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Abstract. We generalize the definition of the precise center of a group to the crossed modules
context. We construct the Ganea map for the homology of crossed modules, and we study the
connections between the precise center of a crossed module and the Ganea map. We extend
some other known notions from group theory such as capable and relatively capable groups,
capable pairs and unicentral groups with the definitions of capable and unicentral crossed
modules. Finally we show how to apply these constructions to solve some open questions in
the theory of crossed modules.

1 Introduction

Originally the notions of capable group and unicentral group appeared separately.
Unicentral groups were introduced in the late 1960s by Evens in [10]. A group G is
called unicentral if the center of every central extension of G maps onto ZðGÞ.

On the other hand, capable groups were first studied by Baer [2] in the late 1930s.
A group is said to be capable if it is isomorphic to the group of inner automorphisms
of some group. While a characterization of abelian finitely generated capable groups
was already determined by Baer, investigation of capability for other classes of
groups has received renewed attention in the last decade.

In [4], Beyl, Felgner and Schmid showed that there is a common approach to ca-
pable and unicentral groups. They define for a given group G a central subgroup
Z�ðGÞ which is the smallest subject to being the image in G of the center of a central
extension of G. Moreover, Z�ðGÞ is also the smallest central subgroup of G whose
factor group is capable: also a group G is capable if and only if Z�ðGÞ ¼ 1 and G is
unicentral if and only if Z�ðGÞ ¼ ZðGÞ.

They also study a very interesting connection between the precise center of a group
Z�ðGÞ, the Schur multiplicator and the Ganea map: a central subgroup N of G sat-
isfies N HZ�ðGÞ precisely when the mapping H2ðGÞ ! H2ðG=NÞ is monomorphic.
This property implies that the precise center Z�ðGÞ is the left kernel of the Ganea
map gG : ZðGÞnGab ! H2ðGÞ.
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pean FEDER support included) and by Xunta de Galicia, PGIDITI06PXIB371128PR.



In this work we will extend this discussion on capability and unicentrality to the
crossed modules context.

The algebraic study of the category of crossed modules was initiated by Norrie
[15] in her thesis. She extended group-theoretic concepts and structures to crossed
modules. For example, she defined for each crossed module ðT ;G; qÞ its actor

AðT ;G; qÞ, a crossed module which generalizes the automorphism group of a group.
She constructed a canonical morphism ðh; gÞ : ðT ;G; qÞ ! AðT ;G; qÞ of crossed
modules, and the center ZðT ;G; qÞ of ðT ;G; qÞ was defined as the kernel of ðh; gÞ,
while its image is the inner actor IðT ;G; qÞ of ðT ;G; qÞ.

Recently Carrasco, Cegarra and R.-Grandjeán extended in [6] the Eilenberg–
MacLane (co)homology of groups with their cotriple (co)homology of crossed
modules. For each crossed module ðT ;G; qÞ, abelian crossed module ðA;B; f Þ and
for nd 1 they define the n-th homology crossed module HnðT ;G; qÞ of ðT ;G; qÞ, and
the n-th cohomology group H nððT ;G; qÞ; ðA;B; f ÞÞ of ðT ;G; qÞ with coe‰cients in

ðA;B; f Þ.
Furthermore, they generalized some classical results from the homology of groups.

We will be specially interested in two of them, which are generalizations of key
results for the treatment of several topics in group theory: the construction of a five-
term exact sequence for the homology of crossed modules, and a Hopf formula for
the second homology of a crossed module.

In [16], Pirashvili introduced the tensor product of two abelian crossed modules,
and he used it to construct the Ganea term, that is, a sixth term which extends the
five-term exact sequence

ðP;N; qÞn ðT ;G; qÞab ! H2ðT ;G; qÞ ! H2ðU ;Q;oÞ ! ðP;N; qÞ

! H1ðT ;G; qÞ ! H1ðU ;Q;oÞ ! 0

associated to a central extension of crossed modules

ðP;N; qÞf!ðT ;G; qÞ !!ðU ;Q;oÞ:

We will use all of these crossed module constructions to develop our notion of the
precise center of a crossed module.

We begin in Section 2 by recalling known facts about the category of crossed mod-
ules and the definition of the homology, which can be found in detail in [6] or in [15].
We deduce some basic properties of projective crossed modules which will be used
later.

In Section 3 we describe explicitly how the Ganea map

ðP;N; qÞn ðT ;G; qÞab ! H2ðT ;G; qÞ

introduced by Pirashvili in [16] is defined.
In Section 4 we introduce unicentral and capable crossed modules. In analogy with

capable and unicentral groups, we say that a crossed module ðT ;G; qÞ is capable if it
is isomorphic to the inner actor of some crossed module, and that ðT ;G; qÞ is unicen-
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tral if the center of every central extension of ðT ;G; qÞ maps onto ZðT ;G; qÞ. We also
define the precise center Z�ðT ;G; qÞ of a crossed module, which is seen to generalize
the precise center of a group. It has similar properties to those of the precise center of
a group, as was remarked above; then a crossed module ðT ;G; qÞ is capable if and
only if Z�ðT ;G; qÞ ¼ 0, and is unicentral if and only if Z�ðT ;G; qÞ ¼ ZðT ;G; qÞ.

We apply these properties to find out in which cases the typical examples of crossed
modules are capable or unicentral crossed modules.

In Section 5 we analyze the connections between the precise center of a crossed
module and the Ganea map. The main result of this section shows that a central
crossed submodule ðP;N; qÞ of ðT ;G; qÞ satisfies ðP;N; qÞHZ�ðT ;G; qÞ if and only
if the Ganea map ðP;N; qÞn ðT ;G; qÞab ! H2ðT ;G; qÞ is zero. This property will
provide us with some computable expressions for Z�ðT ;G; qÞ.

In Section 6 we study connections between capable crossed modules and some
other capability notions developed in [9] and [17], like capable pairs of groups or rel-

atively capable groups.
Finally, in Section 7, we apply all of these constructions to solve some open ques-

tions and prove results concerning perfect crossed modules which were conjectured
by Norrie in [15].

2 Projective crossed modules and the homology of crossed modules

A precrossed module ðT ;G; qÞ is a group homomorphism q : T ! G together with an
action of G on T , denoted by gt for t A T and g A G, and satisfying qðgtÞ ¼ gqðtÞg�1.
We call ðT ;G; qÞ a crossed module if in addition qðtÞt 0 ¼ tt 0t�1 for t; t 0 A T .

A crossed module morphism ðF;CÞ : ðT1;G1; q1Þ ! ðT2;G2; q2Þ is a pair of group
homomorphisms F : T1 ! T2 and C : G1 ! G2 such that C � q1 ¼ q2 �F and
FðgtÞ ¼ CðgÞFðtÞ for all t A T1 and g A G1. We say that ðF;CÞ is injective (surjective)
when both F and C are injective (surjective) homomorphisms.

We denote the category of crossed modules by CM.
A crossed module ðT ;G; qÞ is called aspherical if KerðqÞ ¼ 0. We call it simply con-

nected if ImðqÞ ¼ G.

Example 1. (1) Let N be a normal subgroup of G. The inclusion homomorphism
i : N ,! G with the action gn ¼ gng�1, g A G, n A N, is a crossed module. Every as-
pherical crossed module is isomorphic to a crossed module of the form ðN;G; iÞ.

(2) In particular, ðG;G; IdÞ and ð1;G; iÞ are crossed modules.
(3) ðA;G; 0Þ is a crossed module where A is an ordinary ZG-module.

(4) Every central extension of groups K f! T !!q G gives rise to a simply con-
nected crossed module ðT ;G; qÞ.

A crossed submodule ðN;Q; q 0Þ of a crossed module ðT ;G; qÞ is a crossed module
such that N and Q are respectively subgroups of T and G, the action of Q on N is
induced by the action of G on T and qjN ¼ q 0. We call ðN;Q; q 0Þ a normal crossed

submodule if in addition Q is normal in G, gn A N and qtt�1 A N for all n A N, q A Q,
t A T and g A G.
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If ðN;Q; qÞ is a normal crossed submodule of ðT ;G; qÞ, we define the quotient

crossed module ðT ;G; qÞ=ðN;Q; qÞ as ðT=N;G=Q; qÞ where the homomorphism q is
induced by q and G=Q acts on T=N by gQtN ¼ ðgtÞN for t A T and g A G.

The center ZðT ;G; qÞ of a crossed module ðT ;G; qÞ is the normal crossed submod-
ule ðT G; StGðTÞVZðGÞ; qÞ, where T G ¼ ft A T j gt ¼ t for all g A Gg, StGðTÞ denotes
the group fg A G j gt ¼ t for all t A Tg and ZðGÞ is the center of the group G.

A crossed module ðT ;G; qÞ is said to be abelian if ðT ;G; qÞ ¼ ZðT ;G; qÞ. Equiva-
lently T and G are abelian groups and G acts trivially on T . We denote the category
of abelian crossed modules by ACM.

If ðN;Q; qÞ is a normal crossed submodule of ðT ;G; qÞ, we define the commutator

crossed submodule ½ðT ;G; qÞ; ðN;Q; qÞ� of ðT ;G; qÞ and ðN;Q; qÞ, as the normal
crossed submodule ð½G;N�½Q;T �; ½G;Q�; qÞ of ðT ;G; qÞ, where ½G;N�½Q;T � denotes
the normal subgroup of T generated by the set of elements

fgnn�1; qtt�1 j n A N; t A T ; g A G and q A Qg

and ½G;Q� is the usual commutator subgroup of G with Q.
We call the abelian crossed module

ðT ;G; qÞab ¼
ðT ;G; qÞ

½ðT ;G; qÞ; ðT ;G; qÞ�

the abelianization of ðT ;G; qÞ.
In [6], Carrasco, Cegarra and R.-Grandjeán proved that the category of crossed

modules is an algebraic category, that is, that there is a tripleable forgetful functor
from the category CM to the category of sets Set.

Theorem 2 ([6]). The forgetful functor U : CM!Set, UðT ;G; qÞ ¼ T � G which

assigns to each crossed module ðT ;G; qÞ the cartesian product of the underlying sets

T and G is tripleable. Moreover U has as left adjoint the functor F : Set! CM,
FðX Þ ¼ ðFX ;FX � FX ; iÞ, where FX denotes the free group over the set X , FX is

the kernel of the projection h0; Idi of the free product FX � FX of groups onto the

second factor, and i denotes the inclusion homomorphism.

In consequence every free crossed module, i.e. every object FðXÞ, is a projective
object in the category CM, and so CM has enough projective objects since every
crossed module admits a projective presentation as a quotient of a free crossed mod-
ule by means of the counit of the adjunction between F and U.

We deduce the following properties of the projective crossed modules:

Proposition 3. Let ðY ;F ; mÞ be a projective crossed module. Then

(a) ðY ;F ; mÞ is aspherical,

(b) Y , F and F=Y are free groups, and

(c) Y V ½F ;F � ¼ ½F ;Y �.
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Proof. Take the presentation of ðY ;F ; mÞ as a quotient of a free crossed module

ðFX ;FX � FX ; iÞ ���!ðp;p 0Þ!ðY ;F ; mÞ:

Since ðY ;F ; mÞ is projective, the morphism ðp; p 0Þ splits. Then ðY ;F ; mÞ is isomorphic
to a crossed submodule of ðFX ;FX � FX ; iÞ, m is injective and F and Y are free
groups.

If we take the cokernels of m and i then in the diagram

Y f�����!m
F �����!m c

! F=Yf ��! f ��! !

FX f��!i FX � FX ���!h0; Idi! FX

p

���!! p 0
���!! !

Y f�����!m
F �����!m c

! F=Y

the composites of the morphisms in the two first columns are identities, and so the
composite in the third column also gives the identity. It follows that F=Y is a sub-
group of the free group FX , and so it is a free group. The Schur multiplicator of
F=Y is zero and (c) is true. r

The pair of adjoint functors F and U induces a cotriple ðC; d; eÞ in CM, and
following the general theory of cotriple homology of Barr and Beck [3], Carrasco,
Cegarra and R.-Grandjeán defined the homology crossed modules HnðT ;G; qÞ of
a crossed module ðT ;G; qÞ as the derived functors of the abelianization functor
ab : CM!ACM.

3 Ganea map for the homology of crossed modules

In [16], Pirashvili defined a tensor product of abelian crossed modules:

Definition 1. The tensor product of two abelian crossed modules ðA;B; f Þ and
ðC;D; gÞ is the abelian crossed module

ðA;B; f Þn ðC;D; gÞ ¼ ðCokerðaÞ;BnD; dÞ;

where a ¼ f f n Id;�Idn gg and d is induced on CokerðaÞ by the homomorphism
d ¼ hIdn g; f n Idi:

AnC ���!a ðBnCÞl ðAnDÞ ���!a c

! CokerðaÞ:???yd
d

BnD

!
The precise center of a crossed module 251



For a central extension of crossed modules

ðP;N; qÞf!ðT ;G; qÞ !!ðU ;Q;oÞ

Carrasco, Cegarra and R.-Grandjeán in [6] and Ladra and R.-Grandjeán in [13] con-
structed five-term exact sequences for the homology of crossed modules

H2ðT ;G; qÞ ���!ðs;s 0Þ H2ðU ;Q;oÞ ���! ðP;N; qÞ ���! H1ðT ;G; qÞ���! H1ðU ;Q;oÞ ���! 0:

Pirashvili announces in [16] the existence of a low-dimensional homology exact
sequence which extends the five-term exact sequence of Carrasco, Cegarra and
R.-Grandjeán:

Theorem 4 (Ganea map for the homology of crossed modules). Let

ðP;N; qÞf!ðT ;G; qÞ !!ðU ;Q;oÞ

be a central extension of crossed modules. There exists a natural morphism of abelian

crossed modules

wðP;N;qÞ : ðP;N; qÞn ðT ;G; qÞab ! H2ðT ;G; qÞ

which extends the five-term exact sequence for the homology of crossed modules:

ðP;N; qÞn ðT ;G; qÞab ! H2ðT ;G; qÞ ! H2ðU ;Q;oÞ ! ðP;N; qÞ

! H1ðT ;G; qÞ ! H1ðU ;Q;oÞ ! 0:

Next we give an explicit construction of this Ganea map.

Remark 5. Given a projective presentation of ðT ;G; qÞ

ðV ;R; mÞf��! ðY ;F ; mÞ ���!ðp;p 0Þ!ðT ;G; qÞ

there is a commutative diagram of extensions

ðW ;S; mÞ ���!! ðP;N; qÞ

f ��! f ��!

ðV ;R; mÞ f��! ðY ;F ; mÞ ���!ðp;p 0Þ! ðT ;G; qÞ���!!

ðU ;Q;oÞ

f�����
!

������!!
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making ðY ;F ; mÞ a projective presentation of ðU ;Q;oÞ, where ðW ;S; mÞ is the inverse
image of ðP;N; qÞ under ðp; p 0Þ. Using Hopf ’s formula for the second homology of a
crossed module (see [6]) we can express the morphism

ðs; s 0Þ : H2ðT ;G; qÞ ! H2ðU ;Q;oÞ

as

V V ½F ;Y �
½F ;V �½R;Y � ���!s W V ½F ;Y �

½F ;W �½S;Y �

m

???y ???ym

RV ½F ;F �
½F ;R� ���!s 0 S V ½F ;F �

½F ;S� :

From now on we will consider the homomorphism m of the aspherical crossed
module ðY ;F ; mÞ as an inclusion, and we will identify the elements of Y with their
images in F .

Lemma 6. ½ðY ;F ; mÞ; ðW ;S; mÞ�H ðV ;R; mÞ; that is, ½F ;S�HR, ½F ;W �HV and

½S;Y �HV.

This follows since ½ðP;N; qÞ; ðT ;G; qÞ� ¼ 0:

Proof of Theorem 4. Since

Kerðs; s 0Þ ¼ ½F ;W �½S;Y �
½F ;V �½R;Y � ;

½F ;S�
½F ;R� ; m

� �
we try to define a natural surjective morphism ðg; g 0Þ

CokerðaÞ ���!g! ½F ;W �½S;Y �
½F ;V �½R;Y �

d

???y ???ym

N nGab ���!g 0! ½F ;S�
½F ;R� :

The second component g 0 is up to inclusion the classical Ganea map for the integral
homology of groups associated to the central subgroup N of G (a construction can be
found in [8])

N nGab G
S

R
n

F

½F ;F �R! H2ðGÞG
RV ½F ;F �
½F ;R� ; sn f 7! ½ f ; s�:
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Now we construct g, which will be induced on CokerðaÞ by a homomorphism
hg1; g2i:

Pn
T

½G;T � ���!a N n
T

½G;T �

� �
l ðPnGabÞ ���!a c

! CokerðaÞ:

hg1; g2i

???y g

½F ;W �½S;Y �
½F ;V �½R;Y �

!

First, we obtain the homomorphism

g1 : N n
T

½G;T � G
S

R
n

Y

½F ;Y �V !
½F ;W �½S;Y �
½F ;V �½R;Y � ; sn y 7! ½y; s�

from the map

c1 : S � Y ! ½F ;W �½S;Y �
½F ;V �½R;Y � ; c1ðs; yÞ ¼ ½y; s�;

because c1 satisfies

c1ðss 0; yÞ ¼ c1ðs; yÞc1ðs 0; yÞ; c1ðs; yy 0Þ ¼ c1ðs; yÞc1ðs; y 0Þ;

c1ðS � ½F ;Y �Þ ¼ 0; c1ðS � VÞ ¼ 0; c1ðR� Y Þ ¼ 0

for all s; s 0 A S and y; y 0 A Y . We will check the equalities c1ðss 0; yÞ ¼ c1ðs; yÞc1ðs 0; yÞ
and c1ðs; yy 0Þ ¼ c1ðs; yÞc1ðs; y 0Þ; the others are clear:

c1ðss 0; yÞ ¼ ½y; ss 0� ¼ ½y; s�s½y; s 0�s�1 ¼ ½y; s� � s½y; s 0�s�1 ¼ ½y; s�½y; s 0�;

since ½S; ½S;Y ��H ½S;V �H ½F ;V � by Lemma 6, and

c1ðs; yy 0Þ ¼ ½yy 0; s� ¼ y½y 0; s�y�1½y; s� ¼ y½y 0; s�y�1 � ½y; s� ¼ ½y; s�½y 0; s�;

since ð½F ;W �½S;Y �Þ=ð½F ;V �½R;Y �Þ is an abelian group, and

½Y ; ½S;Y ��H ½Y ;V �H ½F ;V �

by Lemma 6.
The homomorphism

g2 : PnGab G
W

V
n

F

½F ;F �R!
½F ;W �½S;Y �
½F ;V �½R;Y � ; wn f 7! ½ f ;w�
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is obtained from the map

c2 : W � F ! ½F ;W �½S;Y �
½F ;V �½R;Y � ; c2ðw; f Þ ¼ ½ f ;w�;

because c2 satisfies

c2ðww 0; f Þ ¼ c2ðw; f Þc2ðw 0; f Þ; c2ðw; ff 0Þ ¼ c2ðw; f Þc2ðw; f 0Þ

c2ðW � ½F ;F �Þ ¼ 0; c2ðW � RÞ ¼ 0; c2ðV � F Þ ¼ 0

for all w;w 0 A W and f ; f 0 A F .
The induced homomorphism g ¼ hg1; g2i in the coproduct

N n
T

½G;T �

� �
l ðPnGabÞ !!

g ½F ;W �½S;Y �
½F ;V �½R;Y �

is clearly surjective, and the pair ðg; g 0Þ is easily seen to be a crossed module
morphism. The Ganea map wðP;N;qÞ is defined as the composite of ðg; g 0Þ with the
inclusion map

½F ;W �½S;Y �
½F ;V �½R;Y � ;

½F ;S�
½F ;R� ; m

� �
! H2ðT ;G; qÞ:

To prove that wðP;N;qÞ is a natural morphism which does not depend on the chosen
projective presentation, we take a morphism of central extensions

E : ðP;N; qÞ f��! ðT ;G; qÞ ���!! ðU ;Q;oÞ???y ðt; t 0Þ

???y ???y
~EE : ð ~PP; ~NN; ~qqÞ f��! ð ~TT ; ~GG; ~qqÞ ���!! ð ~UU ; ~QQ; ~ooÞ

and projective presentations of E and ~EE as in Remark 5. An easy calculation yields
the commutativity of the following diagram:

ðP;N; qÞn ðT ;G; qÞab ���!wðP; N; qÞ
H2ðT ;G; qÞ

ðt; t 0Þnðt; t 0Þab

???y ???yH2ðt; t 0Þ

ð ~PP; ~NN; ~qqÞn ð ~TT ; ~GG; ~qqÞab ���!wð ~PP; ~NN; ~qqÞ
H2ð ~TT ; ~GG; ~qqÞ:

Taking E ¼ ~EE and ðt; t 0Þ ¼ Id, we conclude that wðP;N;qÞ is independent of the chosen
projective presentation, since �n� and H2ð�Þ are functors. r

Remark 7. The Ganea map for crossed modules provides the classical Ganea map for
groups [8] when groups are considered as crossed modules in the usual ways.
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In general, the Ganea map for crossed modules is di¤erent from the Ganea map
for the homology of precrossed modules constructed in [1], even in the simplest exam-
ples. For example the Ganea map associated to the group extension Zf!Z!! 0 is
the zero map, since H2ðZÞ ¼ 0, the Ganea map associated to the crossed module
extension ðZ;Z; IdÞf!ðZ;Z; IdÞ !!ð0; 0; IdÞ is also the zero map, but considered as
a precrossed module extension its Ganea map for the homology of precrossed mod-
ules is a surjective morphism ðZ3;Z; dÞ !!ðZ; 0; 0Þ; see [1].

4 Capable and unicentral crossed modules

We shall introduce some kinds of crossed modules, like the unicentral and capable
crossed modules, which will be related to the Ganea map.

Definition 2. A crossed module ðU ;Q;oÞ is called unicentral if every central extension
ðj; j 0Þ : ðT ;G; qÞ !!ðU ;Q;oÞ satisfies ðj; j 0ÞðZðT ;G; qÞÞ ¼ ZðU ;Q;oÞ:

ZðT ;G; qÞ ���!! ZðU ;Q;oÞ

f��! f ��!

Kerðj; j 0Þ f��! ðT ;G; qÞ ���!ðj;j 0Þ! ðU ;Q;oÞ:
f�����

!

Definition 3. A crossed module ðU ;Q;oÞ is called capable if there is a crossed module
central extension

ZðT ;G; qÞf��! ðT ;G; qÞ ���!ðj;j 0Þ!ðU ;Q;oÞ:

Remark 8. The inner actor of a crossed module ðT ;G; qÞ was defined by Norrie [15] as
the quotient

IðT ;G; qÞ ¼ ðT ;G; qÞ
ZðT ;G; qÞ :

Therefore a crossed module is capable if and only if it is the inner actor of another
crossed module.

Example 9. A group G is called capable if it is the group of inner automorphisms
Q=ZðQÞ of some group Q; see [5]. Therefore G is capable if and only if ð1;G; iÞ or
ðG;G; IdÞ are capable crossed modules.

Definition 4. We define the precise center Z�ðU ;Q;oÞ of a crossed module
ðU ;Q;oÞ to be the intersection of the crossed submodules ðj; j 0ÞðZðT ;G; qÞÞ, where
ðj; j 0Þ : ðT ;G; qÞ !!ðU ;Q;oÞ is a central extension of ðU ;Q;oÞ.

Remark 10. (1) Note that in the definition of Z�ðU ;Q;oÞ, each ðj; j 0Þ is surjective, so
Z�ðU ;Q;oÞ is an intersection of central crossed submodules and then it is a central
and normal crossed submodule of ðU ;Q;oÞ.
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(2) From this definition we deduce that a crossed module ðU ;Q;oÞ is unicentral if
and only if Z�ðU ;Q;oÞ ¼ ZðU ;Q;oÞ. Next, we see that a crossed module ðU ;Q;oÞ
is capable if and only if Z�ðU ;Q;oÞ ¼ 0.

Originally we defined Z�ðU ;Q;oÞ as the intersection of some central crossed sub-
modules of ðU ;Q;oÞ, but it coincides with one of the central crossed submodules of
the intersection. Consider a projective presentation

ðV ;R; mÞf��! ðY ;F ; mÞ ���!ðp;p 0Þ!ðU ;Q;oÞ

of ðU ;Q;oÞ. For every normal crossed submodule ðH;X ; mÞp ðY ;F ; mÞ satisfying

½ðY ;F ; mÞ; ðV ;R; mÞ�H ðH;X ; mÞH ðY ;F ; mÞ, we will denote by ð ~HH; ~XX ; ~mmÞ the crossed
module

ðH;X ; mÞ
½ðY ;F ; mÞ; ðV ;R; mÞ� :

Let ðp; p 0Þ : ðY ;F ; mÞ !!ð ~YY ; ~FF ; ~mmÞ denote the canonical projection. Then there is a
central extension

ð ~VV ; ~RR; ~mmÞf��! ð ~YY ; ~FF ; ~mmÞ ���!ð~pp;ep 0Þ!ðU ;Q;oÞ

such that ð~pp; ep 0p 0Þ � ðp; p 0Þ ¼ ðp; p 0Þ:

½ðY ;F ; mÞ; ðV ;R; mÞ� ½ðY ;F ; mÞ; ðV ;R; mÞ�
f ��! f ��!

ðV ;R; mÞ f����������! ðY ;F ; mÞ���!! ðp;p 0Þ

���!! ðp;p 0Þ

ð ~VV ; ~RR; ~mmÞ f����������! ð ~YY ; ~FF ; ~mmÞ ���������!!
ð~pp;ep 0Þ ðU ;Q;oÞ:

�����������!!
Proposition 11. Z�ðU ;Q;oÞ ¼ ð~pp; ep 0p 0ÞðZð ~YY ; ~FF ; ~mmÞÞ.

Proof. We will see that for each central extension

ðP;N; qÞf��! ðT ;G; qÞ ���!ðj;j 0Þ!ðU ;Q;oÞ

of ðU ;Q;oÞ, there is an inclusion

ð~pp; ep 0p 0ÞðZð ~YY ; ~FF ; ~mmÞÞH ðj; j 0ÞðZðT ;G; qÞÞ:

Since ðY ;F ; mÞ is projective, there is a morphism ða; a 0Þ satisfying

ðj; j 0Þ � ða; a 0Þ ¼ ðp; p 0Þ:

The precise center of a crossed module 257



Then ða; a 0ÞðV ;R; mÞH ðP;N; qÞ, ða; a 0Þ½ðY ;F ; mÞ; ðV ;R; mÞ� ¼ 0, and ða; a 0Þ induces
a morphism ðb; b 0Þ such that ða; a 0Þ ¼ ðb; b 0Þ � ðp; p 0Þ:

½ðY ;F ; mÞ; ðV ;R; mÞ� f��! ðY ;F ; mÞ ���!ðp;p 0Þ! ð ~YY ; ~FF ; ~mmÞ

ða;a 0Þ ! ðb;b 0Þ

ðT ;G; qÞ:

 �����
��

One can easily verify that ðT ;G; qÞ ¼ ðP;N; qÞ � ðb; b 0Þð ~YY ; ~FF ; ~mmÞ, that is, T ¼ P � bð ~YYÞ
and G ¼ N � b 0ð ~FFÞ.

From this equality we deduce that

ðb; b 0ÞðZð ~YY ; ~FF ; ~mmÞÞHZððb; b 0Þð ~YY ; ~FF ; ~mmÞÞ ¼ ðbð ~YYÞb
0ð ~FFÞ; Stb 0ð ~FFÞbð ~YY ÞVZðb 0ð ~FFÞÞ; qÞ

H ðT b 0ð ~FF Þ; StGðbð ~YY ÞÞVCGðb 0ð ~FF ÞÞ; qÞ ¼ ZðT ;G; qÞ

where CGðb 0ð ~FF ÞÞ denotes the centralizer of b 0ð ~FFÞ in G.
Now

ð~pp; ep 0p 0Þ � ðp; p 0Þ ¼ ðp; p 0Þ ¼ ðj; j 0Þ � ða; a 0Þ ¼ ðj; j 0Þ � ðb; b 0Þ � ðp; p 0Þ;

which implies ð~pp; ep 0p 0Þ ¼ ðj; j 0Þ � ðb; b 0Þ, and then

ð~pp; ep 0p 0ÞðZð ~YY ; ~FF ; ~mmÞÞ ¼ ððj; j 0Þ � ðb; b 0ÞÞðZð ~YY ; ~FF ; ~mmÞÞH ðj; j 0ÞðZðT ;G; qÞÞ: r

Example 12. (1) Given a group G, Z�ðG;G; IdÞ ¼ ðZ�ðGÞ;Z�ðGÞ; IdÞ: for a free pre-
sentation R f! F !!p G of G,

ðR;R; IdÞf��! ðF ;F ; IdÞ ���!ðp;pÞ!ðG;G; IdÞ

is a projective presentation of the crossed module ðG;G; IdÞ, and therefore

ð~pp; ~ppÞðZðH;H; IdÞÞ ¼ ð~ppðZðHÞÞ; ~ppðZðHÞÞ; IdÞ

where H ¼ F=½F ;R�. Recall that ~ppðZðF=½F ;R�ÞÞ ¼ Z�ðGÞ by [5, Corollary 3.7, p.
208].

(2) Similarly we deduce that Z�ð1;G; iÞ ¼ ð1;Z�ðGÞ; iÞ from the projective presen-
tation

ð1;R; iÞf��! ð1;F ; iÞ ���!ð1;pÞ!ð1;G; iÞ

of a crossed module ð1;G; iÞ.
(3) For a simply connected crossed module ðT ;G; qÞ, if we denote its precise center

Z�ðT ;G; qÞ by ðZ�1 ;Z�2 ; qÞ, then Z�ðTÞHZ�1 and Z�ðGÞ ¼ Z�2 . Take a free presenta-
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tion V f! F !!p T of the group T , and p 0 ¼ q � p. We obtain a projective presenta-
tion

ðV ;R; iÞf��! ðF ;F ; IdÞ ���!ðp;p 0Þ!ðT ;G; qÞ:

Then

Z�ðT ;G; qÞ ¼ ð~pp; ep 0p 0ÞðZðH;H; IdÞÞ ¼ ð~ppðZðHÞÞ; ep 0p 0ðZðHÞÞ; qÞ
where H ¼ F=½F ;R�, which is also simply connected. But ep 0p 0ðZðHÞÞ ¼ Z�ðGÞ. Fur-
thermore, since ½F ;V �H ½F ;R�, the canonical induced homomorphisms

t :
F

½F ;V � !!
F

½F ;R� and e :
F

½F ;V � ! T

satisfy e ¼ ~pp � t and so

Z�ðTÞ ¼ e Z
F

½F ;V �

� �� �
¼ ð~pp � tÞ Z

F

½F ;V �

� �� �
H ~ppZ

F

½F ;R�

� �
:

Corollary 13. ðU ;Q;oÞ is capable if and only if Z�ðU ;Q;oÞ ¼ 0.

Proof. If ðU ;Q;oÞ is capable, then trivially there exists a central extension

ZðT ;G; qÞf��! ðT ;G; qÞ ���!ðj;j 0Þ!ðU ;Q;oÞ

where ðj; j 0ÞðZðT ;G; qÞÞ ¼ 0.
On the other hand, if

ðV ;R; mÞf��! ðY ;F ; mÞ ���!ðp;p 0Þ!ðU ;Q;oÞ

is a projective presentation of ðU ;Q;oÞ, then

ð~pp; ep 0p 0ÞðZð ~YY ; ~FF ; ~mmÞÞ ¼ Z�ðU ;Q;oÞ ¼ 0

by Proposition 11. Then Zð ~YY ; ~FF ; ~mmÞ ¼ ð ~VV ; ~RR; ~mmÞ and ðU ;Q;oÞG Ið ~YY ; ~FF ; ~mmÞ. r

Example 14. (1) By [5, Proposition 3.9] a group G is capable if and only if Z�ðGÞ ¼ 0.
Then G is capable if and only if it is capable as a crossed module in any of the usual
ways.

(2) If ðT ;G; qÞ is a simply connected capable crossed module, then both T and G

are capable groups.

Before continuing, we note that it would be interesting to study in depth the con-
nections between unicentrality and capability for crossed modules to the analogous
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notions from group theory, using the semidirect product of groups. As Gilbert
explains in [11], the center of a crossed module ðT ;G; qÞ is easily obtained from the
center ZðT zGÞ ¼ T G z ðStGðTÞVZðGÞÞ of the semidirect product T zG. How-
ever the equivalence between the notions of centrality for groups and crossed mod-
ules does not transfer to an equivalence between the notions of precise center of a
group and of a crossed module:

Proposition 15. Let ðU ;Q;oÞ be a crossed module, and denote the canonical pro-

jections from the semidirect product by p : U zQ! U and q : U zQ! Q. Then

ðpðZ�ðU zQÞÞ; qðZ�ðU zQÞÞ;oÞHZ�ðU ;Q;oÞ.

Proof. If ðj1; j2Þ : ðT ;G; qÞ !!ðU ;Q;oÞ is a central extension of crossed modules
then the homomorphism of groups

j1 z j2 : T zG!!U zQ; ðt; gÞ 7! ðj1ðtÞ; j2ðgÞÞ

is clearly a central extension of groups, since ZðT zGÞ ¼ T G z ðStGðTÞVZðGÞÞ.
Then Z�ðU ;Q;oÞ contains the intersection of all those crossed submodules of
ðU ;Q;oÞ of the form ðpðjðZðEÞÞÞ; qðjðZðEÞÞÞ;oÞ, with j : E !!U zQ a central
extension of groups. r

Corollary 16. Let ðU ;Q;oÞ be a crossed module.

(1) If U zQ is a unicentral group, then ðU ;Q;oÞ is unicentral.

(2) If ðU ;Q;oÞ is capable, then U zQ is a capable group.

Remark 17. The conditions of this Corollary are su‰cient but not necessary, and in
general the inclusion in Proposition 15 is not an equality. For example the crossed
module ðZ2;Z2; IdÞ is a unicentral but not a capable crossed module, since Z2 is a
unicentral non-capable group. However the product Z2 zZ2 ¼ Z2 � Z2 is a capable
group which is not unicentral.

5 Connections between the precise center and the Ganea map

Theorem 18. Let ðP;N; qÞ be a central crossed submodule of ðT ;G; qÞ.
Then ðP;N; qÞ is contained in Z�ðT ;G; qÞ if and only if, the Ganea map

wðP;N;qÞ : ðP;N; qÞn ðT ;G; qÞab ! H2ðT ;G; qÞ

induced by the extension

ðP;N; qÞf!ðT ;G; qÞ !! ðT ;G; qÞ
ðP;N; qÞ

is the zero map.
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Proof. If we take projective presentations of ðT ;G; qÞ and ðT ;G; qÞ=ðP;N; qÞ as in
Remark 5

ðW ;S; mÞ ���!! ðP;N; qÞ

f ��! f ��!
ðV ;R; mÞ f��! ðY ;F ; mÞ ���!ðp;p 0Þ! ðT ;G; qÞ���!!

ðT ;G; qÞ
ðP;N; qÞ

f�����
!

�������!!
then we know that ImðwðP;N;qÞÞ ¼ ½ð ~YY ; ~FF ; ~mmÞ; ð ~WW ; ~SS; ~mmÞ�. Using Proposition 11 we get
a commutative diagram

Zð ~YY ; ~FF ; ~mmÞ ���!! Z�ðT ;G; qÞ

f��! f ��!

ð ~VV ; ~RR; ~mmÞ f��! ð ~YY ; ~FF ; ~mmÞ ���!ð~pp;ep 0Þ! ðT ;G; qÞ

ðe; e 0Þ

���!! ���!! ðg; g 0Þ
Ið ~YY ; ~FF ; ~mmÞ ���!G ðT ;G; qÞ

Z�ðT ;G; qÞ :

f�����
!

Then we have the following chain of implications:

wðP;N;qÞ ¼ 0, ½ð ~YY ; ~FF ; ~mmÞ; ð ~WW ; ~SS; ~mmÞ� ¼ 0, ð ~WW ; ~SS; ~mmÞHZð ~YY ; ~FF ; ~mmÞ

, ðe; e 0Þð ~WW ; ~SS; ~mmÞ ¼ 0, ððg; g 0Þ � ð~pp; ep 0p 0ÞÞð ~WW ; ~SS; ~mmÞ ¼ 0

, ð~pp; ep 0p 0Þð ~WW ; ~SS; ~mmÞHZ�ðT ;G; qÞ:

Finally ð~pp; ep 0p 0Þð ~WW ; ~SS; ~mmÞ ¼ ðp; p 0ÞðW ;S; mÞ ¼ ðP;N; qÞ. r

Remark 19. In this proof it was also shown that for every crossed module ðT ;G; qÞ,
the quotient ðT ;G; qÞ=Z�ðT ;G; qÞ is a capable crossed module since it is isomorphic
to the inner actor of another crossed module. In fact, it is possible to prove that
Z�ðT ;G; qÞ is the intersection

Z�ðT ;G; qÞ ¼7fðP;N; qÞp ðT ;G; qÞ j ðT ;G; qÞ=ðP;N; qÞ is capableg;

and so this property gives us another way to define the precise center of a crossed
module analogous to the definition of the precise center of a group given in [17].
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Next we will construct a HOM functor right adjoint to the tensor product functor,
which will help us to give a detailed description of the precise center of a crossed
module.

For abelian crossed modules ðC;D; gÞ and ðE;F ; hÞ we will denote the following
homomorphism of abelian groups by HOMððC;D; gÞ; ðE;F ; hÞÞ:

HomGrpðD;EÞ ! HomACMððC;D; gÞ; ðE;F ; hÞÞ; r 7! ðrg; hrÞ:

Proposition 20 ([16]). The functor HOMððC;D; gÞ;�Þ : ACM!ACM is right ad-

joint to the functor �n ðC;D; gÞ, for each abelian crossed module ðC;D; gÞ.

ACM

�nðC;D;gÞ

???yx???HOMððC;D;gÞ;�Þ

ACM

Therefore, for every pair of abelian crossed modules ðA;B; f Þ and ðE;F ; hÞ there
exists a natural isomorphism of groups

HomACMððA;B; f Þn ðC;D; gÞ; ðE;F ; hÞÞ

GHomACMððA;B; f Þ;HOMððC;D; gÞ; ðE;F ; hÞÞÞ

which sends a morphism ðhf1; f2i;cÞ of abelian crossed modules

CokerðaÞ ���!d BnD

hf1;f2i

???y ???yc

E ��������!h
F

to the morphism ðF;CÞ

A ������������������!f
B

F

???y ???yC

HomGrpðD;EÞ ���! HomACMððC;D; gÞ; ðE;F ; hÞÞ

defined as follows: for a A A, b A B, c A C and d A D, FðaÞ A HomGrpðD;EÞ with
FðaÞðdÞ ¼ f2ðan dÞ, and CðbÞ ¼ ðfb

1 ;c
bÞ A HomACMððC;D; gÞ; ðE;F ; hÞÞ, where

fb
1 ðcÞ ¼ f1ðbn cÞ and cbðdÞ ¼ cðbn dÞ.

Corollary 21. For each central crossed submodule ðP;N; qÞ of ðT ;G; qÞ denote by

hðP;N;qÞ the natural isomorphism of abelian groups
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HomACMððP;N; qÞn ðT ;G; qÞab;H2ðT ;G; qÞÞ

! HomACMððP;N; qÞ;HOMððT ;G; qÞab;H2ðT ;G; qÞÞÞ:

Then Z�ðT ;G; qÞ ¼ KerðhZðT ;G;qÞðwZðT ;G;qÞÞÞ.

Proof. We have ðP;N; qÞHZ�ðT ;G; qÞ if and only if wðP;N;qÞ ¼ 0, and this holds if
and only if hðP;N;qÞðwðP;N;qÞÞ ¼ 0, by Theorem 18. But

hðP;N;qÞðwðP;N;qÞÞ ¼ hðP;N;qÞðwZðT ;G;qÞ � ðin ðT ;G; qÞabÞÞ ¼ hZðT ;G;qÞðwZðT ;G;qÞÞ � i;

where i denotes the inclusion ðP;N; qÞ ,! Z�ðT ;G; qÞ. r

If we compute the kernel of hZðT ;G;qÞðwZðT ;G;qÞÞ, we get the following characteriza-
tion of the precise center:

Corollary 22. If we denote Z�ðT ;G; qÞ by ðZ�1 ;Z�2 ; qÞ, then

Z�1 ¼ fr A T G j g2ðrn gÞ ¼ 0 for every g A Gabg;

and

Z�2 ¼ m A StGðTÞVZðGÞ
���� g1ðmn tÞ ¼ 0 for all t A T=½G;T �
g 0ðmn gÞ ¼ 0 for all g A Gab

( )
;

where g1, g2 and g 0 are the morphisms defined in Theorem 4.

Remark 23. It is clear that Z�2 is contained in

Z�ðGÞ ¼ fx A ZðGÞ j gGðxn gÞ ¼ 0 for every g A Gabg;

where gG denotes the classical Ganea map ZðGÞnGab ! H2ðGÞ.

From Theorem 18 we deduce the following characterization of capable crossed
modules:

Proposition 24. A crossed module ðT ;G; qÞ is capable if and only if for every non-zero

y A StGðTÞVZðGÞ and non-zero x A KerðqÞVT G, the Ganea maps associated to the

central crossed submodules ð0; hyi; qÞ and ðhxi; 0; qÞ are non-zero maps.

Proof. It su‰ces to prove that if ðT ;G; qÞ is not capable, then there exists some
element y or x satisfying the conditions of the proposition such that ðhxi; 0; qÞ or
ð0; hyi; qÞ is in Z�ðT ;G; qÞ:

If ðT ;G; qÞ is not capable then Z�ðT ;G; qÞ ¼ ðZ�1 ;Z�2 ; qÞ0 0, and there will be
a non-zero element x A RHT G or a non-zero element y A M H StGðTÞVZðGÞ. In
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this latter case, ð0; hyi; qÞHZ�ðT ;G; qÞ. In the first case, for 00 x A RHT G, if
qðxÞ0 0 then ð0; hqðxÞi; qÞHZ�ðT ;G; qÞ, and if x A KerðqÞ then

ðhxi; 0; qÞHZ�ðT ;G; qÞ: r

Remark 25. In this result, StGðTÞVZðGÞ can be easily replaced by StGðTÞVZ�ðGÞ.

Corollary 26. If ðT ;G; qÞ is a capable simply connected crossed module, then it is as-

pherical and ðT ;G; qÞG ðG;G; IdÞ with G a capable group.

Proof. For every non-zero x A KerðqÞVT G ¼ KerðqÞVZðTÞ ¼ KerðqÞ the Ganea
map associated to the crossed submodule ðhxi; 0; qÞ is non-zero. But

ðhxi; 0; qÞn ðT=½G;T �Þ;Gab; qÞ ¼ 0

since q is surjective, and so KerðqÞ ¼ 0. The corollary follows from Example 14. r

Example 27. (1) An example of a non-aspherical capable crossed module is the quo-
tient ðA;G; 0Þ=ZðA;G; 0Þ with A a non-trivial G-module, since the center of ðA;G; 0Þ
is ðAG; StGðAÞVZðGÞ; 0Þ and A=AG 0 0.

(2) Using the previous example we can get a capable crossed module ðT ;G; qÞ
with T and G non-capable groups. Consider the action of Z2 on Z2 lZ2 given by
1ð1; 0Þ ¼ ð0; 1Þ and 1ð0; 1Þ ¼ ð1; 0Þ, and then our capable crossed module is

ðZ2 lZ2;Z2; 0Þ
ZðZ2 lZ2;Z2; 0Þ ¼ ðZ2;Z2; 0Þ;

but Z2 is a non-capable group; see [5]. This is an example of a crossed module
whose precise center Z�ðT ;G; qÞ ¼ ðZ�1 ;Z�2 ; qÞ satisfies the inclusions Z�1 UZ�ðTÞ
and Z�2 UZ�ðGÞ.

(3) The abelian crossed module ðT ;G; qÞ ¼ ðZ4 � Z4;Z4 � Z2; Id� pÞ, where
p : Z4 !!Z2 denotes the canonical projection, is an example of a simply connected
crossed module whose precise center Z�ðT ;G; qÞ ¼ ðZ�1 ;Z�2 ; qÞ satisfies the inclusion
Z�ðTÞUZ�1 . Z�ðTÞ ¼ 0 since Z4 � Z4 is a capable group (see [5]), but Z�1 0 0 since
ðT ;G; qÞ is not capable, by Corollary 26.

From Theorem 18 we can also deduce the following characterization of the unicen-
tral crossed modules:

Corollary 28. For a crossed module ðT ;G; qÞ are equivalent:

(1) ðT ;G; qÞ is unicentral;

(2) the Ganea map wZðT ;G;qÞ : ZðT ;G; qÞn ðT ;G; qÞab ! H2ðT ;G; qÞ is zero;
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(3) the canonical homomorphism

H2ðT ;G; qÞ ! H2
ðT ;G; qÞ

ZðT ;G; qÞ

� �

is injective.

Example 29. (1) Since H2ðT ;G; qÞ ¼ 0, every projective crossed module is unicentral.
(2) A group G is unicentral if and only if it is unicentral considered as a crossed

module in any of the usual ways.
(3) If T is a unicentral group, then every simply connected crossed module ðT ;G; qÞ

is unicentral. Write Z�ðT ;G; qÞ ¼ ðZ�1 ;Z�2 ; qÞ; then

ZðTÞ ¼ Z�ðTÞHZ�1 HZðTÞ and qðZðTÞÞ ¼ qðZ�1 ÞHZ�2 H qðZðTÞÞ;

and so

Z�ðT ;G; qÞ ¼ ðZðTÞ; qðZðTÞÞ; qÞ ¼ ZðT ;G; qÞ:

(4) If ðT ;G; qÞ is a unicentral crossed module satisfying ZðGÞH StGðTÞ, then G

must clearly be unicentral. This property can be applied to the crossed modules of
the form ðN;G; iÞ with N pG or ðA;G; 0Þ with A a trivial G-module.

Corollary 30. Let ðT ;G; qÞ be a simply connected crossed module. If G is a unicentral

group then ðT ;G; qÞ is unicentral.

We will need the following lemma to prove Corollary 30:

Lemma 31. If ðT ;G; qÞ is a simply connected crossed module then H2ðT ;G; qÞ is

aspherical.

Proof. Take a projective presentation ðV ;R; iÞf!ðF ;F ; IdÞ !!ðT ;G; qÞ with i injec-
tive (see Example 12); then

H2ðT ;G; qÞG V V ½F ;F �
½F ;R� ;

RV ½F ;F �
½F ;R� ; i

� �

is aspherical. r

Proof of Corollary 30. Denote by ðs; s 0Þ the morphism

H2ðT ;G; qÞ ! H2
ðT ;G; qÞ

ZðT ;G; qÞ

� �
:
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By Lemma 31, H2ðT ;G; qÞ is aspherical, so we only have to prove that

s 0 : H2ðGÞ ! H2
G

qðZðTÞÞ

� �
is injective. But H2ðGÞ ! H2ðG=ZðGÞÞ is injective since G is unicentral, and then s 0

is injective too. r

6 Connections to relatively capable groups and capable pairs of groups

In [17], Shahriari began the study of the normal structure of capable groups, by
showing that certain groups, called relatively capable groups, can be normal sub-
groups of capable groups. Ellis continued in [9] the research on relatively capable
groups, and proposed an extension of capability theory for groups to a theory for
pairs of groups. By a pair of groups ðG;NÞ he understands a group G and a normal
subgroup N. A capable pair is a pair of groups ðG;NÞ such that there exists a group
M and a crossed module q : M ! G satisfying qðMÞ ¼ N and KerðqÞ ¼M G.

In a capable pair ðG;NÞ the group G is not necessarily capable. For example,
ðG; 1Þ is clearly a capable pair for every group G.

The connection between the two notions is given by the following proposition:

Proposition 32 ([9, Proposition 2]). A group N is relatively capable if and only if it is a

normal subgroup of some group G for which the pair ðG;NÞ is capable.

In the next proposition we show that both of the notions are related to our notion
of capable crossed module when we consider the normal subgroup N / G as the in-
clusion crossed module ðN;G; iÞ.

Proposition 33. Let N be a normal subgroup of a group G.

(1) If G is a capable group, then ðN;G; iÞ is a capable crossed module.

(2) If ðN;G; iÞ is a capable crossed module, then ðG;NÞ is a capable pair of groups.

Proof. (1) If we write Z�ðN;G; iÞ ¼ ðZ�1 ;Z�2 ; iÞ, then, by Remark 23,

Z�1 HZ�2 HZ�ðGÞ ¼ 0

and ðN;G; iÞ is capable.
(2) Since ðN;G; iÞ is capable there exists a crossed module ðM;R; qÞ making the

following diagram commutative:

M R f�������! M ���!j! N???y q

???y

f ��! i

StRðMÞVZðRÞ f��! R ���!j 0! G:
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The action of R on M induces an action of G on M. With this action j 0q is a crossed
module satisfying

Imðj 0qÞ ¼ ImðijÞ ¼ N and Kerðj 0qÞ ¼ KerðijÞ ¼ KerðjÞ ¼M R ¼M G;

and then the pair ðG;NÞ is capable. r

The converse of Proposition 33 (2) is not true. For example, if G is a non-capable
group then ðG; 1Þ is a capable pair, while ð1;G; iÞ is not a capable crossed module.
However we have the following Corollary:

Corollary 34. A group N is relatively capable if and only if it is a normal subgroup of

some group G for which the crossed module ðN;G; iÞ is capable.

7 Applications to perfect crossed modules and universal central extensions

Definition 5. A crossed module ðT ;G; qÞ is said to be perfect if it coincides with its
commutator crossed submodule

ðT ;G; qÞ ¼ ½ðT ;G; qÞ; ðT ;G; qÞ�:

This means that G is a perfect group and T ¼ ½G;T �.

Remark 35. By Corollary 28, every perfect crossed module ðT ;G; qÞ is unicentral
since ðT ;G; qÞab ¼ 0 and wZðT ;G;qÞ ¼ 0.

Algebraic K-theory provides important examples of unicentral crossed modules:

Example 36. (1) Given a two-sided ideal I of a ring R, we can construct the perfect
crossed modules ðEðIÞ;EðRÞ; iÞ, ðStðR; IÞ;StðRÞ; gÞ and ðK2ðR; IÞ;K2ðRÞ; gÞ, where
EðIÞ and EðRÞ are the groups of elementary matrices with coe‰cients in I and R,
StðRÞ and K2ðRÞ denote the Steinberg group and the second K-theory group of the
ring R, StðR; IÞ is the relative Steinberg group defined by Keune [12] and K2ðR; IÞ
denotes the second relative K-theory group introduced by Loday [14] and Keune
[12]. By Corollary 28, all of these are unicentral crossed modules.

(2) For a ring R, consider the groups MnðAÞ of n� n matrices with coe‰cients in
an R-bimodule A. Let MðAÞ be the inductive limit of the groups MnðAÞ, and denote
by M0ðAÞ the EðRÞ-module generated by the matrices EijðaÞ A MðAÞ with exactly
one non-zero entry a A A in the ði; jÞ position, with i 0 j. Then ðM0ðAÞ;EðRÞ; 0Þ is
a perfect and so unicentral crossed module.

Dennis and Igusa constructed in [7] an additive Steinberg StðRÞ-module
StðR;AÞ and a relative K-theory group K2ðR;AÞ such that the crossed modules
ðStðR;AÞ; StðRÞ; 0Þ and ðK2ðR;AÞ;K2ðRÞ; 0Þ are also perfect, and thus unicentral.

It is known that for groups the following is true [5, p. 117]:
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Proposition 37. If G is a perfect group, then ZðG=ZðGÞÞ ¼ 1.

The analogue of this proposition for crossed modules is also true:

Proposition 38. If ðT ;G; qÞ is a perfect crossed module, then

ZððT ;G; qÞ=ZðT ;G; qÞÞ ¼ 0:

Proof. Clearly ðT ;G; qÞ=ZðT ;G; qÞ is a perfect crossed module, and by Remark 35 it
is unicentral. Then

Z
ðT ;G; qÞ

ZðT ;G; qÞ

� �
¼ ðj; j 0ÞðZðT ;G; qÞÞ ¼ 0;

where ðj; j 0Þ is the central extension

ZðT ;G; qÞf��! ðT ;G; qÞ ���!ðj;j 0Þ! ðT ;G; qÞ
ZðT ;G; qÞ : r

In [15], Norrie defined for any crossed module ðT ;G; qÞ the group

tGðTÞ ¼ ft A T j gtt�1 A T G for all g A Gg:

Clearly T G H tGðTÞHT , and ðT ;G; qÞ is called fixed-point constrained if
tGðTÞ ¼ T G. Norrie does not prove Proposition 38, but the following:

Proposition 39. If ðT ;G; qÞ is a perfect crossed module then

ZððT ;G; qÞ=ZðT ;G; qÞÞ ¼ 0

if and only if ðT ;G; qÞ is fixed-point constrained.

From Propositions 38 and 39 we conclude the following result conjectured by
Norrie in [15, p. 86]:

Corollary 40. If ðT ;G; qÞ is a perfect crossed module then it is fixed-point constrained.

From this Corollary it is now easy to deduce the following result which Norrie
tried to prove in [15, pp. 115–126]:

Corollary 41. Let b ¼ ðb1; b2Þ : ðU1;U2; dÞ !!ðT ;G; qÞ be a crossed module central

extension of a crossed module ðT ;G; qÞ. Then b is the crossed module universal central

extension of ðT ;G; qÞ if and only if ðU1;U2; dÞ is a perfect crossed module and every

crossed module central extension of ðU1;U2; dÞ splits.
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Proof. The su‰cient condition is [15, Theorem 2.60]. The necessary condition follows
from [15, Theorem 2.64] and Corollary 40. r
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