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ABSTRACT The treatment of photovoltaic power production time series often faces the challenge of
unifying the granularity of the series when generating a predictive model. This can limit the generation
of a dataset in terms of the time covered and the number of examples. In addition, models built with data of
static granularities tend to show rigidity when facing granularity variations, invalidating them for scenarios
different from those of the data they were trained on. To address this issue, this paper presents a novel method
specifically indicated for Deep-Learning models that shows invariance to granularity called Synthesis. This
operation can be added as a layer to an artificial neural network, allowing it to be applied to any power
production time series and synthesizing the content of an arbitrarily long time series into a fixed-size vector
which can be used for classification or regression regardless of the initial time series length. The experiments
with the NIST Campus Photovoltaic dataset demonstrate the effectiveness of the method, showing an F1-
Score of 1.0 for the classification of series with granularities between 2 minutes and 2 hours, and an F-Score
of 1.0 for the classification of time series with variations of granularity throughout time when training with
5-minute granularity samples.

INDEX TERMS PV production, classification, time series, invariance, granularity, deep-learning.

I. INTRODUCTION
The power production of photovoltaic plants lacks a
well-defined standard in terms of the granularity with which
the time series are stored and/or communicated, making a
multitude of them expressed in different granularities depend-
ing on the device and/or the Energy Management System
(EMS) that governs it. Among the different possible granu-
larities with which the power production time series of pho-
tovoltaic plants can be expressed, the hourly, quarter-hourly,
5-minute, and minute granularities stand out; although others
can be found without being limited to a fixed granularity.
As stated in [1], it is common to find studies on energy
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forecasting in various granularities, with the most commonly
used granularity being hourly. In addition, it is also possible
to find power production time series whose granularity varies
over time, for example due to an improvement in the equip-
ment that monitors energy production.

The creation of a model that allows for prediction on a
power production series typically requires the synthesis of a
training dataset in which the granularities are well defined
and unified. This usually implies preprocessing the data to
transform them to the most restrictive granularity through a
down-sampling operation, or the discarding of more restric-
tive granularities from the data set. In addition, models trained
with datasets whose granularities are unified tend to acquire
rigidity in terms of the granularity accepted in the input, either
because the receptive window of the models is limited to a
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specific input size or because the models lack of any mech-
anism for the treatment of series with different granularities
than those observed during training.

To support variations in granularities and avoid input rigid-
ity when different granularities are provided, this paper pro-
poses a mechanism that can be incorporated into an artificial
intelligence model, which is especially indicated for Deep-
Learning models. This mechanism is defined as a network
layer that is able to provide invariance to the granularity of
the input data. The mechanism consists of an operation called
Synthesis that allows amodel trained with a power production
time series of any granularity to acquire, after training, the
ability to make predictions from inputs with different gran-
ularities or even with granularity variations within the same
time series. In addition, the method allows the input, which
may have a variable length, to be compressed into a fixed
size vector, enabling the classification and/or regression of
the entire time series regardless of its size and granularity.

To demonstrate the proposed method and the mentioned
invariance property, several experiments were conducted
using the NIST Campus Photovoltaic dataset, which is a
public dataset of power production data. In the experiments,
a model based on a Neural Network (NN) was trained to clas-
sify one month of power production into its corresponding
numerical month. This work demonstrates that the network is
able to learn to discriminate the class to which each monthly
production corresponds despite being expressed in different
granularities, even when the time series itself presents sec-
tions expressed in several different granularities. Finally, the
proposedmodel is evaluated by simulating different scenarios
of extreme granularities and providing results that validate the
invariance of the developed method.

The contributions of the paper are enumerated as follows:

• Definition of the Synthesis operation to map a
variable-size time series into a fixed-size vector. This
operation provides invariance to granularity.

• Definition and demonstration of a network architecture
to classify variable-length power production time series
using the Synthesis operation.

• Experimentation and evaluation of the invariance to
granularity provided by the method with the public
photovoltaic power production dataset NIST Campus
Photovoltaic [2]. This experimentation validates that the
method is able to work with different granularities after
trained, allowing variations even in sections of the same
time series.

The paper is structured with an introduction, related work,
and justification of the novelty provided in section I; a
methodology explaining the method, the network archi-
tecture, and the error function in section II; an exper-
imentation explaining the dataset and metrics used, the
configuration of the experimentation and the results in
section III; a discussion in section IV and conclusions in
section V.

A. RELATED WORK
Dealing with different granularities is a common issue that
most works with time series address, since it involves varia-
tions in the length that condition the creation of a Machine
Learning model. It is common to find adaptations of the
series to the most restrictive granularity, forcing the input to
have a specific granularity. In [3] they propose to perform
downsampling of the resolution of the MERIS time series to
the most restrictive format of Landsat-like spatial resolution
measurements in order to unify the monitoring of heteroge-
neous landscapes and generate two vegetation indices. Other
procedures, such as time-based feature extraction, can also
be carried out, as in the work of [4] in which it is proposed
the use of an ensemble of different features operated in the
temporal domain of the time series to achieve a classification
of time series that surpasses Dynamic TimeWarping (DTW),
with a warping window configured through cross validation.

In [5], a Convolutional Neural Network (CNN) is proposed
to predict a limited window of forecast in the future from a
limited window of the past, based on a 15-minute dataset. The
NN is connected to a signal decomposition using wavelets in
order to support variations in the length of the time series;
however, their model is highly coupled to the granularity
of the time series with which it was trained and there-
fore cannot generalize well to other granularities. According
to [6], NNs are limited in the treatment of variable-length
time series and their input must be constrained to a fixed
length. To address this issue, an alternative method is pro-
posed that enables the treatment of time series of different
lengths through the extraction of symbolic features Symbolic
Aggregate approXimation (SAX) to perform a classification.
To solve the problem of different resolutions, the authors
propose the extraction of multiple symbolic features at dif-
ferent resolutions, combining them, and training a linear
model for their classification. In [7], the authors carry out
a comprehensive study of non-linear methods for the treat-
ment of time series to identify the most effective techniques.
Their analysis covers recurrent networks, visibility graphs,
and Markov chain-based networks, among others, stating
that the use of recurrency is a possible alternative for the
treatment of series of multiple granularities. In the work of [8]
a combination of several recurrent neural network methods,
as an ensemble, is proposed for forecasting the Algerian
Market. Although recurrent networks can accept granularity
variations, their accuracy depends on them being part of
the training. As reported in [9], the authors suggest using
a Long Short-Term Memory (LSTM) trained with wavelet
decomposition usingDiscreteWavelet Transform (DWT) and
the Daubechies-20 wavelet for multiresolution analysis using
stationarywavelet transform. This wavelet has 20 coefficients
and ensures invariance to displacement. However, the trained
model is closely tied to the wavelets generated for the gran-
ularity of the original series and does not generalize well to
other granularities unless it is re-trained. In [10], the authors
present a method for predicting energy demand based on a
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CNN that incorporates timestep and weather information as
extra features. However, the model is highly dependent on
the granularity used in the training set. In the work of [11], a
CNN with four inputs of different kernel sizes is proposed
to support more input granularities, however the receptive
field of each one is static and limits the ability to acquire
different representations of granularity variations. In [12],
an unsupervised framework called Temporal Neighborhood
Coding (TNC) is proposed for learning multivariate and
non-stationary complex time series representations. This rep-
resentation can be used for supervised learning in classifica-
tion tasks, and also for clustering algorithms.

Other methods for condensing time series into fixed-size
vectors were developed based on self-attention, such as the
work of [13] where a LSTM network with attention is
proposed for machine reading, the work of [14] where a
self-attention structure for sentence embedding is proposed,
the work of [15] an attention model for Natural Language
Processing (NLP) is proposed and [16] where a deep rein-
forced model is proposed for abstractive summarization. The
work of [17] is especially relevant for proposing the use of
self-attention as a standalone and unique mechanism instead
of recurrence, which gave rise to the transformer architec-
ture in NLP tasks. Later, in [18], it is proposed to use the
encoder of a transformer architecture to perform unsuper-
vised learning of features that constitute a representation of
a time series and that can be used for regression and classi-
fication tasks. Although transformer-based architectures can
capture the dynamism of time series and are well suited
for representing them, the periodicity with which patterns
repeat in time series is a factor that must be modeled in the
problem and may not be successfully automatically captured
by the originally proposed positional embeddings for the
transformer architecture in [17], requiring fine-tuning and
manual adjustment of the positional embeddings. A proper
description of positional embeddings in these architectures
can help generate some degree of granularity invariance and
improve prediction results. This is the case of the work done
in [19] where the effectiveness of the transformer architecture
in time series forecasting is questioned, as comparisons with
linear models reveal the difficulty of the models in making
accurate predictions. However, attention-based models heav-
ily rely on positional embeddings that provide knowledge of
the order and structure of the time series, and the effectiveness
of these models greatly depends on the proper selection of
these positional embeddings, as shown in the work of [20].
In this regard, various solutions have emerged for describing
time in a time series, such as the Time2Vec method proposed
in [21] that captures periodicity through learnable parameters
attached to sinusoidal functions. This allows the model to
automatically capture periodicity by expressing it through
a scalable sinusoidal function at the frequency of the peri-
odic pattern. The Time2Vec variant proposed in [22] also
adds an extension of its learnable parameters, which allows
for the generation of positional embeddings with greater
representation of the time’s seasonality. However, although

Time2Vec and its variants can adapt to the periodicity of the
initial series, their learnable parameters are adjusted with the
initial training data that allows them to identify the repeti-
tion frequency of their patterns during the training process,
implying initial granularity coupling by the model. In [23],
the authors attempt to unite Time2Vec with transformers
by using Stationary Wavelet Transform (SWT) as a pre-
processing technique for extracting wavelets corresponding
to signals of different frequencies and using them as input
features in a deep transformer-based architecture that allows
forecasting by predicting the sub-band of the next wavelet.
They rely on the Time2Vec model for its temporal scale
invariance in the first layers of their model. However, the ini-
tial granularity of the time series training is also coupled to the
model. On the other hand, in [24], they propose a framework
called TS2Vec (TS2Vec) for compressing time series into a
fixed-size vector using CNNs with temporal dilations and
the use of contrastive losses at different granularities at the
same time. In the work of [25], a method called Pyraformer
based on attention for forecasting a time series is proposed,
which allows obtaining a temporal representation of the input
that captures long-range temporal dependencies from a time
series that can be expressed in different granularities simul-
taneously. However, their method does not take into account
that there may be a single representation of the time series
whose granularity varies over time.

Other attempts to support multiple resolutions in other
fields of study have been carried out, such as in the work
of [26] in which they treat the learning of resolution-invariant
representations in images. In this work, they propose a CNN
that uses a Global Average Pooling (GAP) layer to compress
any resolution into a fixed-size vector, which allows them to
classify the content. On the other hand, GAP is an operation
that produces information loss as the resolution increases,
because it must average all the input axes and has no hyperpa-
rameters that can regulate this loss. In addition, their method
requires training with a multitude of examples of different
resolutions simultaneously to achieve resolution invariance.

Unlike the examples explored above, the method presented
in this paper does not require an adaptation of the time series
to a specific resolution nor any additional feature extraction
from the time series. Instead, the proposed method performs
a synthesis operation that allows for trainable model param-
eters to extract relevant features for classification. In contrast
to all the referenced methods, the method applied to a time
series classification or prediction model based on the Synthe-
sis operation allows the resulting model to be applied in many
scenarios not initially covered during training with regard to
granularity variations, allowing the model to achieve greater
generalization than other methods after training.

B. PROBLEM FORMULATION
Given a temporal series S expressed in T timesteps with
granularity 1T = Tn+1 − Tn, it is desired to perform a
value prediction operation that is invariant to the number of
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timesteps #T and to the granularity of the temporal series
1T . To do this, a function f(S) must be found that satisfies
P = f(S) independently of the value of #T and allowing any
value of 1T , which implies that f(S) must predict the same
P for the temporal series S expressed with any granularity.
In this work, a new function f(S) called Synthesis is proposed,
which is derivable and can be embedded in the input of any
Machine Learning model to provide invariance to granularity
and to the size of the temporal series in a regression and/or
classification prediction.

C. METHOD NOVELTY
The proposed method of Synthesis has two possible interpre-
tations that lie in its novelty. First, it can be interpreted as a
variation of self-attention similar to those used by [13], [14],
[15], [16], and [17] in which the queries Q are predefined,
both in quantity and in value, to cover the entire time series.
It also presents a modification in the formulation so that
each element of Q can increase or decrease the number of
contiguous keys K with which they have similarity through
the dot-product. A detailed explanation of the difference with
self-attention can be seen in section II-B.
In addition, it has a second interpretation in which the

process resembles the operation of Convolution similar to the
one used in convolutional layers. In this context, bothConvo-
lution and Synthesis relate contiguous and local elements to
a receptive field. In the case of the Convolution operator, the
receptive field is limited to a number of timesteps spatially
placed in the data sample and normally contiguous or pseu-
docontiguous in the case of dilated convolutions in time [27],
that largely depend on the size of the filter. In the case of
Synthesis, this receptive field is limited to a temporal section,
which depends on the exponent λ. Since Convolution has a
spatial dependence on the input, the filters learned for one
granularity will not, in general, be compatible for a different
granularity. This is because the receptive field is static in that
it covers a constant number of timesteps. On the contrary,
the Synthesis operator does not have a spatial dependence on
the input, but a temporal one. This means that for as many
timesteps that exist, if the temporal range covered by all of
them is the same as in lower granularity, all of them will
be related within the same receptive field. This means that,
consequently, the Synthesis operator provides invariance to
the scale and granularity of the data.

On the other hand, the proposed operation in this work
has the advantage of requiring fewer parameters and training
time to establish relationships between local elements than
self-attention based solutions, and is therefore particularly
suitable for inputs containing local features, such as the gran-
ularity in energy time series.

II. METHODOLOGY
In this section, the Synthesis operation is described in detail
in subsection II-A; a justification of the proposed method
in subsection II-B; a description of the NN architecture that

implements the method in subsection II-C; and the descrip-
tion of the loss function used in training in subsection II-D

A. SYNTHESIS OPERATION
The Synthesis(S,E,E′, β, ϵ) operation is a function that
allows a variable-length time series S to be expressed as
a fixed-size vector V based on the hyperparameters β and
ϵ, positional embeddings E, and synthesis embeddings E′.
This representation V has the peculiar property of being
invariant to the granularity of the time series S and to its size
defined by T . This means that the fixed-size representation V
presents similar characteristics regardless of the granularity,
as long as it refers to the same time series. The Synthesis
operator requires positional embeddings E associated with
the timesteps T of the time series S, and synthesis embed-
dings E′. Consequently, given a machine learning model
defined as M(V , θ) where V is the model’s input and θ are
its parameters, the model’s prediction is Ŷ and the synthesis
operator can be applied as shown in Eq. 1.

V = Synthesis(S,E,E′, β, ϵ)

Ŷ = M(V , θ ) (1)

For the modelM(V , θ ), the inputV will be a representation
of S encoded by the Synthesis operator that will have a
constant length defined by the hyperparameter β regardless
of the granularity 1T and the length #T of the time series S.
A definition of positional embeddings can be seen in

subsection II-A1; a definition of synthesis embeddings
associated with the hyperparameter β can be seen in
subsection II-A2; the weights of the Synthesis operator and
an explanation of the hyperparameter ϵ can be seen in sub-
sections II-A3 and II-A4 respectively; and the calculation of
the final values in subsection II-A5.

1) POSITIONAL EMBEDDINGS
Positional embeddings E allow the position of an element in
the time series to be identified relative to the entire series, and
therefore, allow the order of the elements to be determined.
This facilitates the establishment of temporal relationships
between each element without the need for the model to have
a receptive field of the entire time series. The Synthesis opera-
tor requires positional embeddings E to perform information
compression.

Using sinusoidal functions as positional embeddings,
as proposed in [17], this paper suggests establishing rela-
tionships between elements based on their order. However,
to relate contiguous elements under a time-dependent recep-
tive field, this work proposes using a single arc defined by
a single sine and a single cosine as the positional embed-
dings representation, resulting in a total of two features for
one-dimensional time series. This allows the similarity rela-
tionship to be established only between contiguous elements.

To compute E corresponding to a time series S, a timestep
must be marked as the starting positional element. This
timestep is called lmin and must satisfy lmin ≤ min(T ). Simi-
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FIGURE 1. Positional Embeddings E for a time series with #T = 40 and a
constant granularity 1T .

larly, a timestep must be established as the limiting element,
called lmax, and must satisfy lmax ≥ max(T ). Consequently,
E is defined as can be seen in equation 2.

α =
π(lmax − T )
2(lmax − lmin)

E = [sin(α), cos(α)] (2)

where T is the timesteps of the time series expressed as
milliseconds in the form of timestamps. The matrix E then
contains all the timesteps of the time series dumped into an
arc corresponding to the first quadrant of a circle of radius 1,
as can be seen in Fig 1.

By using π
2 as the scale of the embeddings, both the sine

and cosine are represented in the first quadrant of the circle,
acquiring only positive values, regardless of the length of the
time series.

2) SYNTHESIS EMBEDDINGS
The synthesis embeddings, defined as E′, are positional
embeddings that are periodically distributed along the arc
defined by the points in E. Formally, the synthesis embed-
dings E′ can be obtained through the function Embs(x, β) as
defined in Eq. 3.

α′(x, β) = x
1

β − 1
π

2

Embs(x, β) =

[
sin

(
α′(x, β)

)
, cos

(
α′(x, β)

)]
E′

= Embs([0, 1, 2, . . . , β − 1], β) (3)

The number of synthesis embeddings is a hyperparameter
and is defined as β. This value determines the number of
values in which the input to the Synthesis operator will be
synthesized. Low values of β will reduce the size of the
bottleneck and, consequently, produce loss of information.
On the other hand, high values of β will allow more detailed

information to pass through to the final synthesis, although
they will require more computation and memory.

3) SYNTHESIS WEIGHTS
The Synthesis operation is carried out by generating weights
W that relate the positional embeddings E to the synthesis
embeddings E′, so that each synthesis embedding E′ has the
focus set on a section of the input. The weights are defined as
can be seen in Eq. 4.

W = (EE′⊺)λ (4)

Since E and E′ are composed of vectors with equal length
1 in the first quadrant of the circle, the vector product between
them is similar to the similarity returned by the Cosine Simi-
larity function as can be seen in Eq. 5 but with |E| = |E′

| = 1
.

cos(γ ) =
EE′⊺

|E||E′
|

(5)

Therefore, the values of W will contain a similarity value
that will range from 0 to 1, with 1 being the highest degree
of proximity and 0 being the lowest degree of proximity.
The exponent λ in Eq. 4 determines the degree of attention
of the synthesis operation. A value of λ = 1 will generate
weights that are equivalent to the cosine similarity, while a
value of λ > 1 will increase the weight of the most similar
embeddings and a value of λ < 1 will decrease the weight of
the most similar embeddings. The exponent λ modulates the
projection focus of the similarity, making the focal distance
of each synthesis embedding in E′ increase or decrease with
respect to the positional embeddings in E. This effect consti-
tutes the receptive field that each synthesis embedding within
E′ has with each positional embedding within E. A more
detailed explanation of the exponent λ can be seen in the
subsection II-A4. A representation of these weights can be
seen in Figure 2.

4) SYNTHESIS EXPONENT
The exponent λ allows to increase or decrease the receptive
field of each synthesis embedding. It is calculated through the
lamb(β, ϵ) function, which depends on the hyperparameter β

(defined in II-A2) and the hyperparameter ϵ, which specifies
the similarity value that a positional embedding will have that
matches the central point between two synthesis embeddings.
The lamb(β, ϵ) function is defined as can be seen in Equation
6.

lamb(β, ϵ) =
logβ

log
(
Embs(0, β) × Embs( 12 , β)

)
λ = lamb(β, ϵ) (6)

The value of ϵ must be a number bounded between [0, 1
2 ],

since it represents the value that the similarity will have in a
central point between two synthesis embeddings. The estab-
lishment of this hyperparameter is necessary since the central
point between two synthesis embeddings presents overlap in
the receptive field of both points. Therefore, the value of
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FIGURE 2. Representation of the weights W relating E with E′ (left) and the effect of λ over the receptive field of every synthesis
embedding (right).

1
2 makes each synthesis embedding acquire a maximum of
similarity with that central point that allows the final sum
of the projections of the receptive fields to produce values
approximately bounded between [0, 1] for the entire S series.

5) SYNTHESIS VALUES
The final synthesis values V resulting from the application of
the Synthesis operator to the time series S can be computed
as observed in Eq. 7

V = Synthesis(S,E,E′, β, ϵ) = W⊺S (7)

B. SYNTHESIS VERSUS SELF-ATTENTION
One of the interpretations described in section I-C is that
the Synthesis operator can be interpreted as a variant of self-
attention. Using the Scaled Dot-Product Attention proposed
by [17] as reference, as can be seen in Eq. 8,

Attention(Q,K,V ) = Softmax
( QK⊺
√
(dk )

)
V (8)

The positional embeddings E would be equivalent to the
keys K , the synthesis embeddings E′ would be equivalent
to the queries Q, and the value of the time series S would
be equivalent to V . While in self-attention the values of Q
are usually learned during training, in the Synthesis opera-
tion these values are pre-defined so that each one covers a
contiguous section of the input, with this input being entirely
distributed among the synthesis embeddings E′. In addition,
the receptive field of each synthesis embedding E′ on the
positional embeddings E is regulated by the exponent λ.
Unlike in self-attention, the goal of the Synthesis operator
is to limit the visibility of a synthesis embedding to a very
specific and contiguous section of the input. Since E′ is
equitably distributed among the input S, the model has no
parameters to adjust during training in this layer, and conse-
quently, semantic relationships are not established between
elements. However, the establishment of semantic relation-
ships between elements is delegated to the subsequent layers

that have visibility of the fixed-length vector resulting from
applying Synthesis and that have learnable parameters.

C. NETWORK ARCHITECTURE
To verify the validity of the method, a NN architecture was
designed that uses the Synthesis operation embedded as an
intermediate layer of the NN to provide granularity invari-
ance. This architecture allows for classification intoC classes
of a time series of variable length and/or granularity disparity.
The network consists of a 1-dimensional Synthesis layer with
β = 30 and ϵ = 0.25, in which the positional embeddings E
and the time series S are combined. The result of the Synthesis
operation is then passed to two convolutional layers, with the
first consisting of 32 filters of size 1 timestep with Rectified
Linear Unit (ReLU ) activation, and the second convolutional
layer consisting of C filters of size 30 timesteps, which is
equal to β, with Softmax activation for classification. Finally,
a Squeeze is performed on the first dimension to maintain
only the classification values. All hyperparameters were set
experimentally, although any other configuration could serve
the purpose of the experiments defined in section III. A visu-
alization of the architecture can be seen in Fig. 3.

In total, the model has 11,596 trainable parameters.

D. LOSS FUNCTION
The error function used to train the proposed model is Cate-
gorical Cross-Entropy, as can be observed in Eq. 9

CE(Y , Ŷ ) = −

N∑
i=1

Yi − log(Ŷi) (9)

where CE stands for Cross-Entropy, N is the number of
classes, i is the index of the class, Ŷ is the prediction made
by the model M (formally defined in II-A and detailed in II-
C), and Y is the ground truth. Through the minimization of
the error reported by CE for multiple samples simultaneously,
the parameters θ of M are optimized.
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FIGURE 3. Network architecture proposed for the experimentation.

III. EXPERIMENTATION
The goal of the experiments is to demonstrate the granularity
invariance of the model thanks to the incorporation of the
Synthesis operator in its architecture. To this end, a model
was proposed to be trained that is able to classify the energy
production of eachmonth in its corresponding numericmonth
only using the production power time series in that month.

A description of the dataset used can be observed in sub-
section III-A. A description of the configuration carried out in
the experimentation process, the possible scenarios, and the
data adjustment process can be seen in subsection III-C. The
results of the experimentation can be seen in subsections III-
D and III-E. Finally, a discussion of the results is presented
in section IV.

A. DATASET NIST CAMPUS PHOTOVOLTAIC
In this study, the public NIST Campus Photovoltaic
dataset [2] was used, from which the data with 1-minute
granularity at ground level was selected. The data covers
from 2015/01/01 00:00 to 2018/12/31 23:59, which makes a
total of 2,103,810 measurements of various signals, among
which stand out atmospheric measurements such as wind,
ambient and device temperature sensors, irradiance and pro-
duction signals, such as the energy produced by each inverter
and power. For the purpose of the experiments, the average
power signal of the meters measured in Kilo-Watt (kW) was
selected, which was normalized by replacing the negative
values with 0 and dividing the entire signal by the maximum
value. A visualization of the normalized graph corresponding
to the dataset can be seen in Fig. 4.

B. METRICS
To evaluate the problem, the precision, recall and F1 met-
rics defined in Eq. 10 are used to measure the quality of

FIGURE 4. NIST Campus Photovoltaic dataset. Representation of the
average meter power normalized between 0 and 1 during 4 years
(2015-2018).

FIGURE 5. Training Cross-Entropy loss (left). Training accuracy (right).
Training performed for 100 epochs.

classification performed by the network when different gran-
ularities are presented in the input.

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2
precision · recall
precision + recall

(10)

The TP value indicates the number of true positives, the
FP value indicates the number of false positives, and the FN
value indicates the number of false negatives.

C. SETUP
An experiment was carried out to demonstrate the granularity
invariance provided by the Synthesis operator when embed-
ded in a neural network. To do this, the dataset described in
Section III-A was preprocessed to generate a sample for each
month of photovoltaic production. In this way, the input time
series S is constituted by the photovoltaic production series
of a month with a padding of 31 days, filling with 0s at the
end of each sample if necessary. The goal of the prediction Ŷ
is the classification in the month to which the time series S
belongs.

The model proposed in subsection II-C was configured
with C = 12 in order to classify each time series S into one
of the 12 months of the year. All samples generated using
the NIST Campus Photovoltaic dataset were downsampled
to a granularity 1T of 5 minutes and were used to train the
model for 100 epochs on a Xeon W-2123 equipped with a
Nvidia GeForce RTX 2080Ti GPU. TheAdam optimizer with
parameters lr = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−7

was used in the optimizer, adjusted experimentally, with a
batch_size = 16. A visualization of the training history can
be seen in Fig. 5.
Once trained, the experiments were divided into two cases

in order to demonstrate the invariance of the method to gran-
ularity in two different contexts. The first case demonstrates
the ability to predict the class invariantly to the granularity
of the time series as a whole. This first case is described in
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TABLE 1. Performance metrics of the classification model for different
granularities. The bold row is the reference granularity used for training.
#T is the number of timesteps of the series.

subsection III-D. The second case demonstrates the ability to
predict the class invariantly to how many different granular-
ities the same time series has over time. This second case is
described in subsection III-E.

D. CASE 1: OVERALL GRANULARITY
In this experimental case, a time series S with a single gran-
ularity is presented to the model. A comparison of the model
predicting the corresponding month of the same time series
expressed with different granularities can be seen in Figures
6, 7, and 8. The first row of each figure represents the original
time series expressed in the chosen granularity or resolution
for each column, and the second row represents the corre-
sponding encoding generated by the Synthesis operation.

In order to determine the invariance capacity, the method
was evaluated using the same time series used in the training
but resampled at the granularities of 1 minute, 2 minutes,
5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour,
2 hours, 4 hours, 8 hours, 16 hours, and 1 day. Theywere eval-
uated under the premise that if the model shows invariance
to granularity, it should be able to classify the same series
used in the training even if they are expressed in different
granularities than those observed in the training during the
prediction. This evaluation can be seen in Table 1.

E. CASE 2: MANY GRANULARITIES
Another evaluation case is having different granularities
within the same time series S; that is, a time series whose
granularity changes over time, as expressed in Eq. 11.

1T = [1Ta0−>a1 , 1Ta1−>a2, . . . ,1Tan−1−>an ] (11)

where a ∈ T; ai > ai−1.
To carry out this experiment, the following 6 granular-

ities of best performance in the first case were selected:
1 minute, 5 minutes, 15 minutes, 30 minutes, 60 minutes, and
120 minutes. Then, for each sample, a downsample of ran-
dom sections was made for each of the chosen granularities.
Therefore, an evaluation dataset was built iteratively.

In order to evaluate the performance of the classification
with the presence of several resolutions at the same time,
5 different versions were also generated for each sample,
in which each version has a greater number of granularity

TABLE 2. Performance metrics evaluated under series with many
granularities.

variations. An example of a time series S expressed in a
multitude of versions can be observed in Fig. 9, where the
same series S is shown with 1, 2, 3, 4, and 5 different gran-
ularities over time, corresponding to each row of the figure.
The evaluation of the performance of different granularities
in the same series can be seen in Table 2, where the result of
applying the evaluation metrics on series that have from 2 to
6 different granularities is grouped.

IV. DISCUSSION
In this section, the performance of the model under the dif-
ferent experiments executed is evaluated and its behavior is
analyzed.

First of all, it is interesting to note the speed with which
the model adjusted to the training data, obtaining a 100%
accuracy, since the limit of the metric was reached in less
than 80 epochs, as can be seen in Fig. 5. This indicates that
both the proposed model and the Synthesis operator perform
the expected work correctly to be used in a classification
process. On the other hand, this also confirms that the month
corresponding to a given monthly production is easily deter-
minable. This is of interesting application in anomaly detec-
tion, since a poorly predicted month can indicate an anomaly
in the data.

In the first experimental case carried out, it can be observed
that, despite being trained with 5-minute measures, the model
is able to correctly classify the measures for smaller gran-
ularities (1-minute) and larger granularities (up to almost
2 hours of granularity) without needing to be modified or
re-trained, as seen in Table 1. This means that the model
shows invariance to granularity, making any granularity able
to be classified by the same model. It should be noted that at
lower granularities, the amount of representation timesteps is
smaller and, therefore, information loss occurs that explains
that the classification deteriorates from 2 hours of granularity
onwards, since the number of timesteps #T in the 2-hour case
is 95.8% smaller than in the 5-minute case with which the
model was trained. In figures 6 and 8, it can be observed
that, for different granularities manifested with the same
production time series (each column), the representation of
the encoding is similar, despite the input having differences
both in scale and in number of timesteps. In figure 7, a correct
classification was made even with a daily granularity, which
means that the model has prediction capacity even with a
reduction of 99.6% of the information in the data in terms of
granularity. However, Table 1 indicates that the model loses
reliability from an approximate loss of 98% of data informa-
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FIGURE 6. A time series S corresponding to January 2015 presented to the model under different granularities. first row indicates the input
series S and the second row indicates the coding output of the Synthesis method. All the cases were correctly classified as January by the model.

FIGURE 7. A time series S corresponding to February 2015 presented to the model under different granularities. first row indicates the input
series S and the second row indicates the coding output of the Synthesis method. All the granularities were corrrectly classified by the model.

FIGURE 8. A time series S corresponding to September 2015 presented to the model under different granularities. first row indicates the input
series S and the second row indicates the coding output of the Synthesis method. All the granularities were correctly classified by the model.

tion in terms of number of timesteps, due to a decrease in
granularity.

In the second case, it is shown that the proposed model
is able to handle any level of granularity within a time
series, as demonstrated in Table 2. This table shows that
the model was able to automatically identify all granularity
variations within a single time series without needing to
be retrained, even in cases where 5 granularity variations
coexist. An example of this is shown in Fig. 9, where each
row represents the same time series at a different level of
granularity, ranging from one granularity in the first row to
five granularities in the last row. The intermediate rows show
an increasing number of granularities. It is interesting to note
that having different granularities in the same time series can
cause a small number of timesteps to contain a large amount
of information, while the majority of timesteps may contain
little information, as shown in the second row of Fig. 9.

In this example, two granularities coexist, with the first being
15 minutes for 1250 timesteps and the second being 1 hour
for 500 timesteps. However, the last 500 timesteps contain
the condensed information of 30, 000 measurements, while
the first 1250 timesteps contain condensed 18, 750 measure-
ments. In other words, in this case, 61% of the information of
the time series is condensed in the last 500 timesteps, and
the Synthesis operator is able to correctly handle data and
prediction in these scenarios. This means that the proposed
model is invariant to changes in granularity within the time
series, allowing it to generalize to unseen environments and
non-standard granularities. Therefore, the Synthesis operator
is a promising method for generating granularity-invariant
models for predicting energy consumption and production
time series.

In addition, in the Synthesis operator, the receptive field has
a dynamic dimension and is enlarged or reduced according to
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FIGURE 9. Representation of the same sample expressed as 5 different versions containing different number of granularities. Every granularity
has a different color in the series. Note the different representation and the length of the series, even though belong to the same original S.
The model was able to classify all of the versions correctly. Best viewed in color.

the size of the input, so that the output maintains a constant
size regardless of the size of the input, making it also invariant
to the length of the time series. This makes it suitable for
compressing dynamic-sized data. On the other hand, it is
interesting to note that, since the model is able to represent
different granularities under a single encoding, it could be
used as profiling features of a production and/or as a hashing
function. This makes it an ideal representation for clustering
processes.

V. CONCLUSION
A new time series compression method called Synthesis is
presented, which is able to convert arbitrarily long production
time series into fixed-size vectors. The main advantage of the
method is that it provides granularity and length invariance.
This means that, once trained with a custom granularity, the
model is able to generalize the predictions to other granulari-
ties as well. An artificial NN architecture that implements the
Synthesis method in its first layer is also presented. Experi-
ments are conducted to validate the granularity invariance of
the method, in which the proposed NN is trained to classify
a monthly time series into the month of the year to which it
belongs. The same time series expressed in different granu-
larities is then evaluated, showing that the method correctly
classifies the time series even when 98% of the informa-
tion has been lost in terms of granularity, without having to

retrain the model. The model innately supports time series
that have multiple different granularities over time. The pro-
posed method is conceptually compared to self-attention and
convolution, showing its superiority in handling time series
by generating granularity invariance. The method can com-
press variable-size information into a fixed-size vector, which
means that the encoding generated from series of different
granularities maintains the same representation. This makes
it applicable in scenarios such as data profiling, as a hashing
function, and as a data source for clustering algorithms.
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