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Abstract. We classify the precrossed module central extensions using the second
cohomology group of precrossed modules. We relate these central extensions to the
relative central group extensions of Loday, and to other notions of centrality defined
in general contexts. Finally we establish a Universal Coefficient Theorem for the
(co)homology of precrossed modules, which we use to describe the precrossed module
central extensions in terms of the generalized Galois theory developed by Janelidze.
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1. Introduction

In this paper we extend the description of the central extensions of
crossed modules developed in [5], to the category of precrossed modules,
using the cohomological tools defined by the authors in [1].

In [5] it is proved that the second cohomology group of a crossed
module (T,G, ∂) with coefficients in an abelian crossed module (A,B, f)
defined in that paper, which we denote by

H2
CCG ((T,G, ∂) , (A,B, f))

classifies all the crossed module central extensions of (T,G, ∂) by (A,B, f),
and so it generalizes the classical result of classification of group exten-
sions with trivial actions.

We will go further on. We will show that the second cohomology
group of a precrossed module (M,P, µ) with coefficients in an abelian
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precrossed module (A,B, f), defined in [1]

H2((M,P, µ), (A,B, f))

classifies the precrossed module central extensions of (M,P, µ) by (A,B, f).
When (M,P, µ) and (A,B, f) are crossed modules, the resulting set of
congruence classes of precrossed module central extensions
CextPCM((M,P, µ), (A,B, f)) contains the set of congruence classes of
crossed module central extensions CextCM((M,P, µ), (A,B, f)) studied
in [5].

We will also prove that in certain particular cases, the congruence
classes of precrossed module central extensions coincide with the con-
gruence classes of relative central extensions of groups studied by Loday
[17].

We begin Section 1 by recalling the definition of the cohomology of
precrossed modules, as it was stated in [1].

In Section 2 we introduce the notion of central extension of a pre-
crossed module, and we relate this definition to other notions of cen-
trality defined in some general contexts, as in exact categories [13], or
in varieties of Ω-groups ([8] and [18]).

In Section 3 we establish our result of classification of precrossed
module central extensions.

Finally, in Section 4, we prove a Universal Coefficient Theorem for
the (co)homology of precrossed modules, which relates the cohomology
with the homology of precrossed modules, through certain exact se-
quences. We apply this Universal Coefficient Theorem to describe the
central extensions in PCM in terms of the generalized Galois theory
developed by Janelidze in [10], [11] and [12].

2. Cohomology of precrossed modules

We begin this section by recalling certain basic aspects from the theory
of precrossed modules. Details can be found in [1].

A precrossed module (M,P, µ) is a group homomorphism µ : M → P
together with an action of P on M , denoted by pm for p ∈ P and
m ∈M , and satisfying µ(pm) = pµ(m)p−1 for all p ∈ P and m ∈M . If
in addition it satisfies the Peiffer’s identity µ(m)m′ = mm′m−1 for all
m,m′ ∈M , we say that (M,P, µ) is a crossed module.

A precrossed module morphism (Φ,Ψ) : (M1, P1, µ1)→ (M2, P2, µ2)
is a pair of group homomorphisms Φ : M1 → M2 and Ψ : P1 → P2

such that Ψ ◦ µ1 = µ2 ◦ Φ and Φ(pm) = Ψ(p)Φ(m) for all p ∈ P1 and
m ∈M1.
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We denote the category of precrossed (crossed) modules by PCM
(CM). Janelidze and Pedicchio enumerate in [14] a list of ”internal
notions” in a variety of universal algebras. It is known that the notions
of precrossed module and crossed module are respectively equivalent to
the notions of internal reflexive graph and internal category in the cat-
egory of groups. The internal reflexive graph equivalent to a precrossed
module (M,P, µ) is the graph with P as the group of objects and with
the semidirect product MoP as the group of morphisms, and with

s : MoP −→ P b : MoP −→ P
(m, p) 7−→ p (m, p) 7−→ µ(m)p

Next we recall notions like injection, surjection, (normal) subobject,
image, abelian object, commutator, centre, etc..., which are not new,
but come up as the appropriate instances of known categorical notions.

A morphism (Φ,Ψ) in PCM is said to be injective (surjective) if
both Φ and Ψ are injective (surjective) group homomorphisms.

A precrossed submodule (N,Q, µ′) of a precrossed module (M,P, µ)
is a precrossed module such that N and Q are, respectively, subgroups
of M and P , the action of Q on N is induced by the one of P on M
and µ|N = µ′. It is said to be a normal precrossed submodule if besides

N and Q are normal in M and P , pn ∈ N and qmm−1 ∈ N for all
p ∈ P , q ∈ Q, m ∈M and n ∈ N .

If (N,Q, µ) is a normal precrossed submodule of (M,P, µ), we define
the quotient precrossed module (M,P, µ)/(N,Q, µ) as (M/N,P/Q, µ)
where the homomorphism µ is induced by µ and P/Q acts on M/N
by pQmN = (pm)N for p ∈ P and m ∈M .

We call Peiffer subgroup 〈M,M〉 of a precrossed module (M,P, µ)
the subgroup ofM generated by the Peiffer elementsm1m2m

−1
1

µ(m1)m−1
2

with m1,m2 ∈ M . It is a normal subgroup of M , and the quotient
(M,P, µ)cr= (M,P, µ)/(〈M,M〉, 1, 1)=(M/〈M,M〉, P, µ) is a crossed
module.

The kernel of a precrossed module morphism (Φ,Ψ) : (M1, P1, µ1)→
(M2, P2, µ2) is the normal precrossed submodule (KerΦ,KerΨ, µ1) of
(M1, P1, µ1). Its image is the precrossed submodule (ImΦ, ImΨ, µ2) of
(M2, P2, µ2).

In [1] we introduced analogues to some basic concepts from group
theory, like centre or commutator groups, in the category of precrossed
modules. In the case of crossed modules these concepts were introduced
by Norrie [20].

The centre Z(M,P, µ) of a precrossed module (M,P, µ) is the nor-
mal precrossed submodule (Inv(M)∩Z(M), StP (M)∩Z(P ), µ), where
StP (M) denotes the group {p ∈ P |p m = m for all m ∈M}, Inv(M) =
{m ∈M | µ(m) ∈ StP (M) and pm = m for all p ∈ P} and Z(M), Z(P )
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denote the centres of M and P . Z(M,P, µ) is the maximal central
precrossed submodule of (M,P, µ).

A precrossed module (M,P, µ) is said to be abelian if (M,P, µ) =
Z(M,P, µ). Equivalently M and P are abelian groups and P acts
trivially on M .

If (N,Q, µ) and (R,K, µ) are normal precrossed submodules of (M,P, µ),
we define the commutator precrossed submodule [(N,Q, µ), (R,K, µ)]
of (N,Q, µ) and (R,K, µ) as the normal precrossed submodule ([Q,R]
[K,N ] [N,R] , [Q,K] , µ) of (M,P, µ), where [Q,R] denotes the nor-
mal subgroup of M generated by the elements

{
qrr−1 | q ∈ Q, r ∈ R

}
,

[K,N ] denotes the normal subgroup of M generated by the elements{
knn−1 | k ∈ K,n ∈ N

}
and [N,R] and [Q,K] denote the usual com-

mutator subgroups of N with R and Q with K.
In particular, the commutator precrossed submodule of a precrossed

module (M,P, µ) is [(M,P, µ), (M,P, µ)] = ([M,M ] [P,M ], [P, P ] , µ).
It is the smallest normal precrossed submodule of (M,P, µ) making the
quotient an abelian precrossed module.

The inclusion of abelian precrossed modules APCM in PCM has
a left adjoint ab : PCM → APCM termed the abelianisation functor,
which assigns to a precrossed module (M,P, µ) the abelian precrossed
module (M,P, µ)ab = (M/ [M,M ] [P,M ] , P/ [P, P ] , µ).

The forgetful functor U : PCM → Set , U(M,P, µ) = M × P , that
assigns to each precrossed module (M,P, µ) the cartesian product of
the underlying sets M and P, is tripleable. Its left adjoint, the free
precrossed module functor F : Set → PCM is given by F(X) = (F , F ∗
F, 〈i1, Id〉|F ), where F is the free group over X, F = Ker(F ∗ (F ∗

F )
〈0,Id〉−−−→ F ∗F ), 〈i1, Id〉 : F ∗ (F ∗F ) −→ F ∗F , i1 : F � F ∗F is the

first inclusion in the coproduct, and F ∗ F acts on F by conjugation.
Note that the forgetful functor U is nothing but the underlying set of
the group of morphisms of the corresponding internal reflexive graph.

The category PCM has enough projective objects, since it is equiv-
alent with the category of internal reflexive graphs. Each precrossed
module admits a presentation as a quotient of a projective precrossed
module by means of the counit of the adjunction between U and F . A
useful construction of a family of projective precrossed modules can be
found in [1].

For a precrossed module (M,P, µ) let us consider the cotriple res-
olution C∗(M,P, µ) → (M,P, µ) associated to the functors F and U .
Specializing Barr and Beck’s cotriple cohomology [3], we define as in [1],
for n ≥ 1, the homology precrossed modules of the precrossed module
(M,P, µ) by

Hn(M,P, µ) = Hn−1 ((C∗(M,P, µ))ab , ∂∗)
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and the cohomology groups of the precrossed module (M,P, µ) with
coefficients in an abelian precrossed module (A,B, f) by

Hn((M,P, µ), (A,B, f)) = Hn−1(HomPCM(C∗(M,P, µ), (A,B, f)), ∂∗)

THEOREM 1. (Five term exact sequence for the cohomology of pre-
crossed modules)

Let 0 → (N,Q, µ)
i
� (M,P, µ)

k
� (L,C, ω) → 0 be an exact

sequence of precrossed modules. For each abelian precrossed module
(A,B, f), there exists an exact sequence of abelian groups

0 −→ H1((L,C, ω), (A,B, f)) −→ H1((M,P, µ), (A,B, f)) −→

−→ HomPCM

(
(N,Q, µ)

[(M,P, µ), (N,Q, µ)]
, (A,B, f)

)
−→

−→ H2((L,C, ω), (A,B, f)) −→ H2((M,P, µ), (A,B, f))

The proof of Theorem 1 is analogous to the one of [5, Theorem 12],
with the help of [2, Lemma 3].

To establish our result of classification of central extensions we will
need the following result, which is the counterpart for the cohomology of
the Hopf’s formula for the homology of precrossed modules [2, Corollary
4].

COROLLARY 2. If (V,R, τ) � (W,F, τ)
π
� (M,P, µ) is a projec-

tive presentation of a precrossed module (M,P, µ), and (A,B, f) is an
abelian precrossed module, then there exists a natural isomorphism of
abelian groups between H2((M,P, µ), (A,B, f)) and the cokernel of the
group homomorphism

HomPCM((W,F, τ), (A,B, f))→ HomPCM

(
(V,R,τ)

[(W,F,τ),(V,R,τ)] , (A,B, f)
)

Proof.
Apply the five term exact sequence in cohomology to the projective

presentation of (M,P, µ). The result follows sinceH2((W,F, τ), (A,B, f)) =
0.

REMARK 3.
The analogous classical theorems for the cohomology of groups with

trivial coefficients can be deduced from these results. If we take an
extension of groups N � G� Q and an abelian group A, we can con-
sider them as a sequence of precrossed modules (1, N, i)� (1, G, i) �
(1, Q, i) and an abelian precrossed module (1, A, i), and applying [1,
Theorem 4.1] we get that the resulting five term exact sequence of
Theorem 1 is the five term exact sequence for the cohomology of groups

0→ H1(Q,A)→ H1(G,A)→ HomGr

(
N

[G,N ]
, A

)
→ H2(Q,A)→ H2(G,A)
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On the other hand, a classical result of Eilenberg and MacLane [6,
Theorem 3.1] can be obtained from Corollary 2. For a free presenta-

tion R � F
π
� G of a group G, there is a projective presentation

(1, R, j) � (1, F, j)
π
� (1, G, i) of the precrossed module (1, G, i). Ap-

plying [1, Theorem 4.1] and Corollary 2, and taking as coefficients the
abelian precrossed module (1, A, i), we obtain

H2(G,A) ∼= Coker

(
HomGr(F,A) −→ HomGr

(
R

[F,R]
, A

))

3. Definition of central extension. Equivalence with the
notion of Janelidze-Kelly.

Our notion of central extension for precrossed modules can be defined
by means of the definition of centre of a precrossed module:

DEFINITION 4. Let (M,P, µ) be a precrossed module, and (A,B, f)
an abelian precrossed module. A central extension of (M,P, µ) by (A,B, f)
is an extension

E : (A,B, f)� (Y,X, δ)� (M,P, µ)

such that (A,B, f) ⊂ Z(Y,X, δ).

In [13], a notion of central extension in an exact category C, relative
to an “admissible” subcategory X of C, is introduced. When C is a
Mal’tsev category, every Birkhoff subcategory of C is admissible.

We can consider the categorical theory of central extensions in PCM,
since the category PCM is equivalent to a variety of Ω-groups [16]
(concretely to the variety of groups with operators {s, b} satisfying the
relations bs = s and sb = b), and so PCM is a Barr exact Mal’tsev
category. Our definition of central extension is equivalent to the cate-
gorical one applied to the category PCM of precrossed modules with
the admissible subcategory APCM of abelian precrossed modules.

Let us explain this in detail. Consider the adjunction ab a J ,

PCM (M,P, µ) (A,B, f)
ab ↓↑ J ab ↓ ↑ J
APCM (M,P, µ)ab (A,B, f)
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where J : APCM → PCM is the inclusion of the Birkhoff variety
APCM in PCM, and ab : PCM → APCM is the abelianisation
functor. Following [13], an extension f : A � B is called trivial if
the following diagram is a pullback

A −→ (A)ab
f ↓ ↓ (f)ab
B −→ (B)ab

where the horizontal morphisms are given by the unit of the adjunction.
Janelidze and Kelly call an extension f : A � B a central extension
[13, pag. 152], if there exists an extension p : E � B of B such that in
the pullback

E ×
B
A

π2→ A

π1 ↓ ↓ f
E →

p
B

the morphism π1 is a trivial extension.

PROPOSITION 5. Our notion of centrality coincides with the one of
Janelidze and Kelly in the case that we take the category PCM and the
“admissible” subcategory APCM.

Proof.
Given an extension of precrossed modules

(A,B, f)� (Y,X, δ)� (M,P, µ)

such that (A,B, f) ⊂ Z(Y,X, δ), it is verified that in the pullback(
Y ×

M
Y,X ×

P
X, δ × δ

)
π2→ (Y,X, δ)

π1 ↓ ↓
(Y,X, δ) → (M,P, µ)

the extension

(
Y ×

M
Y,X ×

P
X, δ × δ

)
π1
� (Y,X, δ) is trivial, that is, the

diagram(
Y ×

M
Y,X ×

P
X, δ × δ

)
→
(
Y ×

M
Y,X ×

P
X, δ × δ

)
ab

π1 ↓ ↓ (π1)ab
(Y,X, δ)

η→ (Y,X, δ)ab

is a pullback. To prove it, we will construct an isomorphism λ = (λ1, λ2)
between
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Y ×

M
Y,X ×

P
X, δ × δ

)
and the fiber product

Y ×
Y

[Y,Y ][X,Y ]

 Y ×
M
Y[

Y ×
M
Y,Y ×

M
Y

][
X×
P
X,Y ×

M
Y

]
 , X ×

Xab

(
X ×

P
X

)
ab

, δ × (δ × δ)ab


of (π1)ab with η, defined by

λ1 : Y ×
M
Y −→ Y ×

Y
[Y,Y ][X,Y ]

 Y ×
M
Y[

Y ×
M
Y,Y ×

M
Y

][
X×
P
X,Y ×

M
Y

]


(y, z) ;
(
y, (y, z)

)
λ2 : X ×

P
X −→ X ×

Xab

(
X ×

P
X

)
ab

(t, x) ;
(
t, (t, x)

)
On the other hand, given an extension of precrossed modules

(A,B, f)� (Y,X, δ)
(ϕ1,ϕ2)
� (M,P, µ)

which is central in the sense of Janelidze and Kelly, we will prove that

(A,B, f) ⊂ Z(Y,X, δ). Let (S,H, γ)
(ψ1,ψ2)
� (M,P, µ) be the extension

for which the diagram(
S ×
M
Y,H ×

P
X, γ × δ

)
→
(
S ×
M
Y,H ×

P
X, γ × δ

)
ab

π1 ↓ ↓ (π1)ab
(S,H, γ) → (S,H, γ)ab

is a pullback. The kernel of π1 is given by the injective morphism

(A,B, f) �

(
S ×
M
Y,H ×

P
X, γ × δ

)
, and the kernel of (π1)ab is then

given by another injective morphism (θ, κ) : (A,B, f)� (S×
M
Y,H×

P
X,

γ × δ)ab defined by θ(a) = (0, a) and κ(b) = (0, b). Now, it is straight-
forward to verify that [(Y,X, δ), (A,B, f)] = 0. For example, we will
prove that [X,B] = 0: a generator xbx−1b−1 equals zero, with x ∈ X
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and b ∈ B, if and only if κ(xbx−1b−1) = (0, xbx−1b−1) is zero. Tak-

ing h ∈ H such that ψ2(h) = ϕ2(x), we get that (0, xbx−1b−1) =

(0, x)(h, b)(0, x)
−1

(h, b)
−1

= (0, x)(0, x)
−1

(h, b)(h, b)
−1

= 0.

Janelidze and Kelly show in [13] that their categorical notion of cen-
tral extension, generalizes the notion of centrality developed by Fröhlich
[8] and Lue [18] for a pair composed by a variety of Ω−groups C, and a
subvariety X . On the other hand, the notion of centrality of Fröhlich is,
a generalization of the classical theory of central group extensions, in
case we consider the variety of groups Gr and the subvariety of abelian
groups Ab.

Also, Janelidze and Kelly, showed in [15] that the categorical notion
of centrality generalizes the notion of centrality in universal algebra, de-
fined through the theory of commutators, for each congruence modular
variety C and subvariety X (see for example [7]).

The pair formed by the category PCM and the subcategory APCM
satisfy the conditions required by each of the different mentioned con-
texts. So, by Proposition 5, our notion of central extension is a special
case of any of them. Using the fact that the category PCM is semi-
abelian, some other characterizations of our central extensions can also
be found. In [4], Bourn and Gran search for new characterizations of the
central extensions in a semi-abelian category C, when as “admissible”
subcategory is taken the category of the abelian group objectsAbC in C.
For example, they obtain the following result: an extension f : A� B
in C is central with respect to AbC if and only if the subdiagonal
morphism s0 is a normal monomorphism,

R [f ]

s0
x
⇒ A

f→ B

where R [f ]⇒ A is the kernel pair of f .

4. Classification of central extensions of precrossed modules

DEFINITION 6. Two extensions E1 and E2 of (M,P, µ) by (A,B, f)
are congruent if and only if there exists a morphism of precrossed mod-
ules β : (Y1, X1, δ1) −→ (Y2, X2, δ2), making commutative the following
diagram

E1 : (A,B, f)� (Y1, X1, δ1)� (M,P, µ)
‖ ↓ β ‖

E2 : (A,B, f)� (Y2, X2, δ2)� (M,P, µ)
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We will denote the congruence of extensions by E1 ≡ E2.

Observe that a morphism β making this diagram commutative, is
always an isomorphism. We will denote by Cext((M,P, µ), (A,B, f))
the quotient set of the central extensions of (M,P, µ) by (A,B, f), by
the equivalence relation of congruence.

LEMMA 7. Let (N,Q, ω)
i
� (L,C, ω)

k
� (M,P, µ) be an extension of

precrossed modules, and let (A,B, f) be an abelian precrossed module.
Then

i) For each morphism of precrossed modules

α = (α1, α2) :

(
N

[C,N ] [Q,L] [N,L]
,

Q

[Q,C]
, ω

)
−→ (A,B, f)

there exists a unique up to congruence central extension Eα of (M,P, µ)
by (A,B, f), making the following diagram commutative

(N,Q, ω)
i
� (L,C, ω)

k
� (M,P, µ)

α ↓ α̃ ↓ ‖
Eα : (A,B, f)

iα
� (Yα, Xα, δ)

kα
� (M,P, µ)

where α = (α1, α2) and α̃ are induced by α.
ii) For every two morphisms

α, α′ :

(
N

[C,N ] [Q,L] [N,L]
,

Q

[Q,C]
, ω

)
−→ (A,B, f)

Eα ≡ Eα′ if and only if, there exists a morphism of precrossed modules
ε : (L,C, ω)→ (A,B, f) with

α′ = α+ ε|(N,Q,ω) : (N,Q, ω)→ (A,B, f)
Proof.
It is parallel to the proof of [5, Lemma 16].

THEOREM 8. Let (M,P, µ) be a precrossed module, and (A,B, f) an
abelian precrossed module. There exists a natural bijection

Cext((M,P, µ), (A,B, f)) ∼= H2((M,P, µ), (A,B, f))
Proof.
It is analogous to the proof of [5, Theorem 17], using Lemma 7, and

Corollary 2.
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REMARK 9. As follows from Theorem 8, one can define an abelian
group structure on the quotient set Cext((M,P, µ), (A,B, f)), such that
the bijection Cext((M,P, µ), (A,B, f)) ∼= H2((M,P, µ), (A,B, f)) be-
comes an isomorphism of abelian groups. We will call Baer sum this
operation between congruence classes of central extensions. The Baer
sum also has the following independent description: given two central
extensions of (M,P, µ) by (A,B, f),

Ei : (A,B, f)� (Yi, Xi, δi)
ϕi
� (M,P, µ)

where i = 1, 2, consider the pullback of ϕ1 and ϕ2

(Y1 ×
M
Y2, X1 ×

P
X2, δ1 × δ2) −→ (Y2, X2, δ2)

↓ ↓ ϕ2

(Y1, X1, δ1)
ϕ1−→ (M,P, µ)

Take the coequalizer (Y,X, δ) of the two canonical inclusions
(A,B, f) ∼= (A× 0, B × 0, f × 0) ↪→ (Y1 ×

M
Y2, X1 ×

P
X2, δ1 × δ2) and

(A,B, f) ∼= (0 × A, 0 × B, 0 × f) ↪→ (Y1 ×
M
Y2, X1 ×

P
X2, δ1 × δ2). The

Baer sum of E1 and E2 is the congruence class of the induced central
extension

(A,B, f)� (Y,X, δ)� (M,P, µ)

EXAMPLE 10. Given a group G and an abelian group A, the group
of congruence classes of central extensions of G by A, Cext(G,A), is
isomorphic to the group Cext((1, G, i), (1, A, i)). On the other hand,
the Eilenberg-MacLane’s cohomology group H2 (G,A) is isomorphic to
H2((1, G, i), (1, A, i)) [1, Theorem 4.1]. Therefore, we deduce from The-
orem 8, the classical theorem of classification of central extensions of
groups (see, for example [9])

Cext(G,A) ∼= H2 (G,A)

It is proved in [5, Theorem 17] that for a crossed module (T,G, ∂)
and an abelian crossed module (A,B, f), the cohomology group
H2
CCG ((T,G, ∂), (A,B, f)) of crossed modules is isomorphic to the group

CextCM((T,G, ∂), (A,B, f)) of congruence classes of crossed module
central extensions of (T,G, ∂) by (A,B, f)

(A,B, f)� (S,H, θ)� (T,G, ∂)
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SoH2
CCG ((T,G, ∂), (A,B, f)) is the subgroup ofH2 ((T,G, ∂), (A,B, f))

corresponding to the classes of precrossed module central extensions of
(T,G, ∂) by (A,B, f) which are extensions of crossed modules.

Actually more is true: if we consider the adjunction cr a i,

PCM (M,P, µ) (T,G, ∂)
cr ↓↑ i cr ↓ ↑ i
CM (M,P, µ)cr (T,G, ∂)

where i : CM→ PCM is the inclusion, and since i preserves surjectives

then cr maps projectives to projectives. So, if (V,R, τ)� (W,F, τ)
π
�

(T,G, ∂) is a projective presentation in PCM then (V/〈W,W 〉, R, τ)�

(W/〈W,W 〉, F, τ)
ξ
� (T,G, ∂) is a projective presentation in CM.

PROPOSITION 11. Let (T,G, ∂) be a crossed module, and (A,B, f)

an abelian precrossed module. Let (V,R, τ)� (W,F, τ)
π
� (T,G, ∂) be

a projective presentation in PCM. Then H2
CCG ((T,G, ∂), (A,B, f)) ∼=

Ker(ξ∗ : H2((T,G, ∂), (A,B, f))→ H2((W/〈W,W 〉, F, τ), (A,B, f)))

where ξ : (W/〈W,W 〉, F, τ)→ (T,G, ∂) is the morphism in CM induced
by π.

Proof.

Let E ∈ H2((T,G, ∂), (A,B, f)). Then ξ∗(E) = Eξ is defined by the
pullback

Eξ : (A,B, f)� (Y,X, δ)ξ � (W/〈W,W 〉, F, τ)
‖ ↓ ↓ ξ

E : (A,B, f)� (Y,X, δ)� (T,G, ∂)

If ξ∗(E) = 0, that is, Eξ splits, then (Y,X, δ)ξ ∼= (A,B, f)o(W/〈W,W 〉, F, τ)
is a crossed module and its epimorphic image (Y,X, δ) is also a crossed
module. Conversely, if E ∈ CextCM((T,G, ∂), (A,B, f)) then (Y,X, δ)ξ ⊂
(Y,X, δ)×(W/〈W,W 〉, F, τ) is a crossed module. Since (W/〈W,W 〉, F, τ)
is a projective crossed module, (Y,X, δ)ξ � (W/〈W,W 〉, F, τ) admits
a splitting.

To each precrossed module (M,P, µ), we can associate a crossed
module (M,MoP, i), where i is the canonical inclusion of M into
MoP . There is an isomorphism of groups between the group Cext((M,P, µ),
(A, 1, 1)) of congruence classes of precrossed modules central extensions
of (M,P, µ) by (A, 1, 1), and the group CextCM((M,MoP, i), (A, 1, 1))
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of congruence classes of crossed module central extensions of (M,MoP, i)
by (A, 1, 1)

Cext((M,P, µ), (A, 1, 1)) ∼= CextCM((M,MoP, i), (A, 1, 1))

defined by the following correspondence: we assign to the class of a
central extension of precrossed modules

A � Y
π
� M

1 ↓ δ ↓ µ ↓
1 � P

Id
� P

the class of the crossed module central extension

A � Y
π
� M

1 ↓ π × 1 ↓ i ↓
1 � MoP

Id
� MoP

of (M,MoP, i) by (A, 1, 1), where the action in the crossed module
(Y,MoP, π × 1) is given by (π(y1),p)y2 = y1 · py2 · y−1

1 for y1, y2 ∈ Y
and p ∈ P .

The cohomology group H2
CCG ((M,MoP, i), (A, 1, 1)) is isomorphic

to the group CextCM((M,MoP, i), (A, 1, 1)) [5, Theorem 17], and the
cohomology group H2((M,P, µ), (A, 1, 1)) is isomorphic to the group
Cext((M,P, µ), (A, 1, 1)) (Theorem 8); so

COROLLARY 12. For a precrossed module (M,P, µ) and an abelian
group A, there are group isomorphisms
H2((M,P, µ), (A, 1, 1)) ∼= Cext((M,P, µ), (A, 1, 1)) ∼=
∼= CextCM((M,MoP, i), (A, 1, 1)) ∼= H2

CCG ((M,MoP, i), (A, 1, 1))

The theory of central extensions of precrossed modules is also related
to the theory of relative central extensions of groups [17]. A relative
central extension of an epimorphism of groups (P,MoP ) by an abelian
group A [17], is an exact sequence of groups

0→ A→ N
λ→MoP s→ P → 1

where (N,MoP, λ) is a crossed module, and the induced action of P
on A is trivial. A congruence of relative central extensions of (P,MoP )
by A [17] is a crossed module morphism (f, Id) : (N,MoP, λ) →
(N ′,MoP, λ′) making the following diagram commutative

0→ A→ N
λ→MoP s→ P → 1

‖ ↓ f ‖ ‖
0→ A→ N ′

λ′→MoP s→ P → 1
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The set of congruence classes of relative central extensions of (P,MoP )
by A is denoted by Ext(P,MoP ;A).

There exists an isomorphism between the groups Ext(P,MoP ;A)
and Cext((M,P, µ), (A, 1, 1)): we can assign to the class of a central
extension of precrossed modules

A � Y
π
� M

1 ↓ δ ↓ µ ↓
1 � P

Id
� P

the class of the relative central extension

0→ A→ Y
π×1−−→MoP → P → 1

of (P,MoP ) byA, where the action of the crossed module (Y,MoP, π × 1)
is given again by (π(y1),p)y2 = y1 · py2 · y−1

1 for y1, y2 ∈ Y and p ∈ P .
It is proved in [17, Théorème 1] that the relative cohomology group

H3(P,MoP ;A) of Loday, associated to the epimorphism s : MoP �
P , s(m, p) = p and the trivial P -module A is isomorphic to the group
Ext(P,MoP ;A).

There is also an isomorphism of groups between the cohomology
group H2((M,P, µ), (A, 1, 1)) and the group Cext((M,P, µ), (A, 1, 1))
(Theorem 8), so

COROLLARY 13. For a precrossed module (M,P, µ) and an abelian
group A, there are group isomorphisms
H2((M,P, µ), (A, 1, 1)) ∼= Cext((M,P, µ), (A, 1, 1)) ∼= Ext(P,MoP ;A)

∼= H3(P,MoP ;A)

5. Universal Coefficient Theorem. Galois theory.

If G is a group, and C is an abelian group, regarded as trivial G-module,
then the Universal Coefficient Theorem [9, Theorem 15.1] states that
for every n ≥ 1 the sequence

0→ Ext1Z(Hn−1(G), C)→ Hn(G,C)→ HomZ(Hn(G), C)→ 0

is exact and natural. Next we establish the corresponding result for
precrossed module cohomology.
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THEOREM 14. Let (M,P, µ) be a precrossed module and let (A,B, f)
be an abelian precrossed module.

(i) There is a natural exact sequence
0→ Ext1APCM(H1(M,P, µ), (A,B, f))→ H2((M,P, µ), (A,B, f))→

HomAPCM(H2(M,P, µ), (A,B, f))→ Ext2APCM(H1(M,P, µ), (A,B, f))
→ H3((M,P, µ), (A,B, f)).

(ii) If H2(M,P, µ) = 0 , then there is a natural exact sequence
0→ Ext2APCM(H1(M,P, µ), (A,B, f))→ H3((M,P, µ), (A,B, f))→

HomAPCM(H3(M,P, µ), (A,B, f))
(iii) If Hi(M,P, µ) = 0 for all 1 < i ≤ n and n ≥ 3, then
H i((M,P, µ), (A,B, f)) = 0 for all 3 < i ≤ n and
Hn+1((M,P, µ), (A,B, f)) ∼= HomAPCM(Hn+1(M,P, µ), (A,B, f)).
(iv) Let (A,B, f)� I• be an injective resolution of (A,B, f) in the

category of abelian precrossed modules, such that Im = 0 for all m ≥ 3
(such a resolution exists [5]). If HomAPCM(Hi(M,P, µ), I2) = 0 for
all i ≥ 1, then there exists an exact and natural sequence

0→ Ext1APCM(Hn(M,P, µ), (A,B, f))→ Hn+1((M,P, µ), (A,B, f))
→ HomAPCM(Hn+1(M,P, µ), (A,B, f))→ 0 for all n ≥ 1.

Proof.
It is parallel to the proof of [5, Theorem 18].

Recall from [5] and [19, Corollary 10.10] that the category of abelian
precrossed modules APCM has global dimension 2, and that the in-
jective abelian precrossed modules are those of the form (I ⊕ J, I, p1),
where I and J are divisible abelian groups, and p1 is the first projection
from the coproduct.

EXAMPLE 15. Given an injective resolution A
α
� I0 β→ I1 → 0 . . .

of an abelian group A, and a group G, the abelian precrossed module
(1, A, i) has an injective resolution

I• : (1, A, i)
(1,α)
� (I0, I0, Id)

({Id,β},β)−−−−−−→ (I0 ⊕ I1, I1, p2)→
→ (Coker {Id, β} , 1, 1)→ 0 . . .

such that for every i ≥ 1, HomAPCM(Hi(1, G, i), I2) = 0.
With this resolution it is easy to see that Ext1APCM(Hn(1, G, i), (1, A, i))

is isomorphic to Ext1Z(Hn(G), A), for n ≥ 1.
On the other hand, the group Hn+1((1, G, i), (1, A, i)) is isomor-

phic to Hn+1(G,A), and the group HomAPCM(Hn+1(1, G, i), (1, A, i))
is isomorphic to HomZ(Hn+1(G), A), for n ≥ 0.

From Theorem 14 (iv) we can deduce the exact and natural sequence
of the Universal Coefficient Theorem for the cohomology of groups [9,
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VI. Theorem 15.1]

0→ Ext1Z(Hn(G), A)→ Hn+1(G,A)→ HomZ(Hn+1(G), A)→ 0

for n > 1.

Remark that if a precrossed module (M,P, µ) is perfect [2], that is, it
coincides with its commutator precrossed submodule, thenH1(M,P, µ) =
0, and the exact sequence in Theorem 14 (i) provides an isomorphism

H2((M,P, µ), (A,B, f)) ∼= HomAPCM(H2(M,P, µ), (A,B, f))

On the other hand, in Theorem 8, it is proved thatH2((M,P, µ), (A,B, f))
classifies the central extensions of (M,P, µ) by an abelian precrossed
module (A,B, f)

Cext((M,P, µ), (A,B, f)) ∼= H2((M,P, µ), (A,B, f))

So the category of the congruence classes of central extensions Centr(M,P, µ)
of the perfect precrossed module (M,P, µ), is equivalent to the comma
category H2(M,P, µ) ↓ APCM.

This equivalence is made as follows: if (A,B, f) � (Y,X, δ)
(ϕ,ϕ′)
�

(M,P, µ) is an extension of (M,P, µ), then there exists a unique mor-
phism ∆, making commutative the following diagram

H2(M,P, µ) � (M ⊗ (MoP ), P ⊗ P, µ⊗ ν)
(λ,ζ)
� (M,P, µ)

↓ ∆ ↓ ↗(ϕ,ϕ′)

(A,B, f) � (Y,X, δ)

In [13], Janelidze and Kelly show how to describe the category of
the central extensions of an object B, Centr(B), with respect to a pair
formed by an exact category C and an “admissible” subcategory X
of C, using a generalized Galois theory developed by Janelidze in [10],
[11] and [12]. Following [13], from the universal central extension (λ, ζ) :
(M⊗(MoP ), P⊗P, µ⊗ν)� (M,P, µ) we obtain an internal groupoid
inAPCM, the Galois pregroupoid Gal ((M ⊗ (MoP ), P ⊗ P, µ⊗ ν), (λ, ζ)),
and an equivalence of categories

Centr(M,P, µ) ' {Gal ((M ⊗ (MoP ), P ⊗ P, µ⊗ ν), (λ, ζ)) ,APCM}

where the category in the right is a certain full subcategory of the cat-
egory of internal actions of Gal ((M ⊗ (MoP ), P ⊗ P, µ⊗ ν), (λ, ζ)).
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