
Analysis of NetFlow Features’ Importance
in Malicious Network Traffic Detection

Adrián Campazas-Vega1(B), Ignacio Samuel Crespo-Mart́ınez1,
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Abstract. Malicious traffic detection allows for preventing cybersec-
urity-related threats. Machine learning algorithms are commonly used
to detect such traffic in computer networks by analyzing packets. In
wide-area networks, such as RedCAYLE (Red de Ciencia y Tecnoloǵıa
de Castilla y León), it is not possible to analyze every packet routed. So
we pose that in such networks sampled flow data may be used to provide
malicious traffic detection. This work presents the analysis carried out of
the relevance that every NetFlow feature has in the K-Nearest Neighbors
(KNN) algorithm in order to detect malicious traffic. Validation of the
model has been carried out with real network data from RedCAYLE.
Results show that it is necessary to train the models with sampled flow
data. They also show that the nexthop feature has a negative influence
on malicious traffic detection in wide-area networks such as RedCAYLE.

Keywords: Netflow features analysis · K-Nearest Neighbors (KNN) ·
Network traffic · Machine learning · Network security · Malicious
traffic detection

1 Introduction

Cybercriminals have been professionalized using different techniques to achieve
profit through the theft of victims’ data. They use a large number of tech-
niques, such as port scanning, malware distribution, lateral network movements,
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privilege escalation, zero-day attacks, and social engineering. Most attacks gen-
erate malicious traffic. Such traffic may be used to detect and stop them. In
the literature, various techniques have been used to detect malicious traffic.
For instance, in [18], the authors present a payload-based anomaly detector for
intrusion detection. In [19], the authors characterize the benign network traffic
so that anomalous traffic patterns may be detected. Different works show that
it is possible to detect malicious traffic using machine learning models. In [16]
authors propose an anomaly detection system using supervised learning algo-
rithms that have previously been trained with the UNSW-NB15 dataset. The
authors obtained 94.36% accuracy using the AODE algorithm, 92.70% using
Bayesian networks, and 75.73% using the NB algorithm. This work was vali-
dated by the same authors in [17], in which, using the same dataset, they tried
to verify which algorithms were the best in detecting malicious traffic in terms of
accuracy and efficiency. The results showed that the AODE algorithm obtained
the best results with an accuracy of 97.26% and a running time of approximately
7 s.

In order to detect malicious traffic, in [23] a hybrid model is proposed which
implements bagging and tree rotation techniques. To test the efficiency of the
generated models, the authors used the NSL-KDD and UNSW-NB15 datasets,
obtaining a precision of 85.8%. Finally, in [22] the authors carried out a review of
the literature in which they collected what are the machine learning algorithms
and datasets most used to detect malicious traffic. Although it is possible to
detect malicious traffic using machine learning models, all the above proposals
used network packets as input for the different algorithms. In wide-area networks,
it is not possible to analyze every packet that the network routes. That is why
this type of infrastructure uses flow-based technologies.

A flow is defined as a set of packets that pass through an observation point
in the network during a specific time interval. All packets belonging to a par-
ticular flow have a common set of properties, such as source and destination IP
addresses, and source and destination port numbers [6,8]. Flow data do not store
the payload of network packets, reducing the computational power required to
process flows versus complete packages. In addition to those already mentioned,
some of the features that flow data gathers are the number of packets that the
flow contains, the IP protocol, the TCP flags, and the timestamp. One of the
most widely used flow-based technologies is NetFlow. NetFlow was designed
by Cisco as a network protocol for collecting network statistics [5]. NetFlow is
deployed on most commercial routers.

However, the network traffic volume that some routers manage is so large
that even using NetFlow it is not possible to use every packet to generate flow
data. So they need to sample the packets before generating flows. For instance,
RedCAYLE, which manages traffic belonging to universities and research cen-
ters in Castilla y León, manages an average amount of traffic of 6.7 Gb/s. To
decrease the computational load of gathering flow data on the routers, a sam-
pling threshold is applied. The sampling threshold used by RedCAYLE routers
is 1 packet out of 1000.
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This work comes from the results obtained in [4]. In this work, the authors
developed a framework for collecting flow datasets using NetFlow. With such
datasets, the authors fitted supervised learning models, obtaining that the best
classifier to detect port scans was KNN.

This work presents an analysis of NetFlow’s features to determine which are
most relevant when training the KNN algorithm. The training has been carried
out with two different datasets, the first one gathering sampled flow data and
the second one gathering unsampled flow data. Validation has been carried out
against real data obtained from RedCAYLE in order to double-cleck if the fitted
model is able to detect attacks in a real environment and how the features used
to fit it influence the detection of malicious traffic.

The remainder of the paper is organized as follows: Sect. 2, describes the
materials and tools used in this job, as well as the methodology used to evaluate
the importance of NetFlow features to detect malicious traffic; Sect. 3 shows
the results obtained in the experiment and discusses the results. Finally, the
conclusions are presented in the Sect. 4.

2 Materials and Methods

Section enumerates the materials used, presents the experiments carried out, and
describes the methods used to evaluate the results obtained in the experiments.

2.1 NetFlow

NetFlow [7] is a protocol developed by Cisco Systems to collect information
about the network traffic. The usage of NetFlow has become so popular in recent
years that manufacturers such as Juniper and Enterasys Switches support this
technology. NetFlow was introduced as a new feature of Cisco’s routers to provide
IP traffic gathering allowing administrators to have a global vision of what is
happening in the infrastructure they manage.

NetFlow has multiple versions: NetFlow V1,V5 and V9. RedCAYLE uses
NetFlow V5. For such release, the features that flow data gather are enumerated
in Table 1.

2.2 RedCAYLE

RedIRIS [21], is a Spanish research network that provides communications ser-
vices to the scientific and university community. RedCAYLE manages RedIRIS
network traffic belonging to the region of Castilla y León. It is managed from
SCAYLE. Network traffic management is carried out through two main routers
located in León and Valladolid, and a series of auxiliary switches and routers
distributed throughout the region.

RedCAYLE provides to its affiliated institutions (educational centers, univer-
sities, hospitals, scientific facilities, etc.) a high-capacity communications back-
bone infrastructure, which allows for accessing both the resources of the research



Analysis of NetFlow Features 55

Table 1. NetFlow features

Feature Description

sysuptime Current time in milliseconds since the export device started

unix secs Current count of seconds since 0000 UTC 1970

unix nsecs Residual nanoseconds since 0000 UTC 1970

engine type Flow switching motor type

engine id Slot number switching engine flow

exaddr Flow exporter Ip

srcaddr Source IP address

dstaddr Destination IP address

nexthop IP address of the next hop router

input SNMP index of the input interface

output SNMP index of the exit interface

dpkts Number of packets contained in the flow

doctets Total number of bytes of layer 3 in the packets of the flow

first Sysuptime at start of flow

last Sysuptime when the the last packet in the flow was received

srcport TCP/UDP source port number

dstport TCP/UDP destination port number

tcp flags TCP flags

prot IP type of protocol (Por ejemplo, TCP = 6; UDP = 17)

tos IP type of service (ToS)

src as Autonomous system number of the source, either source or pair

dst as Autonomous system number of the destination, either source or pair

src mask Source address prefix mask bits

dst mask Destination address prefix mask bits

network and the Internet. Currently, RedCAYLE offers a wide variety of services:
1 Gbps point-to-point transport service, internet connection, IP addressing, inci-
dent management, and service supervision. The RedCAYLE monitoring service
allows its affiliated institutions for analyzing and diagnosing the status of their
network services. The usage of NetFlow provides a network analysis based on
statistics. As mentioned above, to decrease the computational load of gathering
flow data, a sampling threshold of 1 packet out of 1000 is applied.

2.3 MoEv

MoEv [10] is an open-source tool developed in Python [20] for building machine
learning models from datasets. The latest release accepts as input both CSV files
and images. Some of the MoEv features are data cleaning, normalization, dimen-
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sionality reduction, hyperparameter tuning (using the Grid-SearchCV method),
and parallel running (using DASK). It evaluates several machine learning algo-
rithms by considering accuracy, recall, precision, and F1 score. MoEv also allows
for carrying out validation tests to ensure the optimal generalization of its mod-
els. Once a model, or a set of models, has been fitted, it is validated by using a
different dataset.

MoEv has been used successfully in different research areas, such as in the
detection of jamming and spoofing attacks in real-time location systems [11], or
the prediction of academic success in educational institutions [9,12,13]. Further-
more, in [4] the authors successfully replicated the experiment proposed by [1],
thus demonstrating the validity of MoEv in generating machine learning models
for the detection of network attacks through flows.

2.4 DOROTHEA

DOROTHEA is a Docker-based solution that allows for creating virtual network
topologies to generate and collect flow data. It uses a NetFlow sensor that builds
flows from the packets that pass through a network interface. DOROTHEA is
configurable and scalable, allowing, for example, to select the number of attack
and victim nodes.

The framework offers two testbeds. The first one allows for simulating the
generation of benign traffic. In order to get realistic responses, it is connected
to the Internet. The second testbed allows for carrying out distributed network
attacks in an isolated Internet environment. Isolation ensures that all the col-
lected traffic corresponds to attack flows, thus avoiding noise when generating
datasets. Testbed separation allows for the empirical labeling of the network
traffic.

In both testbeds, all traffic goes through a router that incorporates a sensor
that generates the NetFlow’s flows from the packets it routes ipt NetFlow [14].
The sensor processes network traffic and provides flow data in NetFlow V5, V9,
and IPF formats. Flow data are sent to a warehouse every 2 min.

In addition to packet routing and flow data generation, the router performs
packet sampling. As with commercial routers, DOROTHEA allows you to select
the packet sampling rate to be used when generating flows. This feature allows
for simulating the behavior of real routers, allowing researchers to generate
datasets under the same conditions as big networks deployed in production.
Finally, DOROTHEA returns a CSV file with the generated network flows.

2.5 Data Gathering

To carry out the experiments, two datasets have been created using
DOROTHEA. Both datasets contain benign traffic and malicious traffic. Specif-
ically, malicious traffic comes from port scanning attacks. The first dataset (aka
D1) has been collected without packet sampling. The second dataset (aka D2)
has been collected with a sampling threshold of 1 packet out of 1000, simulating
the conditions in RedCAYLE routers.
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Both datasets contain approximately 50% benign traffic. Benign flow data
were labeled ‘0’. Malicious flow data generated were labeled ‘1’. Both datasets
are available online under an open-access license with the following DOIs:
10.5281/zenodo.4106730 and 10.5281/zenodo.4600638.

The benign traffic was generated using three scripts developed in Python.
These scripts are also available online in [3]. The first script simulates web
browsing. It carries out queries in different search engines generating HTTP
and HTTPS traffic. The second script simulates the sending of emails using the
SMTP protocol. Finally, the third script simulates SSH connections.

Malicious traffic has been generated using the Nmap tool. Different types
of port scans have been launched on both TCP and UDP ports. The scans
performed were: TCP SYN; TCP Connect; UDP; TCP NULL, FIN, and Xmas;
TCP ACK; TCP Window; and TCP Maimon scanning [15]. The attacks were
executed by 100 machines distributed over the 65,536 ports of the 200 attacked
nodes. The Python script used to carry out the attacks is available online at [2].

The range of network addresses in the training datasets was 182.168.1.1/24
for the benign traffic simulators and attack nodes, and 126.52.30.0/24 for victim
nodes.

To validate the previously fitted models, a third dataset has been generated
(aka D3), with flow data collected in the RedCAYLE.

Table 2 shows the volume of the datasets used in this work.

Table 2. Number of Flows

Dataset #Benign flows # Malicious flows #Total flows

D1 1.429.038 1.178.992 2.608.030

D2 1447 1447 2894

D3 460 460 920

2.6 Evaluation

To fit the KNN models that have been used in the experiments, the tool MoEv
and the datasets D1 and D2 have been used. Then, an analysis of the features of
each model has been carried out in order to know which NetFlow features have
the highest importance. In order to do so, the technique permutation feature
importance has been used. This procedure breaks the relationship between the
feature and the target, thus the drop in the model score is indicative of how
much the model depends on the feature, obtaining, as a result, the weight that
each one has in the training of the KNN model.

Once the study was carried out, the detection rate of the model was verified
with the D3 dataset. In order to know how the features affect the detection of
malicious traffic in a production environment, the models have been re-fitted
and obtained their accuracy removing the most relevant features according to
the previous study. The accuracy of the model has been calculated as shown in

https://doi.org/10.5281/zenodo.4106730
http://doi.org/10.5281/zenodo.4600638
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the Eq. 1, where TP is true-positive rate, TN is the true-negative rate, FP is the
false-positive rate and FN is the false-negative rate.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

3 Results and Discussion

Table 3 shows the importance of NetFlow features, described in Table 1. The
features that are not shown in the new table with respect to the older one, have
an importance of 0 for the model.

Table 3. Weight for the features of the model KNN for D1 and D2

Feature Weight D1 Weight D2

nexthop 0.266652 0.400000

srcaddr 0.196473 0.116930

dstaddr 0.160707 0.073476

last 0.107621 0.005079

first 0.107598 0.005079

sysuptime 0.107593 0.004515

unix secs 0 0.004402

unix nsecs 0 0.000451

As can be seen in the Table 3 the three most relevant features are nexthop,
srcaddr, and dstaddr for both models, regardless of the dataset on which they
have been trained. In the case of the trained model without sampling, dataset
D1, the last, first and sysuptime features also take relevance. In the case of the
model trained with sampling, dataset D2, in addition to the previous features,
unix secs and unix nsecs also take relevance. The difference that we can observe
in the weight of the features is that for the model trained with the dataset D2 the
nexthop has greater weight than in the model trained with the dataset D1 which
distributes the weight of the features more evenly between nexthop, srcaddr,
dstaddr, last, first, and sysuptime.

In Table 4 we can see the accuracy of the model KNN validated with the
dataset D3 and that has previously been trained with the datasets D1 and D2.

As can be seen in Table 4 the model trained without sampling (D1), can-
not detect any malicious flow regardless of the features with which it has been
trained. In all cases, the model detects benign traffic, but it does not detect
any flow classified as attack, so the accuracy of the model is 50% in all cases.
From the analysis of these data, we can concluded that the KNN model trained
with D1 is not functional in detecting malicious network traffic in networks that
perform packet-level sampling.
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Table 4. True Negative, True Positive and Accuracy of KNN classifier trained with
D1 and D2 based on features removed and validated with D3

Features removed TN D1 TN D2 TP D1 TP D2 Accuracy D1 Accuracy D2

nexthop 100% 96.52% 0% 100% 50% 98.26%

srcaddr 100% 91.09% 0% 0% 50% 45.54%

dstaddr 100% 100% 0% 0% 50% 50%

nexthop, srcaddr 100% 91.09% 0% 0% 50% 45.54%

nexthop, dstaddr 100% 100% 0% 0% 50% 50%

srcaddr, dstaddr 100% 0% 0% 100% 50% 50%

nexthop, srcaddr, dstaddr 100% 0% 0% 100% 50% 50%

On the contrary, we can see that if we eliminate the nexthop feature, the
model trained D2 obtains an accuracy of 98.26% when we validated it with the
dataset D3. The rest of the combinations of features made when training the
model, show an accuracy of less than 50 % discarding its validity.

From the analysis of the Table 4 we can affirm, on the one hand, that it
is necessary to train models with sampled traffic to be able to detect traffic
on networks such as RedCAYLE. On the other hand, the use of the nexthop
feature affects negatively of the detection of malicious traffic in this type of
network, therefore it is necessary to eliminate this feature when training the
model. In addition, it is necessary to maintain both the source IP address and
the destination IP address when training the model to increase its accuracy.

If we observe the nexthop field of the D1 and D2 datasets, we can see that
in the flows classified as benign, the nexthop is always the router’s laboratory
that will route the packet to the Internet, however if we observe the malicious
traffic flows, we can see that the nexthop field is 0, since due to the architecture
of the attack laboratory, it does not have an Internet connection and therefore
the jump from the attacking machine to the victim is direct.

On the other hand, if we look at the D3 dataset collected in RedCAYLE, the
nexthop field has a much greater variance than the datasets generated with
DOROTHEA since they correspond to real IP addresses and more complex
network architectures. That is why it is necessary to remove this field when
training models for them to work in a real environment.

4 Conclusions

The detection of malicious traffic is a good indicator in the detection of var-
ious threats. It has been shown in the literature that malicious traffic can be
detected using machine learning algorithms. The difficulty in detecting these
types of threats increases when it is not possible to analyze all the traffic on
a network. This occurs in networks that manage a large amount of traffic per
second, making it impossible to analyze all the packets that it route. To know
the state of the network, this type of infrastructure uses flow-based protocols
such as Netflow. Networks as large as RedCAYLE do not have enough com-
puting power to analyze all packets, even using NetFlow. For this reason, these
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networks perform packet sampling before generating flows, in this specific case
RedCAYLE selects 1 packet out of every 1000.

In this work, three different datasets have been generated, D1, D2, and D3.
The first two datasets have been generated using DOROTHEA. Both contain
approximately 50% of benign traffic and 50% of port-scanning attack traffic.
The difference between both datasets is that D2 has been generated with a
sampling threshold. Finally, D3 has been generated with flow data collected
from RedCAYLE.

With the D1 and D2 datasets the KNN model has been fitted in order to
demonstrate if it is possible to detect real malicious traffic coming from Red-
CAYLE. The KNN model has been selected because it is the model that has
shown the best results in detecting malicious network traffic in the literature
[4,22].

Once the models were trained, an analysis of the importance of NetFlow
features in the generated models was carried out. This analysis reported that
the features nexthop, srcaddr, and dstaddr are the most relevant when training
the KNN model. With the information obtained in the analysis, the models have
been re-trained eliminating the most relevant features. Once the models have
been re-fitted, they have been validated with the flows obtained from RedCAYLE
(D3).

From the validation with the D3 dataset, it has been shown that the results
of the models trained with D1 do not exceed 50% accuracy regardless of the
features with which are train the model. On the other hand, the model trained
with the D2 dataset provides an accuracy of 98.26% if the nexthop feature is
eliminated when training the model.

Two clear conclusions can be drawn from the experiments carried out. On
the one hand, it is necessary to train models with sampled traffic to be able to
detect traffic on networks such as RedCAYLE. On the other hand, the nexthop
feature negatively affects the detection of malicious traffic in wide-area networks,
and it is necessary to remove this feature in the training phase of the model.
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10. Guerrero-Higueras, Á.M., Campazas-Vega, A., Crespo-Mart́ınez, I.S.: Module eval-
uator (moev). Technical report, Robotics group, Universidad de León (2020).
https://doi.org/10.5281/zenodo.4114127
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