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Abstract: Energy consumption in the transport sector and buildings are of great concern. This re-
search aims to quantify how eco-routing, eco-driving and eco-charging can increase the amount
of energy available for vehicle-to-building. To do this, the working population was broken into
social groups (freelancers, local workers and commuters) who reside in two cities with different
climate zones (Alcalá de Henares-Spain and Jaén-Spain) since the way of using electric vehicles is
different. An algorithm based on the Here® application program interface and neural networks was
implemented to acquire data of the stochastic usage of EVs of each social group. Finally, an increase
in the amount of energy available for vehicle-to-building was assessed thanks to the algorithm.
The results per day were as follows. Owing to the algorithm proposed a reduction ranging from
0.6 kWh to 2.2 kWh was obtained depending on social groups. The proposed algorithm facilitated
an increase in energy available for vehicle-to-building ranging from 13.2 kWh to 33.6 kWh depending
on social groups. The results show that current charging policies are not compatible with all social
groups and do not consider the renewable energy contribution to the total electricity demand.

Keywords: vehicle-to-building; driving efficiency; renewable energy integration; vehicle-to-grid;
energy consumption

1. Introduction

When it comes to Spain, the transport sector is the main culprit for discharging
pollutants into the atmosphere as well as consuming vast amounts of energy [1]. Recently,
the private research center named Economics for Energy has confirmed this statement
in its latest transport report as this trend will certainly continue in the year to come due
to mobility needs [1]. As published by the Spanish Government, the energy consumption
linked to transport has been increasing since 2013, just after the economic crisis from
1,074,714 TJ to 1,196,381 TJ in 2018 (latest data available) [2]. The same trend can be found
for CO2 emissions which accounted for 115,402,074 t in 2013 and 128,275,075 t in 2020 [2].

Electric mobility plays a key role when reducing greenhouse emissions as shown by
Pillay et al. [3]. In their research, they showed how emissions could be reduced in South
Africa up to 12.3% considering a specific e-car, e-truck and e-bus penetration in the market.
Bastida-Molina, Hurtado-Pérez and Peñalvo-López drew similar conclusions proving that
emissions can be reduced by increasing the number of electric vehicles (EVs) and boosting
the number of MW of renewable energy (RE) [4]. As they stated in their research, a 100%
RE generation will be needed in order to reduce up to 74 million tons per year. Zheng et al.
display in their research that, from 2011 to 2017, 682,047 plug-in EVs were sold in five provinces
of China, with 18.3 billion electric vehicle kilometers traveled, 3.0 TWh of electricity consumed,
a reduction in gasoline consumption of 1.6 billion liters and in CO2 emissions by 611,824 tons [5].
Despite these results, some research is focused on the impact of EVs on the environment
and tries to evaluate whether they are more sustainable than traditional powertrains
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such as internal combustion engine vehicles. Helmers et al. made an interesting study
comparing the environmental impacts of petrol, diesel engines and natural gas engines as
well as EVs. They proved that producing battery cells with renewable electricity decreases
the environmental impacts of EVs considerably [6]. In addition, EV impacts can be reduced
even more by making a better use of mineral resources [6]. Messagie et al. proved that EVs
are the most sustainable means of transport taking into account the whole life cycle [7].

EVs are useful, not only for being zero-pipeline vehicles, but for being a key element
in several important techniques such as vehicle-to-grid (V2G), vehicle-to-home (V2H)
and, generally speaking, vehicle-to-X connections [8–11]. V2G aims to use EVs as virtual
power plants in such a way that the energy stored in EV batteries could be injected into
the electricity network when needed in order to reduce consumption peaks and emissions
among others [12]. As detailed by Bibak and Tekiner-Mogulkoç, V2G is currently facing
several barriers and obstacles such as high investments needed to apply this technology,
stochastic nature of EVs (arrival and departure times, km covered, etc.), social issues and,
finally, battery degradation [13]. V2G success is based on the participation of the EV
owner. Consequently, the willingness to pay is an essential concept that has already been
discussed in some research [14,15]. This willingness can be defined by the maximum price
that can stimulate an EV owner to inject the energy available from the EV battery into
the grid. Other approaches linked to social issues were introduced by Noel et al. In their
dissertation, they proved how concepts such as tinkering, testing and tacit knowledge
(As discussed by Noel et al., tinkering is defined as “user modification of a technology
to develop new innovations and uses”. Testing “deals intently with experimentation
in technology, especially between the designers of a product or artifact and its users”.
Finally, tacit knowledge “is the embodied knowledge a user may have in learning to utilize
or modify a technology”) may accelerate the adoption of V2G [16]. Therefore, policies
are an essential topic as discussed in several studies [17,18]. An important advantage
of V2G is its capacity for better integration of the RE into the system as detailed by
Mwasilu et al. [19]. At this point, it is vital to consider that the usage of V2G must be reliable;
in other words, it must guarantee the system reliability, and EVs can play an important
role to ensure it. To assure this, this study has proposed the usage of artificial intelligence.
Rahbari et al. proposed a solution based on a neuro-fuzzy inference system in order to
integrate better REs and EVs into the grid considering generation source intermittency
and energy usage inconsistency [20]. Mozafar, Moradi and Amini proposed a genetic
algorithm-particle swarm optimization algorithm aiming at reducing power losses, voltage
fluctuations, charging and demand supplying costs as well as EV battery costs [21]. Battery
degradation is an important topic to be considered when assessing the V2G participation.
Recent studies show that calendar ageing is influenced by such factors as standing time,
the state of charge and temperature whereas cycling ageing is affected by number of
charges, the depth of discharge and charging rates [22]. Finally, regarding EVs, another
important topic to be considered is aperiodic phenomena and failures in the development
of the electromobility system, as they have an impact to increase or decrease the EV
demand as shown by Wróblewsky et al. [23]. As shown in their research, the impact
of aperiodic failures of the economic operation of a given drive system is significant, which is
closely related to the nature of the speed profile, and it mainly affects the operation of the drive
system. In addition to this, these phenomena affecting the operation of the selected drive
system as well as environmental and infrastructural factors, determine the application of
a given electromobility concept. Consequently, the highest frequency of such phenomena
is, the worse economic justification for EVs in comparison to conventional solutions is [23].
Similar studies from Wróblewsky related to aperiodic phenomena which deal with other
powertrains can be found in the literature [24].

Vehicle-to-building (V2B) is an important topic analyzed in this research. As stated by
Odkhuu et al. V2B allows bidirectional chargers and small-scale renewable energy resources, such
as photovoltaic systems and small-scale with turbines [25]. Consequently, it is possible to draw
and transfer energy from/to buildings depending on the battery status. In addition to
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this, V2B technology offers important services to reduce the on-peak load of the building’s
power consumption through peak shaving, load shifting, valley filling, better integration
of RE and back-up in case of electricity shortage [25]. A V2B system is mainly composed
of EVs, local distributed energy generators, critical loads, a control system in charge of
building energy management (BEMS) and static storage. The aim of the BEMS is to run
algorithms to obtain economic revenues, such as peak reduction [26]. Some research shows
that an important reduction of fossil electricity is obtained due to the RE contribution
when charging EV batteries whose energy will be transferred to the building as detailed
by Buonomano et al. [27]. Zhou et al. describe in their research the main advantages
of integrating EVs with RE such as cutting energy consumption of buildings, reducing
the import/export pressure on the electric grid and shifting peak-loads to sub-peak or off-
peak periods [28]. There are technical issues linked to V2B technology, such as the stochastic
characteristic of driving schedule of EVs [29,30], which our research is focused on. Other
topics are related to infrastructure and lifetime of EV batteries [31]. Ghaderi showed in his
research that V2B offers significant profit even considering the battery degradation based
on a scenario composed of six EVs and a V2B system [32]. Gagne et al. proved in their
research that V2B is economically viable in regulated markets [33]. Similar studies linked
to economic viability for similar technologies such V2G can be found in the literature [34].

All aforementioned techniques are based on EVs and, if their energy efficiency was im-
proved, the amount of energy available to be used would be increased. Eco-driving (EDR)
and eco-routing (ER) are key elements to improve energy efficiency. ER consists of finding
the most energy-efficient route for a vehicle to travel between two points in such a way that
an optimal way to reduce energy consumption is offered to drivers. Thibault and Sciaretta
proposed an energy consumption model which considers speed fluctuations and road
infrastructure to reduce consumption [35]. Some elements such as slopes have a significant
influence on energy consumption and are considered in some ER algorithms [36]. Other
authors have proposed the usage of evolutionary algorithms [37]. When it comes to EDR
and pollutants, research is focused on this topic no matter what types of powertrains are
used. Orfila, Saint-Pierre and Messias proposed an Android application based on EDR
assistance for internal combustion engines [38]. Similar research can be found for hybrid
cars and EVs [39,40].

Emission reduction is of great concern in the European Union (EU) and EDR and ER
claim to play a key role. From 2010 to 2013 the ECOWILL (Widespread Implementation for
Learner Drivers and Licensed Drivers) project which was supported by the Intelligence
energy Europe Program of the European Commission was conducted. This project was
linked to qualify and certify driver instructors and roll-out EDR short-duration trainings
for licensed drivers [41]. Due to this project, many European countries had a strong
commitment to boost EDR in driving schools. As stated by Botte et al., cooperative-intelligent
transportation systems (C-ITS) represent the set of technological and functional elements that allow
specific communication tasks identified as V2X [42]. C-ITS should ensure environment-friendly
driving through in-vehicle technologies such as EDR as stated in the JRC Science for Policy
Report published by the European Commission [43]. In addition to this, the EU offers
the opportunity to manufactures to consider CO2 saving from innovative technologies
which cannot prove their CO2 reduction effects under the test procedure used for vehicle
type approval [44,45]. Among these innovative techniques, one can find EDR. In addition
to this, one can find initiatives and projects which consider ER and EDR at the same time
such as a project called REDUCTION performed in the EU [46]. This project developed
state-of-art methodologies for ecological routing, ecological driving, multi-modal ecological
routing, in addition to cutting edge onboard communication devices [46]. Finally, eco-
charging (EC), and generally speaking, smart charging is relevant to many topics such as
RE, electricity market, etc. In 2019, the EU signed the EU’s Paris Agreement commitments
for reducing greenhouse emissions focused on energy performance in buildings, RE, energy
efficiency and electricity market design among others [47]. In addition to this, currently, one
of the most important initiatives in the EU is the European Green Deal (EGD) which aims to
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make Europe the first climate-neutral continent. The EGD rests on three pillars: reduction
in greenhouse emissions by 2050, stimulation of economic growth without linking it to
the use of resources, and the involvement of all members of society in the implementation of
this new strategy [48]. To achieve the goals of the EGD, many actions need to be undertaken
in all sectors of the economy, such as: investing in environmentally friendly technologies,
supporting industry to innovate, rolling out cleaner, cheaper and healthier forms of private and public
transport, decarbonizing the energy sector, ensuring buildings are more energy efficient and working
with international partners to improve global environmental standards [49,50]. Additionally, EGD
aims to improve and promote the integration of RE into the transport and electricity sectors
by drawing on several research studies that exist on this subject [51–54]. As suggested by
Gil-García et al., it is imperative to consider the initiatives focused on EVs if the objective is
to reduce emissions and increase RE’s penetration. They have concluded that renewable
penetration of at least 82% is necessary to fulfil the emissions-reduction target by 2050 [51].
According to Keller et al., large-scale deployment of RE generators and EVs is expected
to reduce emissions in the electricity and transport sectors [54]. Their research shows that
electrifying all of the existing EVs will require a 60% increase in the generation capacity,
and the levelized cost of electricity would increase only by 9%. Consequently, emissions
reduction in transport, as well as RE integration, is a topic of great concern. Research
shows how EDR, ER, and EC can contribute to sustainable mobility emissions reduction
in transport and better integration of RE, reduction in the energy consumption of buildings,
and clean energy.

Based on aforementioned policies, research which assesses the impact of EDR, ER
and EC on several techniques such as V2G, V2B and V2X should be conducted. In this
current research, the authors have studied this topic in depth by taking into account several
important topics. Firstly, the stochastic usage of EVs according to social groups (freelancers,
local workers and commuters) as their way of using EVs is different. Consequently,
the results shown in this research will be highly valuable for policymakers. Secondly,
the impact of EDR, ER and EC is assessed considering climate zones in Spain. Finally,
the compatibility between V2X techniques has been analyzed in Spain based on the already
installed RE power. This research aims to:

(a) Analyze how EDR, ER and EC based on EVs can improve the amount of energy avail-
able in a V2B system. An algorithm coded in Python based on the Here® application
program interface (API) and neural networks is presented to enhance the amount of
energy available for V2B [55].

(b) Assess how important is to consider social groups (freelancers, local workers, com-
muters) to calculate the energy available for V2B as the way of using EVs is different.

(c) Quantify the reduction of energy consumption of buildings.
(d) Analyze if current charging policies are coherent considering the social groups repre-

senting the working population and RE contribution in the Spanish electric system.

This paper is structured like this. Section 2 describes the method, including the cities
chosen for this research and the description of the algorithm used. Sections 3 and 4
detail the results and discuss the main findings. In addition, a validity section including
a sensitivity analysis and threats to validity analysis is displayed in this Section 4. Section 5
analyzes the conclusions of this study. A beta version of the application coded in Python is
available in Supplementary Materials.

2. Methods
2.1. Description

The method followed in this research is depicted in Figure 1. The main idea be-
hind this method is to choose two representative cities, buildings and residents of those
buildings in order to assess the improvements introduced by EDR, ER and EC based on
an algorithm implemented on Python and neural networks. Firstly, the cities subjected to
this study are chosen as detailed in Section 2.2 considering climatic zones, traffic conditions
and population among others. Secondly, the buildings used to measure improvements
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in energy consumption when using EDR and ER are selected (Section 2.3). In Section 2.4
the participants, who are residents in the chosen buildings, are determined. In Section 2.5,
the algorithm based on EDR, EC and ER concepts is described in detail. In Section 2.6
the energy consumption estimates of the buildings are made, and, owing to the algorithm,
the improvements are assessed. Section 2.7 displays how statistical analysis of data coming
from EV consumption is made. Section 2.8 describes the equipment used in this study.
Finally, EC, EDR and EC contribution is assessed.

Figure 1. Methodology used in this research.

2.2. Choice of the City

Spain has different climatic zones but, as shown in Figure 2, two of them prevail
in the country: the Mediterranean and Continental ones. The former is characterized by
hot dry summers and mild winters. This climate can be broken down into three subtypes.
The latter is characterized by wide diurnal and seasonal variations in temperature and by
low, irregular rainfall with high rates of evaporation that make the land arid. To do this
study more representative, two cities belonging to different climatic zones were chosen:
Alcalá de Henares and Jaén (Figure 2). Due to the differences, the consumption patterns
are different.

Figure 2. Spanish climate.

Alcalá de Henares belongs to the Community of Madrid (Spain), 32 km away from
the Spanish capital. To be more specific, this city is the second biggest one in this Commu-
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nity. Its population is 197,345 inhabitants in 2020 based on the data provided by the Spanish
National Institute of Statistics. Generally, traffic jams are often reported in the city. Aiming
at monitoring the traffic state, the townhall has installed 17 cameras mainly located down-
town. This city is also interesting as it is connected to one of the most important roads to
enter Madrid.

The population of Jaén which is located in the south of Spain is 112,757 in 2020 according
to the data provided by the Spanish National Institute of Statistics. This city has installed
cameras in strategic points aiming to improve the traffic in the city due to its high intensity.

Taking into account all the data mentioned above, a comparison between two similar
cities located in different climatic zones can be made.

2.3. Choice of the Buildings

Several factors influence energy consumption when it comes to buildings. As detailed
by Huebner et al., different variables such as building factors, socio-demographics, atti-
tudes and self-reported behavior in their research affect energy consumption in different
buildings [56]. To be more specific, 39% of the variability in energy consumption is linked
to buildings, 24% to social-demographic variables, 14% is linked to heating behavior and
only 5% is linked to attitudes and other behaviors [56]. This study was based on a sample
of 924 English households.

Hueber et al. did also research about the aforementioned topic focused on electricity
consumption instead of energy consumption by using an 845 English household sam-
ple [57]. In their research, they showed that 34% of variability in electric consumption
came from appliance use and lighting while 21% was linked to social-demographic vari-
ables. Harputlugil and de Wilde analyzed in-depth the interaction between buildings and
humans when it comes to energy consumption. In this case, one important conclusion
is that lifestyle is an essential factor to be considered to understand energy consumption
profiles and occupants’ patterns [58]. Pan et al. concluded the importance of having a good
understanding of how occupants use the appliances of buildings in order to improve
energy efficiency [59]. Moreover, like this the occupants’ behavior could be addressed to
a more sustainable one. Finally, Yousefi, Gholipour et Yan proved that occupants’ behavior
and envelope materials play a key role when choosing the envelop material types [60].

Considering this, the conclusions that can be drawn when choosing buildings for this
study are:

a. Orientation of buildings is a key factor when it comes to electricity consumption and
energy in general.

b. Based on the previous studies, a different occupation rate for each flat must be
considered.

c. As EVs will be used to assess the energy available for V2B technology, different social
sectors must be considered.

d. Finally, different work timetables should be considered in this study.

2.4. Choice of the Participants in This Research

In this study, the authors have proceeded to choose participants according to their
professions and the number of kilometers covered. This is a key point to be taken into
account in order to obtain more accurate results. Based on this, one can distinguish:

(a) Freelancers. They cover a considerable number of kilometers on a daily basis accord-
ing to statistical data published by different institutions [61]. Consequently, they are
supposed not to inject a large amount of energy when using the V2B technology.

(b) Commuters. Commuters can choose between using the public transport and their
own vehicles to get to work. In this study, commuters are supposed to drive to work
by using EVs. Thanks to statistical methods described in Section 2.8, the daily mileage
and energy consumption will be assessed.

(c) Local workers. Again, local workers can use the public transport or their vehicles to
get to work. In this study, local workers who use their vehicles to go to work have
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been considered. In this case, the number of kilometers covered is supposed to be
low. Consequently, they can contribute in a very important way when using the V2B
technology.

All assumptions made about kilometers covered on a daily basis have to be confirmed
based on statistical methods. Consequently, the reduction of emissions and energy con-
sumption is influenced by the type of workers mix living in a building. The number of
participants is shown in Table 1: freelancers, local workers, commuters and other occu-
pants of the household who do not belong to these social groups (mainly students and
the unemployed). Potential deviations in the assumptions earlier described are considered
in the sensitivity analysis displayed in Section 4.5. In this research, we have proceeded to
choose medium size or big apartments which consume vast amount of energy. It is true
that houses could have been chosen, but it was not done as almost all occupants were
freelancers or commuters. Consequently, we were unable to draw a conclusion in regard to
other social sectors. Finally, the aim of the authors was to choose buildings with a different
mix of freelancers and commuters as they are supposed to be willing to invest in EVs
taking into account that local workers cover a small number of kilometers, but they could
be forced to invest a large amount of money in EVs.

Table 1. Number of participants in this research.

Building Location Orientation Average
Surface (m2) Occupants Total Par-

ticipants Commuters Local
Workers Freelancers Rest of

Occupants

A Alcalá South 90 35 15 5 2 8 20

B Alcalá North 85 45 20 8 3 9 25

C Alcalá West 100 32 15 6 2 7 17

D Jaén South 75 42 20 10 2 8 22

E Jaén North 80 45 20 11 2 7 25

F Jaén West 90 12 10 5 1 4 2

2.5. Algorithm

The algorithm proposed in this study is based on ER, EDR and EC concepts. It was
coded by using the Here® API which offers several location services with customization
of navigation maps, current traffic conditions and historical traffic data patterns among
others. One of the most important features of the Here® API is the energy consumption
models. Due to them, when they are properly set up, the energy consumption for a specific
trip can be easily assessed, which this research does.

To better understand what the algorithm does, seven different stages can be distinguished:

1. Phase 1. Consumption models are tuned. As shown later, energy consumption models
must be tuned by using real time driving data of the specific driver. This factor is of
great significance in order to apply the EDR concept properly.

2. Phase 2. The destination is chosen by the driver. This algorithm offers a web interface
that the driver can use in order to type the destination.

3. Phase 3. The Here® API is in charge of determining the best route available. It must
be stated that the way how the algorithm plans the best routes belongs to the Here®

competence. The Here® API is called by using the python code.
4. Phase 4. Here® proposes different routes based on the energy consumption models

already tuned. This topic makes Here® consider EDR and ER concepts. Here® can
propose three types of routes. The first one is called the fastest, which is the one that
requires less time. The second one is known as the shortest, which attempts to find
the one which requires that less distance is covered. The last one is the balanced one
which tries to find a compromise solution between distance and time. It is only use
for trucks.
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5. Phase 5. Once the Python code obtains the three routes and the energy consumption,
the algorithm can easily determine the final energy available of the battery and
if a charging process will be needed. It must be stated that the initial autonomy of
the EV before starting the trip must be specified by the driver before leaving.

6. Phase 6. The algorithm chooses the route which implies that energy consumption
is the lowest based on the data obtained in phase 4.

7. Phase 7. The python code runs a block known as the EC block. Its aim is to determine
the RE contribution as well as the energy structure generation (wind energy, photo-
voltaic, etc.) by using different types of neural networks. Thanks to this, the drivers
obtain information about when the charging process is greener and less pollutant.

The Here® API includes energy consumption models that aim to estimate energy
consumption based on several parameters, such as speed and auxiliary energy consump-
tion (heating and cooling systems, for instance). When tuning the consumption models,
each parameter has to be specified in kWh and based on its dependence with the EV
speed (when possible, as some of them, such as radio consumption, are not dependant on
speed). These values were calculated by acquiring the data after the drivers participating
in the study drove the EVs for several months. Data were collected using laptops equipped
with Inca® software and input/output from the ETAS® supplier (Figure 3) [62,63]. After
having analyzed the data acquisition, the consumption models can be tuned (Appendix A).
Figure 4 shows how this was performed. The process consists of specifying energy losses
depending on acceleration, decelerations, slopes, etc. whose values were obtained by ana-
lyzing the data acquisitions thanks to MDA software [64]. Once this is done the experiment
can be reproduced easily. The Here® API can assess and return an estimate of energy
consumption for the fastest, the shortest and the balanced routes. The algorithm chooses
the one with less energy consumption. Finally, based on the battery capacity before the trip,
the algorithm can determine if the EV will have to be charged during the trip.

Figure 3. ETAS® input/output modules connection.
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Figure 4. How to configure the consumption model.

Finally, the assessment of how green the charging process is must be determined
by using the EC block. This part of the Python code is responsible for predicting when
the charging process should be done based on the RE contribution. Owing to this, the driver
will be informed about the best moment to charge EV to reduce greenhouse emissions
during charging. One of the main characteristics of this block is that it can predict the energy
structure (solar energy power, wind power energy, nuclear energy, and so on). The main
tasks of this EC block are as follows:

(a) Based on the consumption models already tuned, analyze in-depth information
regarding the battery capacity and energy consumption to cover a journey set by
the driver.

(b) Estimate when the charging process should be done according to the analysis obtained in a.
(c) Assess the RE contribution calculated using the Gated Recurrent Units (GRU) net-

works and nonlinear autoregressive (NAR) networks as shown later [65–68].

After executing the EC block, a score is calculated based on the RE contribution following
Equation (1). The higher this score, the more the contribution of RE in charging EVs.

EC =
REc,t

REmax,d
(1)

REc,t is the RE contribution to the total electricity demand at t (in MW), and REmax,d
is the maximal RE contribution (in MW) during the day when the charging process takes
place. REc,t and REmax,d are calculated using the GRU neural networks. The RE contribution
is assessed as follows (2):

REc =
RE

RE + NRE
(2)

REc is the RE contribution (in %), RE is the total electricity generated by RE sources
(in MW), and NRE is the total electricity generated by not RE, such as coal (in MW).

REc,t and REmax,d are estimated using the Spanish system operator data published daily,
where one can find the CO2 generation structure and the day’s total electricity demand [69].
The electricity demand and total RE generation usually follow the same pattern. Generally
speaking, only weekends and seasons are the relevant parameters to be considered. Conse-
quently, recurrent neural networks play a key role in predicting the electricity demand for
a desired period of the day to midnight in the algorithm proposed in this study. The Python
code analyzes the data provided by the neural networks and assesses the maximum RE
contribution of that specific day by following Equations (1) and (2).
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Recurrent networks face technical issues when predicting long-term series due to
the vanishing gradient problem when the recurrent neural networks are trained with
gradient-based learning methods and backpropagation. These methods imply that neural
network weights are updated proportionally to the partial derivative of the error function
with respect to the current weight in each training iteration. The gradient may be vanish-
ingly small. Consequently, the weight may not change, and the training process might
be stopped. Long short-term memory (LSTM) or GRU networks are used to make more
accurate long-term predictions. In this research, the authors chose the GRU networks since
they are more computationally efficient than LSTM networks. GRU is a recurrent neural
network composed of update and reset gates. Basically, these are two vectors that decide
what information should be passed to the output. The special characteristic about them is
that they can be trained to keep information from long ago without washing it through
time or remove information irrelevant to the prediction [66–68].

Figure 5 shows the pseudocode of the GRU networks employed in this study. The data
used to implement the GRU network were provided by the Spanish system operator for
the last four years. The first three-year data are used to train the network, and the last-
year data are employed to test the network performance. As usual, when implementing
a neuronal network, all the input and output data must be processed to make them
range between 0 and 1 to assure optimum network performance. The GRU networks
were implemented using the keras package of Python. To do this, some parameters
must be configured. The Sequential parameter specifies that the model is sequential,
and the output of each layer is the input for the next layer. In this study, the Dropout
function was employed. Dropout is a technique in which randomly selected neurons
are ignored during training to temporally remove their contribution to the activation of
the downstream neurons on the forward pass and ensure that weight updates are not
applied to the neuron on the backward pass. This technique renders the network less
sensitive to the specific weights of neurons. To analyze the error loss, the mean squared
error, since it is highly recommended for regression problems, was chosen. To optimize
the model using an optimization algorithm, the Adam method, due to its computational
efficiency, was used.

The algorithm proposed in this study integrates a code in Python that is able to
estimate the structure generation for the next two hours based on the data provided by
the Spanish system operator. This estimate is made by using NAR networks, which are
widely used to manipulate and predict time series [66–70]. NAR networks are described
mathematically as follows (3):

ŷ(t) = f (y(t− 1) + y(t− 2) + . . . . + y(t− d) + ε(t) (3)

f is the network output for a specific set of input data, ε(t) represents the error between
the prediction values ŷ(t) and the actual ones y. Finally, d is the number of delays involved
in prediction. When designing neural networks, some parameters can be chosen flexibly by
the designer. These parameters, it should be noted, exert a significant impact on prediction
accuracy. Some of them are the number of hidden layers and the number of neurons used
in each layer. Despite this flexibility, these numbers must be chosen to achieve two goals:
the first is to obtain a good prediction accuracy, and the second is to avoid the network
from becoming too complex. Figure 6 shows how the accuracy of the network varies
depending on the delay parameter. When a high value is chosen for d, the predicted value
changes very slowly. However, if d is too low, the network cannot properly follow the trend.
Consequently, d must be specified empirically to take the optimal value since d determines
how important the past values are for the prediction. When generating electricity using
RE, sudden changes in the RE generation structure can happen due to weather conditions.
These changes may not be predicted using the past values. Consequently, in some cases,
NAR may not be as accurate as it should be. Therefore, in the algorithm proposed in this
study, the accuracy remains on the GRU networks and not on the NAR ones. Even if it has
not been implemented in the current version of the algorithm, there is a technical solution:
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MATLAB® can update the network and correct predictions continuously for t + 1, t + 2,
t + 3, and so on, if the real value of t is known. As the Spanish system operator provides
data every hour in real-time, this solution can be applied. In this research, the optimal
value for d was 3. The pseudocode used for coding the NAR networks is shown in Figure 7.
The trainlm function was employed to train the network to update bias and weights
using the Levenberg-Marquardt optimisation. This choice was based on the fact that it is
the fastest backpropagation algorithm despite its major usage of memory.

Figure 5. GRU network code.
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Figure 6. Inaccuracy in predictions when using different d values.

Figure 7. NAR network code in MATLAB®.

2.6. Energy Consumption of EVs

The participants were driving EVs during the winter from December 2020 to January
2021 and during the summer from June 2020 to July 2020. These dates were chosen to
consider the temperature effect. The trips were randomly chosen according to the participants’
professional and personal needs. This is a key element to consider the stochastic usage of EVs.

2.7. Statistical Analysis

To establish the average consumption of EVs for each social group, a statistical analysis
must be done. Owing to this, the energy available for V2B is assessed for freelancers, local
workers and commuters. As per the first analysis of the data collected, these data were
closed to a normal distribution. The R software, and more specifically the PASSWR package,
was used to confirm this assumption [71]. The main advantage of this package is that
the data can be explored in depth thanks to the statistical parameters such as kurtosis,
skewness and p-value. Kurtosis is a measure of relative peakedness of distribution. It is
a shape parameter that characterises the degree of the peakedness. A distribution is said
to be leptokurtic when the degree of peakedness is higher than 3; it is mesokurtic when
the degree of peakedness is equal to 3, and it is platykurtic when the degree of peakedness
is less than 3 [72–74]. Skewness refers to a distortion or asymmetry that deviates from
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the symmetrical bell curve or normal distribution in a set of data. When the data under
analysis are close to a normal distribution, the skewness is close to 0. Symmetry, it is
vital to note, does not infer that the data follow a normal distribution. Consequently,
the aforementioned analysis must be carefully conducted. The p-value is the probability of
finding the observed, or more extreme, results when the null hypothesis (H0) of a study
question is true.

In addition to the statistical parameters described earlier, several plots were used to
confirm that the data analyzed follow a normal distribution: histograms, Q-Q plots and
boxplot. The histogram represents the frequency of occurrence of specific phenomena
that lie within a specific range of values, which are arranged in consecutive and fixed
intervals. The quantile-quantile or Q-Q plot is an exploratory graphical device used to
check the validity of a distributional assumption for a data set. A boxplot, sometimes
called a box and whisker plot, is a type of graph used to display patterns of quantitative
data [73,74].

Finally, it is essential to describe how statistical outliers were assessed. These points are
the ones whose values differ significantly from the rest of the observations. This difference
is linked to variability. In order to detect them, the following tools have been used:
histograms, z-scores and interquartile range [74]. The z-scores method measures how many
standard deviations an element is from the mean. The interquartile range is a measure
of statistical dispersion, being equal to the difference between 75th and 25th percentiles,
or between upper and lower quartiles. As the data were analyzed on a daily basis, statistical
outliers were mainly linked to unusual traffic conditions such as traffic accidents.

2.8. Equipment Used

The means employed were the following:

1. Vehicle control units (VCU) designed by important European suppliers.
2. EVs provided with a 40 kWh were employed. Their autonomy was 250 km with

a maximum speed of 144 km/h.
3. The INCA® software was used since it was necessary to read the memory positions

of the VCU [62].
4. The MDA software was employed to visualize the dat file and analyze the trend of

the software variables [64].
5. Here® and Open Charge Map® APIs [55,75].
6. The ES411 and ES592 modules from ETAS® were used since they allowed connecting

the laptop to EVs to record all the software variables specified using Inca®.
7. Power meters. Manufacturer Gafild. Operating voltage 230 AC. Max. current 16 A.

3. Results
3.1. EV Consumption

The algorithm proposed in this research aims to improve energy efficiency by consider-
ing the stochastic usage of EVs. To do this, many measurements were performed on social
groups such as freelancers, local workers and commuters. To assess each social group’s
average energy consumption when using and not using the algorithm, the collected data
were statistically analyzed as described in Section 2.8. The results obtained after this analy-
sis are depicted in Table 2 for Alcalá de Henares and in Table 3 for Jaén. First of all, it must
be taken into account that all these data are close to a normal distribution. This assumption
was confirmed by assessing different parameters such as skewness, kurtosis and p-value.
When it comes to freelancers, skewness is close to zero. Consequently, the distribution
is symmetric. Kurtosis aims to prove that the data distribution tails are not dissimilar
from normal distribution ones. The p-value represents the null hypothesis: the data follow
a normal distribution. When the p-value is greater than 0.05, the null hypothesis is con-
firmed. One important characteristic of skewness and kurtosis is that they are sensitive
to the sample size. Therefore, the Q-Q plots and histograms were used to confirm that
the data collected followed a normal distribution. Based on this statistical analysis, the hy-
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pothesis Ho was confirmed. In addition to energy consumption, it is essential to establish
the number of kilometers by following the same statistical method. Regarding freelancers,
the number of kilometers was found to range from 95 km to 110 km per day. When it comes
to local workers and commuters, the number of kilometers covered varies from 57 km to
70 km per day. Finally, commuters cover between 4 km and 6 km per day. When it comes
to Jaén, the number of kilometers travelled by freelancers ranges between 78 km and 90 km
a day. Regarding commuters, they drive between 3.5 km and 5.5 km daily. Finally, local
workers cover between 3.2 km and 5.3 km a day. The main differences between both cities
are analyzed in Section 4.1. These results are complementary to other studies. Zhang et al.
detailed how large-scale EV development impacts the stability of electric grid as well as
decisions linked to the construction of new facilities (charging facilities). They conducted
a depth-study of stochastic usage of EVs based on several factors such as daily distance
travelled, energy consumption, etc. [76]. Similar research was done by Shi et al. showing
interesting data about the average speed and consumption based on stochastic usage of
EVs [77]. The impact on the electricity grid can also be stochastic as shown by Schey,
Scoffield and Smart [78]. All this research did not consider social groups which are a key
element for future energy policies due to the fact that their usage of EVs is different as
proved in this study.

Table 2. EV consumption in kWh in Alcalá de Henares.

Factor
Freelancers Commuters Local Workers

A.U. (1) N.A. (2) A.U. (1) N.A. (2) A.U. (1) N.A. (2)

Mean 24 26.2 9 10.5 3.3 3.9

Std deviation 0.6 0.4 0.3 0.32 0.32 0.29

Kurtosis 3.7 4.0 3.7 4.5 4.1 4.2

Skewness −0.135 −0.121 −0.041 −0.032 −0.025 −0.015

p-value 0.395 0.401 0.401 0.415 0.396 0.399
(1) N.A. means no algorithm is used; (2) A.U. means the algorithm is used.

Table 3. EV consumption i kWh in Jaén.

Factor
Freelancers Commuters Local Workers

A.U. (1) N.A. (2) A.U. (1) N.A. (2) A.U. (1) N.A. (2)

Mean 21 22.9 8.5 9.5 4.3 4.9

Std deviation 0.7 0.3 0.4 0.36 0.36 0.31

Kurtosis 3.6 4.1 3.5 4.3 4.0 4.1

Skewness −0.145 −0.111 −0.045 −0.03 −0.02 −0.013

p-value 0.385 0.301 0.411 0.405 0.356 0.349
(1) N.A. means no algorithm is used; (2) A.U. means the algorithm is used.

3.2. Energy Consumption of Buildings

In order to verify the improvements introduced by the algorithm based on EC, ER
and EDR, it is essential to measure energy consumption of the buildings chosen for this
case-study. To do this, smart counters and power meters were installed in each participant’s
apartment. Consequently, it was possible to measure the energy consumption of all facilities
of the apartments such as: electric heating, air conditioning, lighting, TV sets, fridges,
microwave ovens, vitroceramic hobs, washing machines and dishwashers. All these
measurements were performed in the climatic areas described in Section 2.

When analyzing the Spanish electricity demand curve, there are two main consump-
tion peaks. The first one is usually between 12 a.m. and 1 p.m. and the other one from 8 p.m.
to 10 p.m. depending on the season. There are two main differences between the summer
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and the winter curves. Firstly, the electricity demand is lower in the summer. Secondly,
the peak between 12 a.m. and 1 p.m. is higher than the other one in the summer. Therefore,
it is important to check the energy consumption pattern of the buildings chosen in this case
study. Figure 8 shows the winter energy consumption for buildings A, B and C which are
located in Alcalá de Henares. As one can see, the energy consumption trend is similar to
the Spanish one as there are two peaks present. However, there are important differences.
Firstly, from 4 p.m. to 6 p.m. the energy consumption decreases as the energy consumption
patterns of buildings A and C follow the Spanish one. Nevertheless, it is not the case for
building B. Secondly, the trend followed by buildings A and C has similarities comparing
to the Spanish trend, but this first energy consumption peak lasts less time than expected.
Figure 9 shows results during summertime. As expected, two consumption peaks are
present and the first one is the most important. Again, in this case, building B has a different
behavior in comparison with buildings A and C as its consumption is higher during the off-
peak periods. As explained in the discussion section, these particularities of electricity
demand curves can be analyzed considering the number of occupants of the apartments
as well as the diversity of social groups they belong to. The reader can find the curves for
the second climatic zone in the Supplementary Data as the conclusions are similar except
for the fact that total energy consumption changes slightly. This variation is totally normal
as in Jaén the consumption is slightly lower as stated by the Institute of Diversification and
Energy Saving of Spain. This analysis was done in the winter and in the summer when
temperatures are the coldest and the hottest, respectively. The conditions of the electricity
system cannot affect the results of the experiment.

Figure 8. Winter consumption curves for the buildings located in Alcalá.
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Figure 9. Summer consumption curves for the buildings located in Alcalá.

Variations of energy consumption depending on climatic zones have been studied
widely in the scientific literature [79–82]. Energy consumption profile is an essential topic
to be considered as shown in a lot of research. Csoknyai et al. analyzed in detail energy
consumption and household composition (couple with children, couples without children,
single, single with children and other) [83]. Kavousian, Rajagopal and Fisher focused
their efforts on analyzing pattern energy consumptions of buildings based on classifying
the occupants into age groups [84]. Laaroussi et al. conducted research into how occupant
presence and behavior influence energy consumption [85]. However, the research does
not take into account social groups, occupants present, EDR, EC and ER at the same
time. Table 4 quantifies how energy consumption of the building can be reduced when all
these factors are considered at the same time. As one can see, the contribution to V2B is
different for each building due to the number of freelancers, local workers and commuters.
Consequently, it is essential to discuss this topic in the next section. Although the results
depicted in these two tables imply that all participants in this research contribute to V2B,
this assumption might be false. Therefore, a sensitivity analysis is done in Section 4.5.

Table 4. Energy available for each building in Alcalá de Henares and Jaén on a daily basis.

Freelancers Local Workers Commuters
Energy

Available for
V2B A.U.

Energy
Available

for V2B NANumber
kWh

Available
A.U.

kWh
Available

N.A.
Number

kWh
Available

A.U.

kWh
Available

N.A.
Number

kWh
Available

A.U.

kWh
Available

N.A.

Building A 8 128 110.4 2 73.4 72.2 5 155 147.5 356.4 330.1

Building B 9 144 124.2 3 110.1 108.3 8 248 236 502.1 468.5

Building C 7 112 96.6 2 73.4 72.2 6 186 177 371.4 345.8

Building D 8 152 136.8 2 71.4 70.2 10 315 305 538.4 512

Building E 7 133 119.7 2 71.4 70.2 11 346.5 335.5 550.9 525.4

Building F 4 76 68.4 1 35.7 35.1 5 157.5 152.5 269.2 256

N.A. means no algorithm is used; A.U. means the algorithm is used.

4. Discussion
4.1. EV Consumption

The energy consumption of EVs is stochastic as already proved in the professional
literature [76,77]. This research aims to show that social groups are so important that
they should be considered when analysing the stochastic usage of EVs. As described
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in Section 3.1, freelancers covered many kilometers on a daily basis. Firstly, the results
for Alcalá de Henares show that even though freelancers’ contribution to V2G and V2B
may not be important, ER and EDR can improve energy efficiency up to 8.4%. Due
to the fact that freelancers are a much consuming energy social group when it comes
to EV usage, they are forced to participate in V2G or V2B, but not in both of them as
discussed in Section 4.3. Regarding commuters, the energy efficiency enhancement can
reach 14.3% owing to the algorithm proposed in this study. In addition, the amount of
energy available for V2B participation is high and owing to ER and EDR it is even higher.
Finally, local workers would be the biggest contributors to V2B if they had an intention
to buy EVs. However, EVs high prices can pose a serious obstacle for a large number of
local workers. It must also be stated that the energy efficiency gain for this social sector is
low (0.6 kWh). These data are valuable for policy makers as they show the social groups
which might contribute most to V2G and V2B technologies. When it comes to Jaén and
using the algorithm, one can find improvements in energy efficiency up to 8.1%, 10.5%
and 12.2% for freelancers, commuters and local workers, respectively. It is important
to remark that the number of kilometers covered in both cities for each social sector are
similar. After having analyzed the data collected during the trips, two conclusions are
drawn. Firstly, people are more likely to get caught in traffic jams in Alcalá de Henares
than in Jaén. Consequently, a higher consumption is expected. Secondly, the difference
between both cities is more remarkable in the winter. As Alcalá is colder than Jaén, EV
performance is affected by temperature. This conclusion is aligned with other research.
Sagaria, Neto and Baptista proved that energy consumption can vary between 25% and 30%
depending on the location where the EV is used- in the northern or southern countries [86].
On the other hand, the difference between both cities is not big enough in order to find
significant distinctions in EV charging patterns contrary to the conclusions drawn by
Yan et al. [87].

4.2. Energy Available for V2B

The number of kWh available for V2B purposes depends on three factors. The first one
is the share of EVs in the market. The second one is energy efficiency linked to EVs. This pa-
rameter should be improved by means of EDR and ER in order to increase the amount of
energy available to be used for V2B. Finally, the third one is the social groups to which
the participants belong to, as the way of using EVs is completely different. This research is
focused on the two last concepts. As shown in Figure 10, in the buildings chosen for this
case-study, most of the people belong to the social groups of freelancers and commuters.
Buildings D and E are the ones which achieve more significant savings in energy due to
the enhancement in terms of EV energy consumption discussed in the previous section.
As detailed earlier, freelancers fail to contribute in a significant way owing to the number
of kilometers covered. However, even if local workers are the less important group, on
some occasions such as the case of building B, they can contribute in a very important way
as the number of kilometers covered is very low and, consequently, the energy available
for V2B is high. When it comes to the usage of the algorithm proposed in this research,
improvements which range from 13.2 kWh to 33.6 kWh can be obtained on a daily basis
based on the results depicted in Figure 11.
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Figure 10. Contribution to V2B based on social groups.

Figure 11. V2B improvement owing to ER and EDR.

Considering Figures 10 and 11, commuters and local workers are the most important
contributors to V2B. Consequently, policies should be addressed in order to increase the EV
presence in these two social groups. Of course, freelancers are an important group to be
considered based on an environmental point of view to reduce emissions but not based on
their potential contribution to V2B.

The energy consumption which took place when freelancers, commuters and local
workers were outside was not considered. Therefore, the household composition studied
by Csoknyai et al. is not considered [83]. As shown in Figure 12, local workers make
the first energy consumption peak last more time (Buildings A and B). Secondly, local
workers and commuters make the second consumption peak earlier. All these consumption
peaks can be reduced due to EDR and ER algorithm.

The energy self-sufficiency of the buildings subjected to this study depends on the par-
ticipation of the EV owners as shown in the sensitivity analysis (Section 4.6.1).
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Figure 12. Electric energy consumption considering social groups.

4.3. Social Group Presence in Buildings

During this research, the authors have established which social groups contribute
more to V2B. Consequently, it is of paramount importance to establish the percentage
of people who belong to each social group. A binomial distribution was employed to
determine the percentage of workers who belong to each social group:

(a) Set an initial hypothesis based on the number of people belonging to each social
groups. To do this, a sample of five buildings for each city was chosen.

(b) A second sample was used in order to confirm or reject the hypothesis by using
Equations (4) and (5):

Ho is true if
| p̂− p0|√

p0(1−p0)
n

≤ z α
2

(4)

Ho is false if
| p̂− p0|√

p0(1−p0)
n

> z α
2

(5)

n is the sample size, p̂ is the probability of success for the sample considered, po is
the probability of confirmation of the hypothesis, and α is the significant level.

The results obtained are shown in Tables 5 and 6. Based on the data obtained in these
tables and the consumption estimate shown in Tables 2 and 3, it is important to focus
policies on these two social groups in order to increase kWh available to reduce electricity
consumption in buildings.



Energies 2021, 14, 3483 20 of 30

Table 5. Percentage of occupants belonging to each social group in Alcalá de Henares.

Social Group
Sample size
(Number of
Households)

Probability of
Success Assessed by

Using the First
Sample

Probability of
Failure Obtained

When Using
the First Sample

Sample Size
(Number of
Households)

Probability of
Success When Using
the Second Sample

Ho Meaning Ho Value
(α = 0.01)

Freelancers
150

0.15 0.85
100

0.16 The percentage of freelancers is
close to 15% Accepted

Commuters who
used their vehicles 0.72 0.28 0.74 The percentage of commuters and

local workers are close to 72% and
13%, respectively

Accepted

Local workers 0.13 0.87 0.14 Accepted

Table 6. Percentage of occupants belonging to each social group in Jaén.

Social Group
Sample Size
(Number of
Households)

Probability of
Success Assessed by

Using the First
Sample

Probability of
Failure Obtained

When Using
the First Sample

Sample Size
(Number of
Households)

Probability of
Success When Using
the Second Sample

Ho Meaning Ho Value
(α = 0.01)

Freelancers
150

0.33 0.77
100

0.35 The percentage of freelancers is
close to 33% Accepted

Commuters who
used their vehicles 0.45 0.55 0.49 The percentage of commuters and

local workers are close to 45% and
22%, respectively

Accepted

Local workers 0.22 0.78 0.23 Accepted
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4.4. RE and V2B

It is important to check the trend of electricity price, RE daily contribution and EV
charging price on the Spanish market. As shown in Figures 13 and 14, the EV charging
price is set by the Government and from 1 p.m. is more expensive than the electricity
price in the sport market. When it comes to RE contribution, the highest value is reached
between 1 p.m. and 8 p.m. During the night, when EVs are supposed to be charged,
the contribution is not extremely high comparing to the rest of the day. EVs are charged
when RE contribution and the price are low. This policy is contradictory as EVs contribute
to the reduction of pollution because their energy may be used to reduce the peak energy
consumption from 7 p.m. to 10 p.m., but to do this, EVs must be charged before 12 a.m.
At that moment, the RE contribution is the lowest. The main conclusion is that promotion
of RE to decarbonize the electricity system, and policy prices are as important as policies
to promote EVs penetration into the market or charging points implementation. Like
this, the charging process can be performed when RE contribution is high. Regarding RE
in Spain, the number of MW available has been almost stable since 2012. It must be stated
that establishing the optimal sizing of RE facilities under high EV integration is a relevant
topic researched in several studies [87].

Figure 13. RE contribution, electricity price and EV charging price. June 2020.

Figure 14. RE contribution, electricity price and EV charging price. December 2020.
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One important point is that V2B must be compatible with other techniques, such as
V2G. In this case, some important remarks must be made. Based on the total amount of
energy available to be used for V2G, freelancers would tend to participate in V2B rather
than in V2G, as they get more profit when using this energy to reduce their home energy
consumption. When it comes to local workers, they could participate in V2G and V2B.
The main issue is that they are not the most representative social sector. Finally, commuters
seem to be a social sector that could also take advantage of both technologies. In order
to extend the number of people who could participate in V2G and V2B, the fee to charge
EVs in the second off-peak consumption should be reduced similar to Figure 15. To do
this, RE should be promoted and increased in order to support energy demand to charge
EVs [88]. Some research deals with the RE integration topics when using EVs. Pearre and
Swan concludes that “With a 10% adoption rate of EVs, time-of-day charging increased local
renewable energy usage by 20% and enables marginal wind energy converters to upgrade” [89].
Colmenar et al. proposed a novel grid technique in order to optimize the operation of
RE and EVs to increase penetration of RE [90]. In our current research, RE, EDR, ER and
EC are considered simultaneously. It is essential to highlight the importance of EC block
which aim is to determine the energy structure generation as well as the RE contribution.
Consequently, the EV owners know in advance, when it is the best moment to charge
their vehicle based on an environmental point of view. As described in Section 2, this
block can provide accurate forecasts owing to the implementation of neural networks.
It must be stated that the network performance was assessed with an average value of
2.25 × 10−7. Finally, the algorithm presented in this research uses the Open Charge Map®

API which aims to inform the driver where the closest charging point is. Therefore, by
using the information provided by this API, the energy consumption estimate assessed
by the Here® API and the consumption models tuned properly, the driver can decide
if it is possible to postpone the EV charging to a better slot in which the RE contribution
is higher. Consequently, the Open Charge Map® API is also useful to make the charging
process greener.

Figure 15. EV charging price proposal.
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4.5. Policy Implications

As discussed earlier in this paper, EDR, ER and EC are not subject to policies in many
cases. Only some recommendations have been made and a few initiatives taken as detailed
in the introduction [41–43]. Taking into account the results of this research and the main
goals of important initiatives such as the EGD, ER, EDR and EC must play a key role vis-à-
vis addressing important issues such as the better integration of the various measures to be
adopted for RE and emissions reduction. Additionally, it must be highlighted that although
algorithms, such as the one described in this research, have low implementation costs,
their contribution to V2B is significant. Finally, the authors recommend factoring in social
groups while developing policies as the usage of EVs is different and the contribution
therefore to V2B can have significant variations. Hence, it is essential to promote EVs with
the help of social groups even as the needed investments continue to be made in new
RE facilities.

4.6. Validity of This Research
4.6.1. Sensitivity Analysis

It is important to assess the contribution of EDR and ER to V2B taking into account
the participation of EV owners. Several factors such as battery degradation and policies
influence this participation. In this sensitivity analysis, several participations have been
considered when the number of participants was between 25% and 75%. As Figure 16
shows similar results as Figure 11. The gain goes from 4.225 kWh (25% for Building F) to
106.775 kWh (75% for Building E) on a daily basis.

Figure 16. V2B contribution.

4.6.2. Threats to Validity

In this section, the actions taken to reduce these threats are displayed in Table 7.
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Table 7. Factors chosen for validity of this research assessment.

Id Factor Factor Description

1 Choice of the city

When choosing the cities for this study, several factors were taken into account such as
the size of the city, population, traffic analysis, distribution cameras controlling the traffic,
the car park trend, etc. In addition, climactic zones were also considered to check as
the battery performance may change. Taking into consideration these factors, the authors
concluded that Jaén and Alcalá de Henares met the requirements for this research.

2 Choice of the social groups

Not all users have the same driving profile. It would not be accurate to estimate energy
without considering this factor. The authors have considered it to be of paramount
importance to give a breakdown of the population of these two cities. Firstly, freelancers
as they use Evs frequently, and they are supposed not to have important amount of
energy to contribute to V2B. Secondly, people who usually use public transport to
commute. Therefore, their contribution to V2B will be important. Finally, other workers
who work outside Alcala and Jaén or work in Alcala and Jaén.

3 Choice of the buildings An analysis was done based on an in-depth literature review (Section 2.3) in order to
determine the optimal criteria for choosing the buildings considered in this research.

5. Conclusions

Emissions linked to the transport sector and building are of great concern nowadays.
Consequently, improvement in both fields must be performed. This research proposed
an algorithm based on the Here® application interface (one of the most important digital
maps suppliers), neural networks, electric vehicles, eco-routing, eco-driving and eco-
charging concepts. By using this algorithm, the increase in energy available to be used
in vehicle-to-building technology was assessed. However, there is one important topic
to analyze the energy available such as the stochastic usage of electric vehicles. To be
more specific, it is essential to classify the working population into social groups such as
freelancers, local workers and commuters. Due to this, many data were collected in real-
driving conditions from drivers who belonged to different social groups as their way of
driving is different. Finally, all these data acquisitions were conducted in two cities (Alcalá
de Henares—Madrid-Spain and Jaén-Spain) which are located in different climatic zones.
The main conclusions that can be drawn are:

(a) Energy savings
As shown in Section 3.1, this algorithm introduces reduction in energy consumption
when driving electric vehicles. As it could be expected, energy consumption is
different depending on the social group. Consequently, the contribution to vehicle-to-
building technology differs. Regarding Alcala de Henares, energy efficiency reaches
2.2 kWh for freelancers per day. When it comes to commuters, this gain reaches 1.5
kWh a day and, finally, 0.6 kWh and for local workers on a daily basis. Regarding
Jaén, the savings are similar. The energy efficiency reaches 1.9 kWh for freelancers
per day. When it comes to commuters, this gain is 1 kWh on a daily basis and, finally,
0.6 kWh for local workers a day.

(b) Contribution to vehicle-to-building
Vehicle-to-building is based on the principle that the electric vehicle owner will partici-
pate and inject energy stored in the electric vehicle battery into the building. However,
it is essential to determine energy available and, again, the fact of taking into account
social groups influences energy available to be used for vehicle-to-grid technique.
Regarding Alcalá de Henares, energy available ranges between 112 kWh and 144
kWh a day depending on the social group mix existing in the building. In regard
to Jaén, energy available ranges between 76 kWh and 152 kWh a day depending
on the social group mix existing in the building. Finally, it must also be taken into
account that energy consumption pattern may change depending on the social groups
that occupants belong to as discussed in Section 4.2.

(c) Charging policies
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In order to make the charging process greener, it is necessary to charge electric
vehicles when renewable energy contribution is higher. Based on the analysis of
building consumption done in this research, the energy consumption pattern can differ
depending on the social group that the occupant belongs to. The algorithm provided
in this research can determine when the contribution of renewable energy is higher.
Due to this, when its contribution is higher, the charging price is more expensive.
This paper proposes possible changes to charging fees to make vehicle-to-building
and vehicle-to-grid compatible as discussed in Sections 3.2 and 4.4. In order to apply
this fee, the increase in megawatt of renewable energy installed is as important as
increase in the number of electric vehicles.

Supplementary Materials: A beta version of the application coded in Python is provided at https://
www.mdpi.com/article/10.3390/en14123483/s1. The full version cannot be provided as the company
which collaborated in this study has not authorized it. The measurements obtained when driving
Evs are not provided as the company which collaborated in this study has not authorized it.
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Appendix A. How to Configure Calls to Here® API

When assessing the best route to go from A to B, Here® API is a very powerful tool
as it can provide a lot of information linked to the established route. The way of calling
this API when coding in Python is easy. However, some factors must be taken into account.
Figure A1 depicts the pseudocode employed in this case-study in order to call the Here®

API. As one can see, one important parameter is known as PARAM which is composed of
several variables such as:

(a) apiKey. It is a key that must be generated when someone is registered in the Here®

developers’ web. In Figure A1, the key is represented by XXXX and, of course,
the reader should type their own key.

(b) When going to A to B, waypoint0 and waypoint1 represent the latitude and longi-
tude data of A and B. These values must be stored in Python by using a dictionary
(location_coor). The main question is how to obtain the latitude and longitude. In this
study, Geopy was used.

(c) Mode. For a more accurate assessment of the route, the reader should specify the type
of route (the fastest, the shortest) and traffic state.

(d) In Section 2, the way of tuning the consumption model was explained. The Python
code sends energy consumption models to Here® API by employing consumptionmodel
and consumptiondetails variables.

https://www.mdpi.com/article/10.3390/en14123483/s1
https://www.mdpi.com/article/10.3390/en14123483/s1
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Figure A1. Pseudocode to obtain the desired Here® answer.

When the Here® API determines the best route, it sends a json file to the Python code.
When analyzing the structure of the file provided by Here®, a lot of important information
can be collected such as traffic condition, time needed to cover the route, etc. (Figure A2).
Based on these parameters, the average values of some parameters such as speed or energy
consumption can be estimated easily.

Figure A2. Here® answer. Json format.
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23. Wróblewski, P.; Drożdż, W.; Lewicki, W.; Miązek, P. Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy
Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas. Energies 2021, 14, 2314. [CrossRef]
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