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Abstract

We characterize the universal central extension of a perfect precrossed module giv-
ing two descriptions, one in terms of non abelian tensor products of groups and
other in terms of projective presentations. As application to relative algebraic K-
theory, we obtain that Milnor’s absolute and relative K2 groups are the kernel of
the universal central extension of the precrossed module determined by the groups
of the elementary matrices of a ring and relative to an ideal, respectively.
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1 Introduction

In [1] we proved that the category of precrossed modules is an algebraic cate-
gory and we defined cotriple homology and cohomology theories of precrossed 
modules. These theories were shown to generalize the Eilenberg-MacLane 
(co)homology groups if we consider a group G as a precrossed module (1, G, i) 
or (G, 1, 1). They also extend the low dimensional homology for crossed mod-
ules of Gilbert [9]. These theories are different from the homology groups of a 
precrossed P -module, where P is a fixed action group, defined in [7] and [10].

The aim of this article is to characterize the universal central extension of a 
perfect precrossed module. It is known that for a group P there exists the 
universal central extension of P if and only if P is a perfect group, and it is
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given by a commutator map P ⊗P � P with kernel H2(P ) [5]. To generalize
this result we introduce the notion of perfect precrossed module, that is, a pre-
crossed module which coincides with its commutator precrossed submodule,
and we prove that a precrossed module (M,P, µ) admits a universal central
extension if and only if (M,P, µ) is a perfect precrossed module.

We construct the universal central extension of a perfect precrossed module
(M,P, µ) in terms of a projective presentation of (M,P, µ). Another descrip-
tion of the universal central extension, in terms of non abelian tensor products
of groups, is given. We obtain that the universal central extension of (M,P, µ)
takes the form

H2(M,P, µ) � (M ⊗ (MoP ), P ⊗ P, µ⊗ ν) � (M,P, µ)

where H2(M,P, µ) denotes the second homology of the precrossed module
(M,P, µ). So the universal central extension of a precrossed module generalizes
the universal central extension of a group.

There are several articles in the literature concerning the universal central
extension in the category of crossed modules [15,16,9,6,17]. To emphasize the
difference between the universal central extensions in the categories of pre-
crossed and crossed modules we describe an example of a universal precrossed
(not crossed) central extension. We make use of some tools from Algebraic
K-theory like the Milnor’s relative K-theory group K2(I) associated to a two-
sided ideal I of a ring R. There is a perfect crossed module (E(I), E(R), i)
formed by the group E(R) of the elementary matrices of R, and the group of
elementary matrices relative to the ideal I. The universal precrossed central
extension of (E(I), E(R), i) is

(K2(I), K2(R), γ) � (St(I), St(R), γ) � (E(I), E(R), i)

where St(R) and K2(R) denote the Steinberg group and the second K-theory
group of the ring R, and St(I) andK2(I) denote their Stein relativizations [18].
As a consequence we get the isomorphisms of precrossed modulesH2(E(I), E(R),
i) ∼= (K2(I), K2(R), γ) and (St(I), St(R), γ) ∼= (E(I)⊗ (E(I)oE(R)), E(R)⊗
E(R), i⊗ν) which provide expressions for computing the relative groups St(I)
and K2(I). Next, we show that the quotient by the Peiffer elements of the
above central extension is the universal crossed central extension showed in
[9]

(St(R, I), St(R), γ) � (E(I), E(R), i)

where St(R, I) denotes the relative Steinberg group introduced by Loday [13]
and Keune [11]. An important consequence is that the kernel of (St(R, I), St(R),
γ) � (E(I), E(R), i) established in [9] is not the correct one. The correct
one is the second homology of crossed modules [6] of Carrasco, Cegarra and
GrandjeánHCCG

2 (E(I), E(R), i), or equivalently the second homology of crossed
modules [16] of Grandjeán and Ladra HGL

2 (E(I), E(R), i).
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We begin in section 2 by recalling standard facts about the category of pre-
crossed modules such as its tripleability and the existence and construction of
free precrossed modules. Then, we make a short description of the precrossed
module homology developed in [1] completed with a five term exact sequence
in homology of precrossed modules and a Hopf type formula for the second
homology of a precrossed module. This five term exact sequence in homology
generalizes the Stallings and Stammbach five term exact sequence in integral
homology of groups, by the same way the Hopf’s formula for the second ho-
mology of a precrossed module generalizes the classical Hopf’s formula for the
second integral homology group.

In section 3 we make the general study of the universal central extensions
of precrossed modules. We obtain expressions of the universal central exten-
sion of a perfect precrossed module (M,P, µ) in terms of a fixed projective
presentation of (M,P, µ), and in terms of the non abelian tensor product of
groups.

Finally, in section 4 we work out the application to relative algebraic K-theory
described above.

2 Homology of precrossed modules

A precrossed module (M,P, µ) is a group homomorphism µ : M → P together
with an action of P on M , denoted pm for p ∈ P and m ∈ M , satisfying
µ(pm) = pµ(m)p−1 for all p ∈ P and m ∈ M . If in addition it verifies the
Peiffer’s identity µ(m)m′ = mm′m−1 for all m,m′ ∈ M , we say that (M,P, µ)
is a crossed module.

Example 1 Let P,G be groups with P acting on G non trivially or with
G a non abelian group. Then (GoP, P, π) is a precrossed module and not a
crossed module, where GoP denotes the semidirect product of G and P , π
is the natural surjection from GoP onto P and the action of P on GoP is
p′(g, p) = (p

′
g,p
′
p) [4]. In particular, if G is a non abelian group, (G, 1, 1) is a

precrossed module and is not a crossed module.

A precrossed module morphism (Φ,Ψ) : (M1, P1, µ1) −→ (M2, P2, µ2) is a
pair of group homomorphisms Φ : M1 → M2 and Ψ : P1 → P2 such that
Ψ ◦ µ1 = µ2 ◦ Φ and Φ(pm) = Ψ(p)Φ(m) for all p ∈ P1 and m ∈M1.

We denote the category of precrossed modules by PCM.

A morphism (Φ,Ψ) in PCM is said to be injective (surjective) if both Φ and
Ψ are injective (surjective) group homomorphisms.
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A precrossed submodule (N,Q, µ′) of a precrossed module (M,P, µ) is a pre-
crossed module such that N and Q are respectively subgroups of M and P ,
the action of Q on N is induced by the one of P on M and µ|N = µ′. It is said
to be a normal precrossed submodule if besides N and Q are normal in M and
P , pn ∈ N and qmm−1 ∈ N for all p ∈ P , q ∈ Q, m ∈M and n ∈ N .

If (N,Q, µ) is a normal precrossed submodule of (M,P, µ), we define the quo-
tient precrossed module (M,P, µ)/(N,Q, µ) as (M/N,P/Q, µ) where the ho-
momorphism µ is induced by µ and P/Q acts on M/N by pQmN = (pm)N
for p ∈ P and m ∈M .

We call Peiffer subgroup of a precrossed module (M,P, µ) the subgroup 〈M,M〉
of M generated by the Peiffer elements m1m2m

−1
1

µ(m1)m−1
2 with m1,m2 ∈M .

It is a normal subgroup of M , and the quotient (M,P, µ)/(〈M,M〉, 1, 1) is a
crossed module.

The kernel of a precrossed module morphism (Φ,Ψ) : (M1, P1, µ1)→ (M2, P2, µ2)
is the normal precrossed submodule (KerΦ, KerΨ, µ1) of (M1, P1, µ1). Its im-
age is the precrossed submodule (ImΦ, ImΨ, µ2) of (M2, P2, µ2).

In [1] we introduced analogues to some basic concepts from group theory, like
centre or commutator subgroups, in the category of precrossed modules. In
the case of crossed modules these concepts were introduced by Norrie [15].

The centre Z(M,P, µ) of a precrossed module (M,P, µ) is the normal pre-
crossed submodule (Inv(M) ∩ Z(M), StP (M) ∩ Z(P ), µ), where StP (M) de-
notes the group {p ∈ P |p m = m for all m ∈ M}, Inv(M) = {m ∈ M |
µ(m) ∈ StP (M) and pm = m for all p ∈ P} and Z(M), Z(P ) denote the
centres of M and P . Z(M,P, µ) is the maximal central precrossed submodule
of (M,P, µ).

A precrossed module (M,P, µ) is said to be abelian if (M,P, µ) = Z(M,P, µ).
Equivalently M and P are abelian groups and P acts trivially on M .

If (N,Q, µ) and (R,K, µ) are normal precrossed submodules of (M,P, µ), we
define the commutator precrossed submodule [(N,Q, µ), (R,K, µ)] of (N,Q, µ)
and (R,K, µ) as the normal precrossed submodule ([Q,R] [K,N ] [N,R] , [Q,K] , µ)
of (M,P, µ), where [Q,R] denotes the normal subgroup of M generated by the
elements {qrr−1 | q ∈ Q, r ∈ R}, [K,N ] denotes the normal subgroup of M

generated by the elements
{
knn−1 | k ∈ K,n ∈ N

}
and [N,R] and [Q,K] de-

note the usual commutator subgroups of N with R and Q with K.

In particular, the commutator precrossed submodule of a precrossed module
(M,P, µ) is [(M,P, µ), (M,P, µ)] = ([M,M ] [P,M ], [P, P ] , µ). It is the small-
est normal precrossed submodule of (M,P, µ) making the quotient an abelian
precrossed module.
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The inclusion of abelian precrossed modulesAPCM in PCM has a left adjoint
ab : PCM −→ APCM termed the abelianisation functor, which assigns to a
precrossed module (M,P, µ) the abelian precrossed module (M,P, µ)ab = (M/
[M,M ] [P,M ] , P/ [P, P ] , µ).

The forgetful functor U : PCM −→ Set , U(M,P, µ) = M × P , that assigns
to each precrossed module (M,P, µ) the cartesian product of the underlying
sets M and P, is tripleable. Its left adjoint, the free precrossed module functor
F : Set −→ PCM is given by F(X) = (F , F ∗F, 〈i1, Id〉|F ), where F is the free

group over X, F = Ker(F ∗(F ∗F )
〈0,Id〉−→ F ∗F ), 〈i1, Id〉 : F ∗(F ∗F ) −→ F ∗F ,

i1 : F � F ∗F is the first inclusion in the coproduct, and F ∗F acts on F by
conjugation.

The category PCM has enough projective objects. Each precrossed module
admits a presentation by a projective precrossed module through the counit of
the adjunction between U and F . In [1] it can be found an useful construction
of a family of projective precrossed modules.

For a precrossed module (M,P, µ) let us consider the cotriple resolution C·(M,P, µ)→
(M,P, µ) associated to the functors F and U . Particularizing Barr and Beck’s
cotriple homology [2], we define, for n ≥ 1, the homology precrossed modules
of the precrossed module (M,P, µ) by

Hn(M,P, µ) = Hn−1((C·(M,P, µ))ab , ∂∗) [1].

Theorem 2 (Five term exact sequence in homology of precrossed modules)

Let 0 −→ (R,K, ∂)
i−→ (T,G, ∂)

p−→ (M,P, µ) −→ 0 be an exact sequence of
precrossed modules. There exists a natural exact sequence of abelian precrossed
modules

H2(T,G, ∂)−→H2(M,P, µ) −→ (R,K, ∂)/ [(T,G, ∂), (R,K, ∂)]

−→H1(T,G, ∂) −→ H1(M,P, µ) −→ 0

The proof of Theorem 2 is analogous to the one of [6, Theorem 12]. It requires
the following routine extension of [6, Lemma 11]:

Lemma 3 Let 0 −→ (R,K, ∂)
i−→ (T,G, ∂)

p−→ (M,P, µ) −→ 0 be an exact
sequence of precrossed modules. If p admits a section, then the sequence

0→ (R,K, ∂)/ [(T,G, ∂), (R,K, ∂)]→ H1(T,G, ∂)→ H1(M,P, µ)→ 0

is a split short exact sequence of abelian precrossed modules.

Theorem 2 will help us to give a Hopf type formula for the second homology
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precrossed module H2(M,P, µ), in terms of an arbitrary projective presenta-
tion of a precrossed module (M,P, µ).

Corollary 4 If (V,R, τ) � (Y, F, τ)
π
� (M,P, µ) is a projective presentation

of a precrossed module (M,P, µ), then there exists a natural isomorphism of
abelian precrossed modules

H2(M,P, µ) ∼= (V,R, τ) ∩ [(Y, F, τ), (Y, F, τ)] / [(Y, F, τ), (V,R, τ)]

Proof Apply the five term exact sequence to the projective presentation of
(M,P, µ). Since H2(Y, F, τ) = 0 it follows that
Ker((V,R, τ)�[(Y, F, τ), (V,R, τ)] −→ (Y, F, τ)�[(Y, F, τ), (Y, F, τ)]) =
(V,R, τ) ∩ [(Y, F, τ), (Y, F, τ)]�[(Y, F, τ), (V,R, τ)] ∼= H2(M,P, µ).

Example 5 The analogous classical theorems in integral homology of groups
can be deduced from these results. If we take a short exact sequence of groups
0→ K → G→ P → 0, we can consider it as a sequence of precrossed modules
0 → (K, 1, 1) → (G, 1, 1) → (P, 1, 1) → 0 or 0 → (1, K, i) → (1, G, i) →
(1, P, i) → 0 and the resulting five term exact sequence of Theorem 2 is the
five term exact sequence in integral homology of groups

H2(G) −→ H2(P ) −→ K/ [G,K] −→ H1(G) −→ H1(P ) −→ 0

considered as precrossed modules in the corresponding way.

On the other hand, the Hopf’s formula for a projective presentation (Y,R, τ) �

(Y, F, τ)
π
� (1, P, i) provides the Hopf’s formula for the group H2(P ) consid-

ered as a precrossed module H2(1, P, i) ∼= (1, R ∩ [F, F ] / [F,R] , i).

3 Universal central extension of a perfect precrossed module

A precrossed module (M,P, µ) is said to be perfect if (M,P, µ) coincides with
its commutator precrossed submodule. This means that P is a perfect group
and M = [M,M ] [P,M ] (in the notation of [13] P is a perfect group and M is
a P -perfect P -group). Using the fact that the category of precrossed modules
is equivalent to the category of simplicial groups of length 1 [3], observe that
a precrossed module is perfect if and only if the corresponding truncated
simplicial group is perfect in dimension 1.

We call a central extension of (M,P, µ) a surjective morphism of precrossed
modules ψ = (ψ1, ψ2) : (X1, X2, δ) � (M,P, µ) such thatKerψ ⊂ Z(X1, X2, δ).
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A central extension φ : (U1, U2, ω) � (M,P, µ) of (M,P, µ) is said to be uni-
versal if for every central extension ψ : (X1, X2, δ) � (M,P, µ) of (M,P, µ)
there exists an unique morphism f : (U1, U2, ω) → (X1, X2, δ) making com-
mutative the following diagram

(U1, U2, ω)
φ
� (M,P, µ)

↓ f ‖

(X1, X2, δ)
ψ
� (M,P, µ)

Lemma 6 Let α = (α1, α2) : (Y1, Y2, σ) � (M,P, µ) and β = (β1, β2) :
(X1, X2, δ) � (M,P, µ) be two central extensions of a precrossed module
(M,P, µ), with (Y1, Y2, σ) a perfect precrossed module.

Then there exists at most one precrossed module morphism

f : (Y1, Y2, σ)→ (X1, X2, δ)

such that α = βf .

Proof Suppose that there are two morphisms f = (f1, f2) and g = (g1, g2)
making the following diagram commute

(Y1, Y2, σ)
α
� (M,P, µ)

f ↓ ↓ g ‖

(X1, X2, δ)
β
� (M,P, µ)

For each element a ∈ Y2 there exists an element ka ∈ Kerβ2 ⊂ Z(X2) ∩
stX2(X1) such that f2(a) = g2(a)ka since g2(a)−1f2(a) ∈ Kerβ2. Analogously
for each element b ∈ Y1 there exists an element cb ∈ Kerβ1 ⊂ Z(X1)∩Inv(X1)
such that f1(b) = g1(b)cb.

We will check that f2 and g2 coincide in the commutators of elements of Y2: for
each z, y ∈ Y2, f2(zyz−1y−1) = f2(z)f2(y)f2(z)−1f2(y)−1 = g2(z)kzg2(y)kyk

−1
z

g2(z)−1k−1
y g2(y)−1 = g2(z)g2(y)g2(z)−1g2(y)−1 = g2(zyz−1y−1).

Analogously, f1 and g1 coincide in the generators of Y1.

Lemma 7 Let β = (β1, β2) : (X1, X2, δ) � (M,P, µ) be a central extension of
a perfect precrossed module (M,P, µ). Then, the commutator precrossed sub-
module [(X1, X2, δ), (X1, X2, δ)] is perfect, and β : [(X1, X2, δ), (X1, X2, δ)] �
(M,P, µ) is a central extension of (M,P, µ).
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Proof The second assertion is clear since β([(X1, X2, δ), (X1, X2, δ)]) =
[β(X1, X2, δ), β(X1, X2, δ)] = (M,P, µ).

To see that [(X1, X2, δ), (X1, X2, δ)] is perfect, we will prove the three following
equalities:

[X1, X1] = [[X1, X1] [X2, X1] , [X1, X1] [X2, X1]]

[X2, X1] = [[X2, X2] , [X1, X1] [X2, X1]]

[X2, X2] = [[X2, X2] , [X2, X2]]

The restriction of β to the precrossed submodule [(X1, X2, δ), (X1, X2, δ)] is a
surjection, so for each element x ∈ X1 there are elements x̃ ∈ [X1, X1][X2, X1]
and ax ∈ Kerβ1 ⊂ Z(X1)∩XX2

1 such that x = x̃ax. For each element u ∈ X2

there are also elements ũ ∈ [X2, X2] and bu ∈ Kerβ2 ⊂ Z(X2)∩stX2(X1) such
that u = ũbu.

Now, for every x, y ∈ X1 and u, v ∈ X2 it is verified that xyx−1y−1 =
x̃ỹx̃−1ỹ−1,u xx−1 =ũ x̃x̃−1 and uvu−1v−1 = ũṽũ−1ṽ−1.

Theorem 8 Let (V,R, τ) � (Y, F, τ)
π
� (M,P, µ) be a projective presenta-

tion of a perfect precrossed module (M,P, µ). Then the induced central exten-
sion

[(Y, F, τ), (Y, F, τ)] / [(Y, F, τ), (V,R, τ)] � (M,P, µ)

with kernel H2(M,P, µ) is the universal central extension of (M,P, µ).

Proof We will check the universal property for this induced central extension.

Given a central extension (X1, X2, δ)
α
� (M,P, µ), there exists a morphism

φ : (Y, F, τ) −→ (X1, X2, δ) such that π = αφ, since (Y, F, τ) is a projective
precrossed module.

(Y, F, τ)

φ ↓ ↘

(X1, X2, δ)
α
� (M,P, µ)

Since α is a central extension φ([(Y, F, τ), (V,R, τ)]) = 1, so φ induces a mor-
phism φ′ : (Y, F, τ)� [(Y, F, τ), (V,R, τ)] −→ (X1, X2, δ) that we restrict to
[(Y, F, τ), (Y, F, τ)]� [(Y, F, τ), (V,R, τ)]

[(Y, F, τ), (Y, F, τ)]�[(Y, F, τ), (V,R, τ)]

φ′ ↓ ↘

(X1, X2, δ)
α
� (M,P, µ)

8



Uniqueness follows from Lemma 6 and Lemma 7.

If φ : (U1, U2, ω) � (M,P, µ) is the universal central extension of a pre-
crossed module (M,P, µ), then (M,P, µ) must be a perfect precrossed module;
actually, (U1, U2, ω) must be a perfect precrossed module. If (U1, U2, ω) was

not a perfect precrossed module then the canonical projection (U1, U2, ω)
π
�

(U1, U2, ω)ab would be a non zero morphism. φ would not be universal since
there exist at least two different morphisms into the second projection (U1, U2, ω)ab
×(M,P, µ) � (M,P, µ)

(U1, U2, ω)
φ
� (M,P, µ)

{φ, 0} ↓ ↓ {φ, π} ‖

(U1, U2, ω)ab × (M,P, µ) � (M,P, µ)

Our next objective is to give an expression of the universal central extension of
a perfect precrossed module in terms of non-abelian tensor products of groups.

Recall that given two groups M and N equipped with an action of M on N
and an action of N on M the tensor product M ⊗ N is the group generated
by the symbols m⊗ n, for m ∈M and n ∈ N , with relations

mm′ ⊗ n= (mm′ ⊗m n)(m⊗ n)

m⊗ nn′= (m⊗ n)(nm⊗n n′)

for all m,m′ ∈M and n, n′ ∈ N , understanding that each group acts on itself
by conjugation [5].

Given these actions, the free product M ∗ N acts on both M and N . The
following proposition is a summary of the main properties of the tensor prod-
uct in the case that the actions verify the compatibility conditions, that is,
(mn)m′ = mnm−1

m′ and (nm)n′ = nmn−1
n′ if m,m′ ∈M and n, n′ ∈ N .

Proposition 9 ([5])

(a) The free product M ∗ N acts on M ⊗ N by p(m ⊗ n) = pm ⊗p n, for
m ∈M , n ∈ N and p ∈M ∗N.

(b) There are homomorphisms λ : M ⊗ N → M and λ′ : M ⊗ N → N ,
λ(m⊗ n) = mnm−1, λ′(m⊗ n) = mnn−1 for m ∈M and n ∈ N .

(c) λ and λ′ are crossed modules.
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(d) If l ∈M⊗N , m ∈M and n ∈ N then λ(l)⊗n = l nl−1 and m⊗λ′(l) = ml
l−1.

(e) The actions of M on Ker(λ′) and N on Ker(λ) are trivial.

(f) If l, l′ ∈M ⊗N , then [l, l′] = λ(l)⊗ λ′(l′).

If (M,P, µ) is a perfect precrossed module then P is a perfect group, and there
exists the universal central extension of the group P [5]:

ζ : P ⊗ P � P

p⊗ q ; [p, q]

On the other hand, M is a normal subgroup of the semidirect product MoP .
So we can consider the tensor product M ⊗ (MoP ) with both of the groups
acting on each other by conjugation.

Denote by ν : MoP −→ P the group homomorphism defined by ν(m, p) =
µ(m)p, for m ∈ M and p ∈ P . Plainly (MoP, P, ν) is a precrossed module
and Example 1 is a special case of that. Furthermore it is a crossed module if
and only if M is abelian and P operates trivially on it.

Proposition 10 If (M,P, µ) is a precrossed module then (M ⊗ (MoP ), P ⊗
P, µ ⊗ ν) is also a precrossed module, and (λ, ζ) : (M ⊗ (MoP ), P ⊗ P, µ ⊗
ν) −→ (M,P, µ) is a precrossed module morphism.

Proof There is an action of P on M ⊗ (MoP ) given by p(m ⊗ (n, q)) =
pm ⊗ (pn, pqp−1) for p ∈ P and m ⊗ (n, q) ∈ M ⊗ (MoP ) that induces the
one of P ⊗ P on M ⊗ (MoP ) via ζ.

The homomorphism

µ⊗ ν : M ⊗ (MoP ) −→ P ⊗ P

is defined by (µ⊗ν)(m⊗(n, q)) = µ(m)⊗µ(n)q. We see that (M⊗(MoP ), P⊗
P, µ ⊗ ν) is a precrossed module by checking that µ ⊗ ν composed with the
crossed module ζ is a precrossed module and µ⊗ ν is P -equivariant.

ζ◦(µ⊗ν)(p(m⊗(n, q))) = ζ◦(µ⊗ν)(pm⊗(pn, pqp−1)) = [µ(pm), µ(pn)pqp−1] =
[pµ(m)p−1, pµ(n)qp−1] = p [µ(m), µ(n)q] p−1 = p(ζ ◦ (µ ⊗ ν)(m ⊗ (n, q))) for
p ∈ P and m⊗ (n, q) ∈M ⊗ (MoP ).

Using Proposition 9 (b) we get a homomorphism λ : M ⊗ (MoP ) −→ M ,
given by λ(m⊗ (n, q)) = mn qm−1n−1.
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The pair (λ, ζ) is a precrossed module morphism. First we check that ζ ◦
(µ⊗ ν) = µ ◦ λ: ζ ◦ (µ⊗ ν) (m⊗ (n, q)) = [µ(m), µ(n)q] = µ (mn qm−1n−1) =
= (µ ◦ λ) (m⊗ (n, q)) for m⊗ (n, q) ∈M ⊗ (MoP ).

On the other hand, λ (x⊗y (m⊗ (n, q))) = λ
(

[x,y]m⊗ ([x,y]n, [x, y] q [x, y]−1)
)

=
[x,y]m[x,y]n[x,y]qm−1 [x,y]n−1 =[x,y] (mn qm−1n−1) =ζ(x⊗y) λ (m⊗ (n, q)) for x⊗
y ∈ P ⊗ P and m⊗ (n, q) ∈M ⊗ (MoP ).

Theorem 11 If (M,P, µ) is a perfect precrossed module, then (λ, ζ) is the
universal central extension of (M,P, µ).

Proof (λ, ζ) is surjective since the precrossed module (M,P, µ) coincides with
its commutator submodule.

λ and ζ are crossed modules by Proposition 9 (c), soKer(λ) ⊂ Z (M ⊗ (MoP ))
and Ker (ζ) ⊂ Z (P ⊗ P ). From Proposition 9 (e) P acts trivially on Ker(λ)
and then Ker(λ) ⊂ Inv(M ⊗ (MoP )), and Ker(ζ) ⊂ stP⊗P (M ⊗ (MoP ))
since P ⊗ P acts on M ⊗ (MoP ) via ζ.

The central extension (λ, ζ) is universal. Given an arbitrary central extension
of (M,P, µ)

ψ = (ψ1, ψ2) : (X1, X2, δ) � (M,P, µ),

let s1 : M → X1 and s2 : P → X2 be set theoretic sections of ψ1 and
ψ2, respectively. For m ∈ M and (n, q) ∈ MoP , the element s1(m)s1(n)
s2(q)s1(m)−1s1(n)−1 ∈ X1 does not depend on the choice of s1 and s2: if
s′1 and s′2 are other sections of ψ1 and ψ2, there are xm, xn ∈ Ker(ψ1) ⊂
Z(X1) ∩ Inv(X1) such that s′1(m) = s1(m)xm and s′1(n) = s1(n)xn; there
is also an yq ∈ Ker(ψ2) ⊂ Z(X2) ∩ stX2(X1) such that s′2(q) = s2(q)yq, so
s′1(m)s′1(n)s

′
2(q)s′1(m)−1s′1(n)−1 = s1(m)xms1(n)xn

s2(q)yq(x−1
m s1(m)−1)x−1

n s1(n)−1

= s1(m)s1(n)s2(q)s1(m)−1s1(n)−1.

It is clear that for p, q ∈ P the element [s2(p), s2(q)] ∈ X2 does not depend
on the choice of s2. It is straightforward that the maps M × (M o P ) →
X1, (m, (n, q)) ; s1(m)s1(n)s2(q)s1(m)−1s1(n)−1 and P × P → X2, (p, q) ;

[s2(p), s2(q)] factor throught M ⊗ (M o P ) and P ⊗ P inducing two group
homomorphisms

M ⊗ (MoP )
f1−→ X1

m⊗ (n, q) ; s1(m)s1(n)s2(q)s1(m)−1s1(n)−1

P ⊗ P f2−→ X2

p⊗ q ; [s2(p), s2(q)]

11



It is verified that the pair (f1, f2) : (M⊗(MoP ), P ⊗P, µ⊗ν) −→ (X1, X2, δ)
is a precrossed module morphism, that makes the following triangle commute

(M ⊗ (MoP ), P ⊗ P, µ⊗ ν) −→ (M,P, µ)

(f1, f2) ↓ ↗

(X1, X2, δ)

It only remains to prove the uniqueness of (f1, f2). If (f ′1, f
′
2) : (M⊗(MoP ), P⊗

P, µ⊗ ν) −→ (X1, X2, δ) is a precrossed module morphism such that (λ, ζ) =
(ψ1, ψ2)◦ (f ′1, f

′
2) then f2 = f ′2, since ζ is the universal central extension of the

group P . Since each generator m⊗ (n, q) ∈M ⊗ (MoP ) can be discomposed
in m⊗ (n, q) = m⊗ ((1, q)(q

−1
n, 1)) = (m⊗ (1, q))(qm⊗ (n, 1)) we can restrict

us to see that f1 and f ′1 coincide on the generators m⊗ (n, 1) and m⊗ (1, q)
of M ⊗ (MoP ).

Let

λ′′ : M ⊗ (MoP ) −→MoP

m⊗ (n, q) ; (mn qm−1n−1, 1)

be the composite of λ in Proposition 9 (b) with the canonical inclusion M ↪→
M o P . Since (n, 1) ∈ Im (λ′′) and m ∈ Im (λ) there exist elements l, l′ ∈
M ⊗ (MoP ) such that λ′′ (l′) = (n, 1) and λ (l) = m. These elements deter-
mine a, b ∈ Ker (ψ1) ⊂ Z(X1)∩ Inv(X1) verifying f ′1(l) = f1(l)a and f ′1(l′) =
f1(l′)b. It follows from Proposition 9 (f) that f ′1 (m⊗ (n, 1)) = f ′1 (λ(l)⊗ λ′′ (l′)) =
f ′1 ([l, l′]) = [f ′1 (l) , f ′1 (l′)] = [f1(l)a, f1(l′)b] = [f1 (l) , f1 (l′)] = f1 ([l, l′]) =
f1 (λ(l)⊗ λ′′ (l′)) = f1 (m⊗ (n, 1)).

On the other hand, using Proposition 9 (d) and the fact that the action
of MoP on M ⊗ (MoP ) extends the action of P on M ⊗ (MoP ), we
get f ′1 (m⊗ (1, q)) = f ′1 (λ(l)⊗ (1, q)) = f ′1(l (1,q)l−1) = f ′1(l ql−1) = f ′1(l)
f2(q)f ′1(l−1) = f1(l)a f2(q)(a−1f1(l−1)) = f1(l) f2(q)f1(l−1) = f1(l ql−1) = f1(l
(1,q)l−1) = f1 (λ(l)⊗ λ′′ (l′)) = f1 (m⊗ (1, q)).

Example 12 Let ζ : P⊗P � P be the universal central extension of a perfect
group P . If we consider the group P as a perfect precrossed module we get the
universal central extensions

(1, H2(P ), i) � (1, P ⊗ P, i)
(1,ζ)
� (1, P, i)

(H2(P ), 1, 1) � (P ⊗ P, 1, 1)
(ζ,1)
� (P, 1, 1)

which generalize the universal central extension in the category of groups.
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Now we state a sufficient condition for a central extension to be universal:

Lemma 13 Let β = (β1, β2) : (X1, X2, δ) � (M,P, µ) be a central extension
of a precrossed module (M,P, µ). If (X1, X2, δ) is a perfect precrossed module
and every central extension of (X1, X2, δ) splits, then β is the universal central
extension of (M,P, µ).

Proof For each central extension of (M,P, µ)

α = (α1, α2) : (Y1, Y2, σ) � (M,P, µ)

construct the pullback of α and β:

(X1 ×
M
Y1, X2 ×

P
Y2, δ × σ)

π1−→ (X1, X2, δ)

π2 ↓ ↓ β

(Y1, Y2, σ)
α−→ (M,P, µ)

It is easy to prove that π1 is a central extension using the fact that α is
also central, then π1 is split by hypothesis. So we get a morphism of central
extensions from β to α. It is unique since (X1, X2, δ) is perfect.

4 Application to Algebraic K-Theory

For a perfect crossed module (T,G, ∂), the universal central extension of
(T,G, ∂) in the category of crossed modules (see [15] and [17]) is

HCCG
2 (T,G, ∂) � (T ⊗G,G⊗G, ∂ ⊗ id) � (T,G, ∂)

where HCCG
2 (T,G, ∂) denotes the second homological invariant of the crossed

module (T,G, ∂) defined in [6]. Since the perfect crossed module (T,G, ∂)
is also a perfect precrossed module, it has an universal (precrossed) central
extension

H2(T,G, ∂) � (T ⊗ (ToG), G⊗G, ∂ ⊗ ν) � (T,G, ∂)

It is clear that the quotient by the Peiffer elements of the universal precrossed
central extension of (T,G, ∂) is universal for central extensions of crossed
modules of (T,G, ∂), so we get the following result:
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Theorem 14 Let (T,G, ∂) be a perfect crossed module. Then

(T⊗G,G⊗G, ∂⊗id) ∼= (T⊗(ToG)/ 〈T ⊗ (ToG), T ⊗ (ToG)〉 , G⊗G, ∂⊗ν)

HCCG
2 (T,G, ∂) ∼= H2(T,G, ∂)/(〈T ⊗ (ToG), T ⊗ (ToG)〉 , 1, 1)

Algebraic K-theory will provide us an useful example of a perfect crossed mod-
ule whose universal precrossed central extension is different from its universal
crossed central extension.

It is known that for a ring R, the K-theory group K2(R) has the following
algebraic interpretation [14]: let St(R) be the Steinberg group generated by
xij(r), with i, j a pair of distinct integers and r ∈ R, subject to the relations
xij(r)xij(s) = xij(r+s), [xij(r), xkl(s)] = 1 if j 6= k and i 6= l, [xij(r), xjk(s)] =
xik(rs) if i 6= k. If we denote by ϕR : St(R) → GL(R) the natural group
homomorphism from the Steinberg group to the general linear group, then
K2(R) = Ker(ϕR). The image of ϕR is the perfect group E(R), the subgroup
of GL(R) generated by the elementary matrices. Since ϕR : St(R) � E(R) is
the universal central extension of E(R), it is deduced that K2(R) is isomorphic
to the second homology group of E(R).

Now, given a two-sided ideal I of R, and Φ a functor on the category of rings
with values in the category of groups, the relative group Φ(I) can be defined
as follows [14,18]: denote by D the pullback of the natural ring homomorphism
R � R/I.

D
p1−→ R

p2 ↓ ↓

R −→ R/I

The projections p1 and p2 are split by the diagonal homomorphism ∆ : R→ D.
These ring homomorphisms induce the group homomorphisms

∆∗x

Φ(D)
p1∗
⇒
p2∗

Φ(R)

Φ(I) is defined as the kernel of p1∗. SoE(I) = Ker(p1∗|E(D)), St(I) = Ker(p1∗|St(D))
and K2(I) = Ker(p1∗|K2(D)).

The following theorem is a generalization in PCM of the classical algebraic
interpretation of K2(R) due a Kervaire [12]:

Theorem 15 For each two-sided ideal I of a ring R, there exists a perfect
crossed module (E(I), E(R), i), whose universal precrossed central extension
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is
(K2(I), K2(R), γ) � (St(I), St(R), γ) � (E(I), E(R), i)

Proof E(I) is equal to the normal subgroup E(R) ∩ GL(I) of E(R). Since
E(I) = [E(R), E(I)], (E(I), E(R), i) is a perfect crossed module, where i
denotes the inclusion of E(I) in E(R). To construct its universal central ex-
tension, note that there exists a commutative diagram with exact rows and
columns

K2(I) � K2(D)
x
⇒ K2(R)

↓ ↓ ↓

St(I) � St(D)
x
⇒ St(R)

↓ ↓ ↓

GL(I) � GL(D)
x
⇒ GL(R)

where the first row homomorphisms are induced by those from the second and
third rows. Exactness in the second and third rows implies that K2(I) is the
kernel of the induced homomorphism St(I)→ GL(D).

Taking the Moore complex of this diagram, which is an exact sequence of
truncated simplicial groups, we get the precrossed module extension

(K2(I), K2(R), γ) � (St(I), St(R), γ) � (E(I), E(R), i)

To prove that it is a central extension, note that K2(D) is the center of St(D),
so K2(I)oK2(R) ∼= K2(D) = Z(St(D)) ∼= Z(St(I)oSt(R)), from where is
easily deduced that (K2(I), K2(R), γ) ⊂ Z(St(I), St(R), γ).

This central extension is universal: St(D) is a superperfect group, that is, it
is perfect and has trivial second homology group. So St(I)oSt(R) ∼= St(D) =
[St(D), St(D)] ∼= [St(I)oSt(R), St(I)oSt(R)] = [St(I), St(I)][St(R), St(I)]o
[St(R), St(R)] and (St(I), St(R), γ) is a perfect precrossed module. From
the description of the second homology of a precrossed module given in [1,
Theorem 4.3.], H2(St(I), St(R), γ) ∼= (Σ, H2(St(R)), σ∗) = 0, where Σ =
Ker(H2(St(D)) −→ H2(St(R))). In analogy with group theory we will say
that (St(I), St(R), γ) is a superperfect precrossed module. Its universal central
extension is, of course, the identity

(St(I), St(R), γ)
id−→ (St(I), St(R), γ)

The theorem now follows from Lemma 13 applied to the extension

(St(I), St(R), γ) � (E(I), E(R), i)
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Corollary 16 In the conditions of the previous theorem we have the isomor-
phisms

H2(E(I), E(R), i) ∼= (K2(I), K2(R), γ)

(St(I), St(R), γ) ∼= (E(I)⊗ E(D), E(R)⊗ E(R), i⊗ ν)

Remark 17 (i) The perfect precrossed module (St(I), St(R), γ) is not always
a crossed module. Loday [13] and Keune [11] introduce a relative Steinberg
group that is denoted by St(R, I), verifying St(R, I) ∼= St(I)/C(I), where
C(I) is the Peiffer subgroup of (St(I), St(R), γ). Swan shows in [19] that the
Peiffer subgroup C(I) can be non trivial. If f : Z[t]→ Z where f(t) = 0, and
we write R = Z[t] and I = Kerf , then 1 6= [x12(0, t), x21(0, t)] ∈ C(I).

(ii) Gilbert says in [9] that the universal crossed central extension of (E(I), E(R), i)
is (St(R, I), St(R), γ). He makes use of the isomorphism E(I) ⊗ E(R) ∼=
St(R, I) taken from [8]. However, Theorem 15 together with the previous obser-
vation shows that the kernel of this central extension is not the Gilbert’s second
homology of (E(I), E(R), i), because it coincides with H2(E(I), E(R), i) [1,
Theorem 4.2.], which is the kernel of the universal precrossed central extension
of (E(I), E(R), i). The correct kernel of (St(R, I), St(R), γ) � (E(I), E(R), i)
is the second homology of crossed modules of [6] or [16],

HCCG
2 (E(I), E(R), i) ∼= HGL

2 (E(I), E(R), i) ∼= (K2(R, I), K2(R), γ)

where K2(R, I) denotes the second relative K-theory group introduced by Loday
[13] and Keune [11].

Moreover, he claims that the second homology of crossed modules he defines,
coincides with that defined in [16] for aspherical crossed modules. The example
above shows that this affirmation is wrong.

(iii) Anyway, the universal precrossed central extension and the universal
crossed central extension of a perfect crossed module may coincide. If we take
a perfect group P , and consider the perfect crossed module (P, P, id), by an
easy calculation fulfilled in [9], we get H2(P, P, id) ∼= (H2(P ) ⊕ (H1(P ) ⊗
H1(P )), H2(P ), σ∗) = (H2(P ), H2(P ), id) = HCCG

2 (P, P, id), so we have a
morphism of extensions

H2(P, P, id) � (P ⊗ (PoP ), P ⊗ P, id⊗ ν) � (P, P, id)

↓ ↓ ↓ id

HCCG
2 (P, P, id) � (P ⊗ P, P ⊗ P, id) � (P, P, id)

inducing an isomorphism in the kernels, so both of the extensions are isomor-
phic.
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