),

Kohorn et al. (2009), Brutus et al. (2010)(a-1,4-GalA)
Laminarioligos DP>6 CERK1 Lysin motif Ca2+, MAPK3, MAPK6 M�elida et al. (2018)
(b-1,3 glucans)
Laminarin nd nd SA Menard et al. (2004);

Boutrot and Zipfel (2017)(b-1,3-1,6 glucans)
OGs DP3 nd nd MAPK3, MAPK6 Davidsson et al. (2017)
(a-1,4-GalA)
Cellobiose nd nd Ca2+, MAPK3, MAPK6 de Azevedo Sousa et al., 2017

GalA, Galacturonic Acid; nd, Not determined; OGs, oligogalacturonides; LRR, Leucine-Rich Repeat; EGF, epidermal growth factor; MAPK,
mitogen-activated protein kinase; ET, ethylene; ROS, reactive oxygen species; SA, salicylic acid.

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2018), 93, 614–636
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development and immunity (Hern�andez-Blanco et al., 2007;

Hamann et al., 2009; Wolf et al., 2012a; Engelsdorf et al.,

2017a). The plant CWI monitoring system seems to share

some similarities with that of yeasts, which is organized as

a network of sensors and signalling pathways that play rel-

evant functions during cell morphogenesis and adaptive

responses to environmental stresses (Levin, 2011; Atkinson

and Urwin, 2012; N€uhse, 2012; Wolf et al., 2012a; Hamann,

2015). It is unclear, with a few exceptions, what the signals

are that alert the plant to CWI impairment. The most prob-

able scenario comprises turgor pressure, which might

cause displacement of the plasma membrane from the cell

wall, and ligand–receptor interactions (Hamann, 2015).

The plant cell wall sensing network has been proposed

to include monitoring of molecular systems for: (i) osmo-

perception; (ii) mechano-perception; (iii) CWD perception;

and (iv) wall-derived ligand–receptor (PRR) recognition

(Figure 2). All these sensing systems activate signal relays

via protein kinases (PKs) or/and calcium-based signalling

cascades which induce the synthesis of some phytohor-

mones (e.g. JA, SA and ABA), that in turn modulate down-

stream genes which regulate the adaptive changes in cell

wall composition and structure and the activation of

immune and defence responses (Figure 2; Engelsdorf and

Hamann, 2014; Miedes et al., 2014; Zipfel, 2014; Wolf,

2017). Only a few molecular components of these plant

monitoring systems have been identified to date, and lim-

ited insights into their mode of action have been provided

(Figure 2). Here, we describe the best-characterized com-

ponents of the plant cell wall-associated monitoring sys-

tem.

Osmo-perception and mechano-perception sensor

systems in plants

Most of our current knowledge about the presence of

osmo-receptors in Arabidopsis comes from their heterolo-

gous expression and functional study in yeast models

(Engelsdorf and Hamann, 2014). Expression of several Ara-

bidopsis histidine kinases (AHKs) in yeast complements

osmosensing-deficient strains impaired in SYNTHETIC

LETHAL OF N-END RULE 1 (SLN1) protein, a yeast turgor

pressure sensor (Urao et al., 1999; Engelsdorf and

Hamann, 2014). The location of AHK1 in the Arabidopsis

plasma membrane, as with SLN1 in yeast, is compatible

with its role as an osmo-receptor (Tran et al., 2007; Engels-

dorf and Hamann, 2014). Furthermore, knocking out the

AHK1 gene affects Arabidopsis CWD responses upon

manipulation of turgor pressure levels, similarly to what

has been described in yeast (Figure 2; Hamann et al., 2009;

Wormit et al., 2012). Conversely, AHK2 and AHK3 are

located in Arabidopsis endoplasmic reticulum and they

seem to function as cytokinin receptors negatively regulat-

ing stress responses (Engelsdorf and Hamann, 2014).

AHK4/CYTOKININ RECEPTOR1 (CRE1) has been demonstrated

to function as an endoplasmic reticulum-localized cytokinin

receptor (Yamada et al., 2001; Caesar et al., 2011). However, is

also involved in the transcriptional regulation triggered

by osmotic changes caused by the inhibition of cellulose

biosynthesis (Figure 2; Wormit et al., 2012).

In Arabidopsis, two main groups of receptors seem to

be involved in mechano-perception: mechanosensitive

(MS) ion channels and receptor like kinases (RLKs) that

perceive CWD (Hamant and Haswell, 2017). Expression in

yeast of the Arabidopsis MID1 Complementing Activity 1

(MCA1) and MCA2 partially rescues the phenotype of yeast

strains deficient in MID-1 Ca2+ channels (Nakagawa et al.,

2007; Yamanaka et al., 2010; Engelsdorf and Hamann,

2014). In Arabidopsis, MCA1 and MCA2 are localized at the

plasma membrane, mediating Ca2+ influx triggered by

mechanical stimulus and hypo-osmotic pressure, and are

necessary for CWD-induced responses, like synthesis and

deposition of lignin, and JA and ROS production (Figure 2;

Hamann, 2012; Kurusu et al., 2013; Haswell and Verslues,

2015). Other MS ion channels are those belonging to the

MscS-Like (MSL) family, which are homologues of the bac-

terial MS channels. Arabidopsis MSLs are plastid located

and have been implicated in the regulation of Ca2+ influx

(Figure 2; Kurusu et al., 2013).

Arabidopsis CWD perception involves RLKs from different

families

As stated before, one of the best-characterized plant CWDs

is that caused by inhibition of CESA function. CWD caused

by inhibition of primary cell wall CESAs leads to adaptive

changes and ectopic responses (e.g. production of JA and

ROS and lignin deposition), which together result in plant

growth inhibition (Ellis et al., 2002; Ca~no-Delgado et al.,

2003; Manfield et al., 2004; Bischoff et al., 2009; Hamann

et al., 2009; Denness et al., 2011; M�elida et al., 2015). A

screening of suppressors of the CESA6 mutant procuste1-1

(prc1-1) identified the the1-1 mutant, which partially recov-

ered the constitutive growth inhibition and the ectopic lig-

nin deposition observed in pcr1-1 plants (H�ematy et al.,

2007). THESEUS1 (THE1) is a member of the Catharanthus

roseus Receptor-Like Kinase 1-Like (CrRLK1L) family, that

comprises 17 members in Arabidopsis (Lindner et al.,

2012). the1-1 has been suggested to be impaired in the

perception of unknown CWD-derived signals, and accord-

ingly it would be unable to activate specific responses

induced by inhibition of the activity of primary cell wall

CESAs. The CrRLK1L members have an extracellular ED

with a malectin-like domain that has been suggested to

bind carbohydrates (Lindner et al., 2012), but this hypothe-

sis has not been experimentally demonstrated to date

(Wolf, 2017). Instead, some CrRLK1L members have been

demonstrated to bind peptides (Haruta et al., 2014; Steg-

mann et al., 2017). For example, FERONIA (FER), one of

the best-characterized members of the CrRLK1L family, has

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2018), 93, 614–636
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been shown to bind the peptides RAPID ALKALINIZATION

FACTORS (RALF) 1 and 23 (Haruta et al., 2014; Stegmann

et al., 2017). FER was initially characterized for its role in

female gametophytic control of pollen tube reception

(Huck et al., 2003), but lately it has also been found to be

involved in root hair formation, plant growth, mechano-

perception, hormone-mediated signalling, ROS production

and apoplast acidification, through molecular mechanisms

that are dependent on Ca2+ influxes (Shih et al., 2014; Li

et al., 2016; Voxeur and H€ofte, 2016). Apoplast acidifica-

tion, which occurs through RALF1 signalling and inhibition

of H+-ATPase2 (AHA2) (Haruta et al., 2014), may be con-

nected to cell wall modifications via the activation of pectin

methyl esterases (PMEs) (Voxeur and H€ofte, 2016). Active

RALF peptides are generated upon cleavage of their pro-

peptide by peptidases of the subtilisin family, such as

SITE-1 PROTEASE (S1P), which cleaves RALF23 pro-pep-

tide (Stegmann et al., 2017). Interestingly, S1P also cleaves

the pro-domain from PMEs (Srivastava et al., 2009; Wolf

et al., 2009), suggesting coordinated secretion and pro-

cessing of RALF23 and PMEs, and perhaps pointing to

FER-mediated control of pH homeostasis in expanding cell

walls (Voxeur and H€ofte, 2016). Of note, the fer-4 mutant is

more resistant to the vascular fungus F. oxysporum than

wild-type plants, probably due to its defect in the percep-

tion of a virulence RALF-like peptide secreted by the

pathogen (Masachis et al., 2016). Moreover, FER also par-

ticipates in the modulation of immune responses acting as

a RALF-regulated scaffold mediating the assembly of a

receptor kinase complex including BRASSINOSTEROID

INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), the co-

receptor of the immune receptor kinases EF-TU RECEPTOR

(EFR) and FLAGELLIN-SENSING 2 (FLS2) (Stegmann et al.,

2017). These recent results represent a clear link between

the sensing of CWI alterations and modulation of PTI, and

suggest that some PRRs regulating CWD-associated defen-

sive responses are targeted by pathogen virulence factors

to suppress host immunity.

Domain swap experiments with FER, its closest CrRLK1L

homologues, ANXUR1 (ANX1), ANX2 and HERCULES1

(HERK1), demonstrated that the kinase domain is exchange-

able but not the extracellular domain, implying that the

ED of each CrRLK1L might bind different ligands (Kessler

et al., 2015). However, these CrRLK1Ls might trigger simi-

lar downstream responses since all the CrRLK1L-mediated

responses studied so far required similar signalling com-

ponents like Rho of plants (ROP) guanidine nucleotide

exchange factor (ROP-GEF1), ROP GTPases and NADPH

oxidases (Figure 2; Kessler et al., 2015; Li et al., 2016;

Wolf, 2017).

In addition to CrRLK1L family members, other RLKs

belonging to different families have been implicated in

CWD responses. For example, FEI1 and FEI2, two very sim-

ilar LRR-RLKs of Arabidopsis (Figure 2), were identified on

the basis of the sucrose-dependent swollen-root pheno-

type of fei1 fei2 double-mutant seedlings that is similar to

that observed in the prc1-1 mutant and in isoxaben-treated

seedlings (Fagard et al., 2000; Xu et al., 2008; Hamann

et al., 2009; Engelsdorf and Hamann, 2014). FEI1 and FEI2

control cellulose biosynthesis and anisotropic growth

under high-sucrose and high-salinity conditions, acting

together with SALT OVERLY SENSITIVE5 (SOS5), an extra-

cellular glycosylphosphatidylinositol-anchored protein that

has a similar conditional phenotype (Shi et al., 2003; Xu

et al., 2008; Engelsdorf and Hamann, 2014; Wolf, 2017).

FEIs seem to be implicated in a highly complex regulation

network, that includes the biosynthesis of the ethylene-pre-

cursor 1-aminocyclopropane-1-carboxylic acid (ACC),

which directly controls cellulose biosynthesis (Tsang et al.,

2011; Wolf, 2017). Interestingly, auxin biosynthesis also

plays a role in FEI-regulated CWI signalling. This was

revealed in a screening of suppressors of the fei1 fei2

mutant phenotype that identified genes with a key role in

auxin homeostasis as suppressors of fei1 fei2 growth iso-

tropy but also of isoxaben-induced phenotypes (Steinwand

et al., 2014; Wolf, 2017).

The LRR-RLK MALE DISCOVERER 1-INTERACTING

RECEPTOR LIKE KINASE 2 (MIK2) (Figure 2) has been also

proposed to have a role in sensing CWI caused by CWD,

probably functioning in the same pathway as THE1 (Van

der Does et al., 2017). MIK2 was found in a screening of

RLK mutants insensitive to cellulose biosynthesis inhibi-

tors (Van der Does et al., 2017). Although MIK2 does not

present a completely overlapping pattern with THE1 in

response to inhibition of cellulose biosynthesis, MIK2

requires THE1 for control of normal root growth direction

and salt tolerance (Van der Does et al., 2017). On the con-

trary, THE1 is not required for MIK2-mediated resistance to

F. oxysporum (Van der Does et al., 2017).

It has been experimentally demonstrated that both RLKs

and MS ion channels work together to regulate CWD

responses. For instance, FEI2 and the plasma membrane

channel MCA1 function downstream of THE1, triggering

Ca2+ influx, ROS production, JA and SA production and

modulating immune-related gene expression (Figure 2;

Engelsdorf et al., 2017a).

Sensing cell-wall-derived, carbohydrate-based DAMPs to

regulate disease resistance responses

Plant cell walls are a source of potential carbohydrate-

based defence signalling molecules (DAMPs). These

DAMPs can be released upon breakdown or modification

of wall polymers by (i) CWDEs secreted by pathogens, (ii)

the activity of plant enzymatic repertoires upon infection or

abiotic stresses exposure, or (iii) the genetic manipulation

(mutation or over-expression) of the levels of cell wall

biosynthesis/remodelling associated proteins (Hahn et al.,

1981; Walton, 1994; Cosgrove, 2005). Such alterations of

© 2017 The Authors
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CWI would trigger specific defensive responses (Figure 1,

Table 1), but the mechanisms behind the activation of

these adaptive responses and, in particular, the specific

ligands (e.g. wall-derived DAMPs) and PRRs that regulate

these responses, remain elusive (Figure 2). Until very

recently, OGs were the only well-known and accepted cell

wall-derived DAMPs in plants (Nothnagel et al., 1983; de

Azevedo Souza et al., 2017). OGs, generally with a degree

of polymerization (DP) of 10–15, act via many of the same

signalling steps as MAMPs to elicit defence responses and

to confer plant protection when applied exogenously (Rid-

ley et al., 2001; De Lorenzo et al., 2011; Ferrari et al., 2013;

Benedetti et al., 2015).

Despite pioneering work and recently regained momen-

tum (Nothnagel et al., 1983; Doares et al., 1995; Willmann

et al., 2011; Liu et al., 2012; Cao et al., 2014; M�elida et al.,

2018), knowledge about the specific mechanisms of plant

defence activation by carbohydrate-based patterns

(MAMPs and DAMPs) clearly lags behind the animal field,

where different types of receptors have been described to

bind carbohydrate-based ligands (Figure 3; Erwig and

Gow, 2016). Also, our current knowledge of carbohydrate-

based pattern recognition by plants is clearly behind that

of peptidic-based MAMP perception by the plant immune

system (recently reviewed by Tang et al., 2017). Despite

the diversity of PRRs present in plants, only three families

Figure 3. Receptor–carbohydrate ligand pairs in Arabidopsis thaliana and Homo sapiens. A few plant pattern recognition receptors (PRRs) have been described

to bind microbe-associated molecular patterns (MAMPs) [chitin, lipopolysaccharide (LPS), peptidoglycan (PGN) or b-1,3-glucans] or damage-associated molecu-

lar patterns (DAMPs) [oligogalacturonides (OGs) or b-1,3-glucans] containing carbohydrate moieties. These plant receptors belong to three main PRR families:

LysM (CERK1, LYM/LYK), WAKs and Lec-RLKs (LORE). The diverse set of carbohydrate-based patterns (MAMPs and DAMPs) perceived by the Homo sapiens

monitoring system is also shown. The different domains of the human receptors that bind carbohydrate-based patterns are indicated.

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2018), 93, 614–636
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of receptors have been described to be involved in the

recognition of carbohydrate-based patterns (MAMPs or

DAMPs) (Figures 2 and 3): (i) receptors of the lysin motif-

(LysM)-PRR family, which are involved in the perception of

fungal chitin [CHITIN ELICITOR RECEPTOR KINASE 1

(CERK1), LysM-CONTAINING RECEPTOR KINASE 4/5

(LYK4/5) and LysM DOMAIN-CONTAINING GPI-ANCHORED

PROTEIN 2 (LYM2)], bacterial peptidoglycan (PGN)

(CERK1, LYM1/LYM3) and b-1,3-glucans present in the

walls of fungi/oomycetes/plants (CERK1); (ii) the PRR fam-

ily with Epidermal Growth Factor (EGF)-Like ED, that

includes the OGs receptor WALL ASSOCIATED KINASE1

(WAK1); and (iii) Lectin-like (Lec)-PRRs that include the

LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITA-

TION (LORE) receptor for bacterial lipopolysaccharides

(LPS) (Brutus et al., 2010; Ranf et al., 2011; Wolf et al.,

2012a; Zipfel, 2014).

Epidermal Growth Factor-Like receptors: WAK receptors

and OGs perception

This PRR plant family contains an EGF ED (He et al., 1996)

with similarities to that present in mammalian EGF recep-

tors (Figure 2). WAKs, first identified as RLKs physically link-

ing the plasmamembrane to the cell wall and later shown to

bind pectins in planta and pectic polysaccharides and

oligosaccharides in vitro, belong to this family (He et al.,

1996; Wagner and Kohorn, 2001; Decreux and Messiaen,

2005; Kohorn et al., 2009). The WAK EDs interact preferably

with de-esterified pectin cross-linked by Ca2+ (‘egg-box’ con-

figuration) through a binding site formed by cationic amino

acids (Decreux andMessiaen, 2005; Decreux et al., 2006).

The WAK family is composed of 22 WAK-like genes

identified on the basis of protein sequence homology (Ver-

ica and He, 2002). WAK1 and WAK2 both bind pectins

(Decreux and Messiaen, 2005; Kohorn et al., 2009), but so

far only WAK1 has been experimentally characterized as

an OGs receptor using a domain-swap approach (Brutus

et al., 2010). Furthermore, WAK1 is the only WAK family

gene to be upregulated in response to OGs (Denoux et al.,

2008), being also induced by wounding (Wagner and

Kohorn, 2001). Otherwise, WAK2 is required for the activa-

tion of pectin-induced immune responses, like MAPK6

phosphorylation (Kohorn et al., 2009).

OGs, usually with DP 10–15 as mentioned above, act via

many of the signalling steps of MAMPs to elicit defences

and provide protection against pathogens (Ridley et al.,

2001; De Lorenzo et al., 2011; Ferrari et al., 2013; Benedetti

et al., 2015). Downstream signalling regulated by OGs

(Table 2) includes Ca2+ influx, calcium-dependent protein

kinase (CDPK) activation and phosphorylation of MAPK3

and MAPK6, but only the latter is required for OGs-depen-

dent regulation of defence genes and protection against B.

cinerea (Figure 2; Galletti et al., 2011; Gravino et al., 2015).

Moreover, the three members of the ARABIDOPSIS NPK1-

RELATED PROTEIN KINASE (ANP) MAP kinase kinase

kinases (MAP3Ks) family, ANP1, ANP2 and ANP3, are

required for OGs-triggered signal transduction and ROS

production (Figure 2; Asai et al., 2002; Savatin et al.,

2014a). In addition, OGs-triggered signalling has been

shown to inhibit the expression of auxin-induced genes

(Savatin et al., 2011, 2014a), thus reflecting its diverging

roles in controlling plant immunity and development. More

recently, it has been described that shorter OGs (DP = 3)

also trigger immune responses (e.g. Ca2+ influx, MAPK

phosphorylation and gene expression), which partially

overlap with the response activated by OGs with a higher

DP, but, remarkably, the shorter OGs do not trigger ROS

production (Davidsson et al., 2017). In this sense, treat-

ment with DP = 3 OGs provided protection against Pecto-

bacterium carotovorum (Davidsson et al., 2017).

The role of WAKs in plant immunity is further supported

by the demonstration that Arabidopsis plants over-expres-

sing WAK1 are more resistant to B. cinerea (Brutus et al.,

2010) and that another member of the family, WAKL22, is

required for resistance against F. oxysporum (Diener and

Ausubel, 2005). Remarkably, WAK-like genes have been

identified as major regulators of crop resistance to differ-

ent diseases, like rice blast (Li et al., 2009) and corn head

smut and leaf blight (Hurni et al., 2015; Zuo et al., 2015).

Another PRR that does not belong to the WAK family,

the PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4

(PERK4), has been also shown to bind pectin. PERK4 is

required for ABA-mediated inhibition of root growth

through perturbation of Ca2+ homeostasis and regulates

the expression of PGs genes that are related to cell wall

loosening (Figure 2; Bai et al., 2009a,b).

LysM-PRRs: a few receptors perceiving a diverse set of

carbohydrate-based structures

LysM domains are widespread in eukaryotic and prokary-

otic proteins, and are typically implicated in the recogni-

tion of N-acetylglucosamine (GlcNAc)-containing glycans

(Buist et al., 2008; Bellande et al., 2017). LysM-PRRs have

been described in various plant species as receptors for

MAMPs such as chitin and PGN, both in symbiotic and

pathogenic interactions (Zipfel and Oldroyd, 2017). In Ara-

bidopsis, eight LysM-PRRs have been identified so far: five

LYKs that are RLKs, and three LYMs that are receptor-like

proteins (RLPs) lacking the cytoplasmic kinase domain

(Tanaka et al., 2013). LYK1, known as CERK1, has a crucial

role in glycan-based-MAMP perception. CERK1 is impli-

cated in chitin recognition and binding, although at low

affinity (Miya et al., 2007; Wan et al., 2008). However, for

effective chitin-triggered immune signalling, LYK4 and

LYK5, two additional members of the family, are also

necessary (Cao et al., 2014). These proteins bind chitin

with higher affinity than CERK1, but their kinase domain

is not active, and thus the formation of LYK4/5–CERK1

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2018), 93, 614–636
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heterodimers has been suggested to be required for the

activation of immune responses (Cao et al., 2014).

CERK1 is also implicated in PGN perception (probably as

a co-receptor), forming heteromeric complexes with LYM1

and LYM3 RLPs (Willmann et al., 2011). Moreover, CERK1

has recently been shown to be necessary for 1,3-b-D-glu-
can-triggered immune responses (M�elida et al., 2018). The

1,3-b-D-glucans are an important component of fungal and

oomycete cell walls but are also present in plant cells,

although in minute amounts, thus suggesting that CERK1

might also be a DAMP receptor (M�elida et al., 2018). The

central role of CERK1 in Arabidopsis immunity is supported

by its role in resistance against fungi such as Alternaria

brassicicola, G. cichoracearum and P. cucumerina (Miya

et al., 2007; Wan et al., 2008; M�elida et al., 2018), the bac-

terium P. syringae (Gimenez-Ibanez et al., 2009) and the

oomycete H. arabidopsidis (M�elida et al., 2018). In contrast,

LYK3 seems to negatively regulate resistance to B. cinerea

and P. carotovorum by controlling the balance between

ABA-dependent responses and pathogen resistance (Papar-

ella et al., 2014). Interestingly, LYK3 expression was

repressed upon plant infection with these pathogens and

upon treatment with OGs, chitin or flg22 (Paparella et al.,

2014). In contrast, LYK3 is the only LYK member whose

expression is induced in response to A. brassicicola that is

consistent with its positive function in the resistance of Ara-

bidopsis to this fungus (Paparella et al., 2014).

Lectin-like (Lec)-PRRs: a diverse set of plant receptors

sharing EDs with mammalian glycan receptors

Lectins are widespread carbohydrate-binding proteins that

can bind mono- and oligosaccharides (Bellande et al., 2017).

Plant Lec-RLKs comprise PRRs with lectin-type extracellular

domains that have been divided into three subclasses: (i) G-

(GNA-related or S-locus) lectins; (ii) C- (calcium-dependent)

lectins; and (iii) L- (legume) lectins (Wang and Bouwmee-

ster, 2017). In animals, C-lectin receptors are key players in

innate immune responses. It is worth highlighting Dectin-1,

the mammalian b-glucan receptor, which was the first mam-

malian non-Toll-like receptor discovered that is capable of

coupling microbial recognition with transcriptional regula-

tion of genes (Figure 3; Brown and Gordon, 2001; Dambuza

and Brown, 2015; Wang and Bouwmeester, 2017). In plants,

Lec-RLKs have a prominent role in biotic stress responses

(Bouwmeester et al., 2011; Desclos-Theveniau et al., 2012;

Singh et al., 2012; Wang et al., 2012, 2014; Gouhier-Dari-

mont et al., 2013; Huang et al., 2013; Balague et al., 2017), in

contrast to their minor role in developmental processes (Bel-

lande et al., 2017). However, only two ligand–LecRLK pairs

have been identified (Bellande et al., 2017; Wang and Bouw-

meester, 2017): lipopolysaccharides (LPSs)–LORE and extra-

cellular ATP (eATP)–DORN1.

LORE is a G-type Lec-RLK that has been identified as a

plant receptor for LPSs, carbohydrate-containing MAMPs

(Ranf et al., 2015). Intriguingly, BAK1 is not implicated in

LPS perception (Ranf et al., 2015), which contrasts with its

involvement in the perception of other well-known bacte-

rial MAMPs such as elf18 or flg22 (Chinchilla et al., 2007).

DORN1/LecRK-I.9 was first found in a screening performed

for the identification of plant interactors of the IPI-O effec-

tor from Phytophthora infestans, a protein containing a

RGD (arginine–glycine–aspartic acid) sequence (Gouget

et al., 2006). In Arabidopsis, RGD is able to interfere with

cell wall–plasma membrane contacts that are required for

resistance of plants to fungi (Canut et al., 1998; Mellersh

and Heath, 2001; Gouget et al., 2006; Bouwmeester et al.,

2011). Later on, in an independent screening, DORN1 was

also identified as displaying altered responses to ATP

(Choi et al., 2014a). In vitro binding assays revealed a high

affinity of the DORN1/LecRKI.9 ectodomain for eATP (Choi

et al., 2014b), which might act as a DAMP released after

physical damage of cells as it occurs during fungal infec-

tions (Kim et al., 2006, 2008; Tanaka et al., 2014). The

downstream signalling events triggered by eATP, such as

Ca2+ influx and MAPK activation, are similar to those trig-

gered by other DAMPs or MAMPs (Choi et al., 2014b). Nev-

ertheless, neither RGD peptides nor eATP are the expected

ligands for this L-LecRLK. Instead, cell wall-derived mole-

cules or glycoproteins have been suggested to be the bona

fide ligands based on in silico modelling of LecRKI.9 ED

(Bellande et al., 2017). These data suggest that LecRKI.9

and/or other L-Lec-RLKs might be implicated in the percep-

tion of as-yet-unknown cell wall-derived DAMPs.

Orphan carbohydrate-based DAMPs: looking for PRR pairs

Given both the complexity of the plant cell wall and the

fact that many pathogens secrete a wide range of cell wall-

degrading enzymes, it could be reasoned that the break-

down products of other cell wall polymers could act as

DAMPs. In line with this hypothesis, de Azevedo Souza

et al. (2017) recently demonstrated that cellobiose, a disac-

charide consisting of two glucose units in a b-1,4-glycosi-
dic linkage, was perceived as a DAMP by Arabidopsis,

triggering a signalling cascade that shares some similari-

ties with the responses modulated by well-known glycan

elicitors such as chitooligosaccharides and OGs (Table 2).

Thus, with around 20 different monosaccharide moieties

building the polysaccharides of plant cell walls, it can be

hypothesized that other carbohydrate-based cell wall mole-

cules, in addition to OGs and cellobiose, could act as

DAMPs in plants, modulating DAMP-triggered immunity

(DTI; Escudero et al., 2017).

Sensing peptidic-based DAMPs to regulate disease

resistance responses

The LRR extracellular domain is the most frequent ED in

RLKs and RLPs (Wolf, 2017). All known LRR-containing

PRRs recognize peptidic ligands (Tang et al., 2017), and

© 2017 The Authors
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many of them play important roles in plant immunity

(G�omez-G�omez and Boller, 2000; Bauer et al., 2001; Huf-

faker et al., 2006; Zipfel et al., 2006; Krol et al., 2010; Yam-

aguchi et al., 2010; Zhang et al., 2010, 2014; Jehle et al.,

2013b; Wolf et al., 2014; Albert et al., 2015; Yamada et al.,

2016). LRR-RLKs act by forming heterodimers with RLKs

from the SOMATIC EMBRYOGENESIS RECEPTOR KINASEs

(SERKs) family, like BAK1/SERK1, in a ligand-dependent

manner (Figure 2; Chinchilla et al., 2007; Schulze et al.,

2010; Roux et al., 2011; Sun et al., 2013; Tang et al., 2015;

Wolf, 2017). Equivalently, RLPs, need to interact with pro-

teins that contain cytoplasmic kinase domains such as

SUPPRESSOR OF BIR1 (SOBIR1) and BAK1 (Figure 2; Jehle

et al., 2013a; Liebrand et al., 2013; Zhang et al., 2014;

Albert et al., 2015; Couto and Zipfel, 2016; Wolf, 2017).

Besides the already described LRR-RLKs FEI1, FEI2 and

MIK2 that have been implicated in CWI sensing (see above)

upon CWD, some LRR-RLKs and LRR/RLPs have been

related to cell wall-mediated immune responses or the per-

ception of peptides that are considered DAMPs released

upon CWD. For example, Arabidopsis Pep1, has been

described as a peptide ligand synthesized in response to

CWD, since the PROPEP1 gene, encoding a Pep1 precursor,

is upregulated after isoxaben treatment (Engelsdorf et al.,

2017a). Moreover, PROPEP1 is also induced upon patho-

gen infection and wounding, which cause CWI alterations

(Huffaker et al., 2006). Pep1 is sensed by the LRR-RLKs

PEPR1 and PEPR2 (Figure 2; Bartels and Boller, 2015) and

has been shown to function as a PTI response enhancer.

Pep1–PEPR1/2 interaction represses phytohormone accu-

mulation induced by CWD, thus suggesting that PTI sig-

nalling controls the magnitude of the CWD response

(Engelsdorf et al., 2017a). Moreover, PEPR1 and PEPR2 are

also implicated in some OGs-triggered responses like

upregulation of the PATHOGENESIS RELATED 1 (PR1)

gene and enhanced resistance to B. cinerea (Gravino et al.,

2017). PEPR1 and PEPR2 seem to be required for full acti-

vation of the immune response, but if these PRRs are not

functional, as occurs in pepr1 pepr2 mutants, the CWI

monitoring system seems to function as backup activating

basal broad-spectrum defences (e.g. phytohormone, lignin

and callose accumulation) that can compensate for

impaired PTI and defective regular defence responses

(Engelsdorf et al., 2017a; Gravino et al., 2017).

Some PRRs mediate important developmental processes

that may need to include CWI input to fine-tune the bal-

ance between growth and defence. This might be the case

for the signalling pathways regulated by brassinosteroids

(BRs), since BRs are hormones that play a key role in bal-

ancing growth–immunity trade-offs (Lozano-Duran and

Zipfel, 2015). In support of this hypothesis, cell wall-related

genes are an important group of BR targets (Sun et al.,

2010 2011), and BRs have been shown to promote pectin

biosynthesis and PME activity, and to mediate the

response to pectin demethylesterification (Wolf et al.,

2012b). The BR signalling module is a deeply characterized

signalling pathway involving the LRR-RLK BRASSINOS-

TEROID INSENSITIVE 1 (BRI1), that upon BR-binding cre-

ates a docking platform for SERK co-receptors such as

BAK1 (Santiago et al., 2013; Sun et al., 2013; Belkhadir and

Jaillais, 2015; Singh and Savaldi-Goldstein, 2015; Wolf,

2017). It has been found that RLP44 interacts with this com-

plex via BAK1 (Figure 2) and mediates the BR-mediated

response to pectin demethylesterification (Wolf et al.,

2014). RLP44 is required for normal growth and stress

responses, but does not affect the response to altered

levels of BR (Wolf et al., 2014; Wolf, 2017). Taking these

results together, it has been proposed that RLP44 mediates

the integration of cell wall status and BR signalling (Wolf,

2017). Important members of the CrRLK1L family, like

THE1 and HERK1/2, are also implicated in BR-controlled

growth (Guo et al., 2009), and FER mediates the antagonis-

tic effect of BR and ET on hypocotyl growth of etiolated

seedlings (Deslauriers and Larsen, 2010). Together these

data suggest that some CrRLK1L and RLPs play a role in

sensing cell wall status.

Similarly, LRR-RLK ERECTA (ER) might also regulate

CWI since er mutants are highly susceptible to different

pathogens and show alterations in cell wall composition,

both phenotypes being restored to wild-type levels in the

ser (suppressors of er) er double mutants (Llorente et al.,

2005; S�anchez-Rodr�ıguez et al., 2009; Jord�a et al., 2016).

Remarkably, it was recently found that BAK1 and ER inter-

act, and that they cooperate with other members of the ER

pathway [ER-like1 (ERL1) and ERL2, and the TOO MANY

MOUTHS (TMM) RLP] in the regulation of innate immune

response (Meng et al., 2015; Jord�a et al., 2016). Moreover,

the YODA MAP3K functioning downstream of the ER–
ERLs–TMM–BAK1 complex in the regulation of develop-

mental processes like stomata patterning has also been

found to be required for Arabidopsis broad-spectrum dis-

ease resistance (Sope~na-Torres et al., 2018). Remarkably,

yda11 and er-105 mutants show similar cell wall modifica-

tions compared with wild-type plants, as revealed by gly-

comics profiling (Sope~na-Torres et al., 2018). The over-

expression of a constitutively activated YODA protein (CA-

YDA plants) results in broad-spectrum disease resistance

that is independent of canonical immune pathways (e.g.

defensive phytohormones and PTI). CA-YDA plants also

show constitutive expression of genes encoding putative

small secreted peptides (SSPs) and PRRs and altered cell

wall composition. These SSPs and some carbohydrate-

derived ligands present in wall fractions of CA-YDA plants

have been suggested to function as novel DAMPs regulat-

ing the constitutive immune responses of CA-YDA plants

(Sope~na-Torres et al., 2018).

© 2017 The Authors
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METHODOLOGICAL CHALLENGES AND FUTURE

PERSPECTIVE OF CELL-WALL-MEDIATED IMMUNITY

As stated above, the main Achilles’ heel hampering carbo-

hydrate CWI research is the limited number of identified

DAMPs. The high supramolecular complexity of the plant

cell wall and the difficulties in obtaining pure carbohydrate

structures resembling the in vivo released DAMPs are lim-

iting progress in this area. These putative DAMPs could

either be synthesized or purified. However, carbohydrate

synthesis by organic chemistry is challenging – connection

of the anomeric hydroxyl of the glycosyl donors to the

alcoholic hydroxyl groups of the glycosyl acceptors has

been achieved so far. Protection of the hydroxyl groups of

the acceptor with the target alcoholic hydroxyl group being

unprotected ensures regiochemical control but hinders the

process. Moreover, the yields are usually quite low, and

these technologies are usually difficult to scale up (Levy

and F€ugedi, 2005).

Therefore, nowadays, the best strategy to isolate as-yet

uncharacterized cell wall-derived DAMPs is to take advan-

tage of those that are naturally produced by plants and

purify them. This is not a straight-forward task either,

because it requires harsh chemical extractions combined

with enzymatic digestions and chromatographic purifica-

tions. By using such extraction methods, several immune

active plant cell wall fractions enriched in specific compo-

nents (i.e. pectins or hemicelluloses) can be obtained.

These wall fractions trigger immunity hallmarks such as

early Ca2+ influx and ROS production, and the subsequent

activation of downstream events such as MAPK and CDPK

phosphorylation (Couto and Zipfel, 2016; Bacete L. et al.,

2017). These fractions can then be further purified and the

identity of the DAMP structures characterized using classi-

cal carbohydrate analytical procedures (Pettolino et al.,

2012). However, since glycan sequencing is far from being

achievable, a combination of methodologies might be

required. In this regard, new tools for cell wall characteriza-

tion have emerged, such as glycomics profiling or carbo-

hydrate microarrays that are based on the use of extensive

collections of monoclonal antibodies (mAbs) developed

against specific cell wall polymers/epitopes (Pattathil et al.,

2012; Cornuault et al., 2014; Wood et al., 2017). These tech-

nologies are being used to screen Arabidopsis cell wall

fractions from selected mutants with altered resistance to

pathogens (Bacete L. et al., 2017; Engelsdorf et al., 2017b)

and to identify molecular markers for plant cell wall com-

position in breeding programs (Wood et al., 2017).

Recent results also indicate that insoluble polymers are

not able to induce immune responses in plants, and that

these polymers should be shortened to smaller entities

(oligosaccharides) to get active DAMPs recognized by their

corresponding PRRs (M�elida et al., 2018). Thus, oligosac-

charide production by the enzymatic machinery from either

the host or the invader is necessary for DAMP release.

However, all the above-mentioned technologies require

the use of strong chemical solvents, which normally alter

the in vivo conformations of carbohydrates. Moreover, not

all plant cell wall-derived oligosaccharides obtained by

fractionations triggering PTI responses may function as

bona fide DAMPs in vivo. Therefore, chemical information

should be complemented in vivo with spatial information

through either imaging coupled with antibody labelling

(Lee et al., 2011), FT-IR microspectroscopy (Philippe et al.,

2006) or Raman microspectroscopy analyses (Robert et al.,

2011). More recently, matrix-assisted laser desorption/ion-

ization (MALDI) mass spectrometry imaging (MSI) has

emerged as a powerful method for resolving both the spa-

tial distribution and the structures of many kinds of mole-

cules in intact tissue sections. Following tissue mounting

on a conductive glass plate and application of the MALDI

matrix, the MS instrument captures a series of mass spec-

tra, each of which represents the mass profile of a laser

beam-irradiated region of the sample (Velickovic et al.,

2014). The major advantage of MSI over other imaging

techniques is that it would allow the tracing of potential

purified DAMPs during a plant–pathogen interaction with-

out the requirement to develop specific probes or anti-

bodies. Once these novel cell-wall-derived DAMPs are

purified in vitro, biomolecular interaction assays can be

performed with ED of putative receptors to allow quantifi-

cation of potential DAMP–ED binding (Reinhard and Nurn-

berger, 2017). These assays will also require the

production of EDs from different PRRs, but progress dur-

ing the last decade in the field of peptidic ligand percep-

tion has allowed the development of successful pipelines

for such a task (Sahdev et al., 2008; Young et al., 2012;

Hohmann et al., 2017).

CONCLUDING REMARKS

The plant cell wall has been considered for a long time as

‘just’ a passive barrier which pathogens had to surpass to

enter host cells, colonize them and complete their life

cycle. More recently it has been demonstrated that plants

have developed sophisticated stress monitoring systems

through CWI maintenance mechanisms. Part of such CWI

monitoring systems relies on the recognition of ‘danger’

alert signals activating DTI, which shares signalling com-

ponents and responses with the immune pathways trig-

gered by non-self MAMPs. Only a reduced number of

molecular partners involved in carbohydrate-based DAMP/

MAMP perception and signal triggering have been charac-

terized so far, and consequently our current knowledge

about the specificity of PTI and DTI responses, and the

cross-regulation between these immune mechanisms, is

limited (Brutus et al., 2010; Willmann et al., 2011; Liu et al.,

2012; M�elida et al., 2018). The plant model Arabidopsis

offers an important reservoir of receptors with specific and

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2018), 93, 614–636

Role of the plant cell wall in plant immunity 629

 1365313x, 2018, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.13807 by B

ucle - U
niversidad D

e L
eon, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



diverse recognition specificities awaiting their functional

characterization. Once novel carbohydrate-based potential

DAMPs become available, natural genetic variation

between different Arabidopsis ecotypes may allow us to

identify ecotypes that are partially or fully insensitive to

DAMP-containing wall fractions and thus enable the identi-

fication of, for instance, the corresponding receptors or DTI

signalling components. Progress in the understanding of

DTI and the identification of DAMP–PRR pairs might allow

us to breed crop varieties harbouring specific PRRs and to

design agricultural strategies (e.g. use of DAMPs as agrobi-

ologicals that modulate crop immunity) that would

enhance crop disease resistance.
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