Risk versus Benefit of Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Tania Payo-Serafín^{1,2}, Carolina Méndez-Blanco^{1,2}, Paula Fernández-Palanca^{1,2}, Jennifer Martínez-Geijo^{1,2}, María Reviejo^{2,3}, Juan José Ortiz-de-Urbina^{1,4}, Javier González-Gallego^{1,2}, Jose J. G. Marin^{2,3}, José L. Mauriz^{1,2,*,†}, and Beatriz San-Miguel^{1,2,†}

Although the treatment landscape has rapidly evolved over the last years, hepatocellular carcinoma (HCC) is one of the most lethal cancers. With recent advances, both immunotherapy and tyrosine kinase inhibitors (TKIs)-based chemotherapy constitute the standard treatment for advanced HCC. A systematic search of randomized clinical trials employing TKIs was performed in 17 databases, obtaining 25 studies evaluating the prognosis, tumor response, and presence of adverse events (AEs) related to TKIs in HCC. Overall effect sizes were estimated for the hazard ratios (HR) and odds ratios (OR) with 95% confidence interval (CI), either extracted or calculated with the Parmar method, employing STATA 16. Heterogeneity was assessed by Chi-square-based Q-test and inconsistency (l^2) statistic; source of heterogeneity by meta-regression and subgroup analysis; and publication bias by funnel plot asymmetry and Egger's test. The research protocol was registered in PROSPERO (CRD42023397263). Meta-analysis revealed a correlation between survival and tumor response parameters and TKI treatment vs. placebo, despite detecting high heterogeneity. Combined TKI treatment showed a significantly better objective response rate (ORR) with no heterogeneity, whereas publication bias was only detected with time to progression (TTP). Few gastrointestinal and neurological disorders were associated with TKI treatment vs. placebo or with combined treatment. However, a higher number of serious AEs were related to TKI treatment vs. sorafenib alone. Results show positive clinical benefits from TKI treatment, supporting the approval and maintenance of TKI-based therapy for advanced HCC, while establishing appropriate strategies to maximize efficacy and minimize toxicity.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

Hepatocellular carcinoma (HCC) constitutes one of the deadliest types of cancer. Although treatment landscape rapidly evolved over the years, tyrosine kinase inhibitors (TKIs) remain an alternative therapy for advanced HCC.

WHAT QUESTION DID THIS STUDY ADDRESS?

Are TKIs-based systemic treatment's effectiveness and safety for HCC patients being doubted after the appearance of immunotherapy?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?

 \checkmark Treatment with TKIs correlated with a higher survival, tumor response rate, and the presence of few manageable adverse events (AEs) in patients suffering from HCC.

HOW MIGHT THIS CHANGE CLINICAL PHARMA-COLOGY OR TRANSLATIONAL SCIENCE?

✓ TKIs treatment has a positive impact in patients' prognosis and tumor response. Despite the presence of AEs, results support maintaining TKI-based therapy as one of the standard treatment for advanced HCC.

¹Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain; ²Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; ³Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain; ⁴Pharmacy Service, Complejo Asistencial Universitario de León (CAULE), Hospital of León, León, Spain. *Correspondence: José L. Mauriz (jl.mauriz@unileon.es)

[†]Shared senior authorship.

Received November 7, 2023; accepted May 6, 2024. doi:10.1002/cpt.3312

Primary liver cancer is the third leading cause of cancer-related deaths, with a rising incidence and mortality worldwide.¹ Hepatocellular carcinoma (HCC) accounts for about 80–85% of all liver cancer cases, and regardless of etiology, it is usually diagnosed in the context of liver cirrhosis.^{2–4} HCC is characterized by high recurrence rates, making patient's management a continuously challenging issue as well as a constant burden for healthcare systems.^{3,5} The landscape for HCC treatment has improved over the years, and comprises a wide variety of therapeutic options established by the main staging system Barcelona Clinic Liver Cancer (BCLC) algorithm.^{6,7} BCLC classification system is helpful in predicting a patient's prognosis accounting for tumor burden, liver function, and the performance status of the patients, grading HCC from early (BCLC 0-A) to terminal stage (BCLC D).⁸

Unfortunately, most HCC cases are diagnosed in advanced stages (BCLC C), where only systemic therapy (chemotherapy and immunotherapy) can have some beneficial effect.^{7,9} Sorafenib, an orally administered tyrosine kinase inhibitor (TKI), exhibited promising results in the sorafenib in advanced hepatocellular carcinoma (SHARP) and Asia-Pacific clinical trials, which led to its approval as a first-line systemic treatment by the Food and Drug Administration in 2007.^{10,11} Nonetheless, its efficacy rapidly declined due to the development of sorafenib-resistant HCC cells.^{12,13} The scarcity of effective systemic therapy for HCC was reflected in the efforts of the scientific community to improve HCC treatment effectiveness, which resulted in the approval of regorafenib more than a decade later for patients that progressed after sorafenib.¹⁴ Moreover, novel TKIs, such as lenvatinib and cabozantinib, have been proposed as alternative drugs due to their positive results in first and second-line treatment, respectively.⁷

Although HCC systemic therapy demonstrated great clinical benefit, adverse events (AEs) are a common issue that needs to be taken into account and managed to maximize treatment effectiveness.¹⁵ Most AEs developed due to drug overexposure are tolerable and controllable (including hypertension, diarrhea, rash, nausea, vomiting, or fatigue); however, some high toxicity unexpected conditions can be life-threatening, causing dose interruption or treatment discontinuation.^{15–19}

Considering the wide range of therapeutic options available for advanced HCC, we performed this unique systematic review with meta-analysis to determine the potential risk-to-benefit relationship of employing approved and unapproved TKIs as first- or second-line therapy for advanced HCC through analyzing survival and tumor response parameters as well as serious AEs that emerged in the clinical trials included in the present study.

METHODS

Study objectives

We performed this unique systematic review with meta-analysis to determine the potential risk-to-benefit relationship of employing approved and unapproved TKIs as first or second-line therapy for advanced HCC through analyzing survival and tumor response parameters, as well as serious AEs that emerged in clinical trials employing TKIs in the experimental or control arms.

This systematic review with meta-analysis was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (Tables S1 and S2).²⁰ Moreover, the

study protocol was registered in the International Prospective Register for Systematic Reviews (PROSPERO), being ascribed the registration code CRD42023397263.

Clinical trials search strategy

We performed an exhaustive clinical trials search in the following clinical trials databases: the Australian New Zealand Clinical Trials Registry (ANZCTR), the Brazilian Clinical Trials Registry (ReBEC), the Chinese Clinical Trial Register (ChiCTR), the Clinical Research Information Service (Republic of Korea) (CriS), Clinical Trials.gov, the Clinical Trials Registry (India) (CTRI), the Cuban Public Registry of Clinical Trials (RPCEC), the EU Clinical Trials Register (EUCTR), the German Clinical Trials Register (DRKS), the Iranian Registry of Clinical Trials (IRCT), the International Traditional Medicine Clinical Trial Registry (ISRCTN), the Japan Primary Registries Network (JPRN), the Pan African Clinical Trial Registry (PACTR), the Peruvian Clinical Trials Registry (REPEC), the Sri Lanka Clinical Trials Registry (SLCTR), the Thai Clinical Trials Register (TCTR) and The Netherlands National Trial Register (NTR). We established January 31st 2023 as the study inclusion deadline date.

The following search strategy was employed for clinical trials identification: («hepatocellular carcinoma» OR «hepatocarcinoma» OR «HCC»).

Inclusion and exclusion criteria

Studies that met the following criteria were selected for this systematic review and meta-analysis: (i) patients diagnosed with HCC; (ii) clinical trials that evaluated individual TKIs treatment or TKIs effects in combined treatments; (iii) studies that included a control arm; (iv) association of TKI treatment with survival parameters, tumor response or AEs with reported data or that can be estimated.

Studies complying with the following criteria were excluded from this meta-analysis: (i) no clinical trials; (ii) phase I or IV clinical trials; (iii) no randomization for experimental and control arms; (iv) no results available (no data provided or that cannot be estimated).

Data extraction and quality assessment

Four authors performed the studies screening, data extraction, and quality assessment of all included studies. All discrepancies were resolved by discussion and final consensus.

Studies included in the qualitative analysis were subjected to a quality assessment employing a modified version of the Jadad score (scoring from 0 to 10 points),²¹ and the Delphi list (scoring from 0 to 9 points).²² A high-quality cutoff of ≥ 6 and ≥ 5 was established for the Jadad and Delphi scores, respectively. Clinical trials that failed to comply with the quality thresholds for any of the scales were considered low-quality and were excluded from the analysis.

The main characteristics and data related to the extracted or estimated parameters of the key outcomes of each clinical trial are summarized in **Table 1**. All survival parameters and tumor response data were extracted from published articles of each clinical trial, except for NCT02279719 (amcasertib + sorafenib vs. sorafenib) and NCT02178358 (galunisertib or galunisertib + sorafenib vs. sorafenib + placebo), in which data were extracted from ClinicalTrials.gov. In contrast, ClinicalTrials.gov was employed to assess and extract data of the most frequent serious AEs, defined as the ones found and evaluated at least in 15 studies. Nevertheless, NCT01009593,²³ NCT00858871,²⁴ and NCT00825955²⁵ AEs data were only available in published articles.

Statistical analysis

The statistical software STATA version 16 (College Station, TX) was employed to analyze the survival parameters, tumor response rates, and AEs derived from TKIs treatment in patients diagnosed with HCC.

								Treatment/				
Clinical trial ID	Masking	Phase	Setting	Treatment arm	Control arm	Treatment/ Control arm of survival parameters (n)	Treatment/ Control arm of tumor response parameters (<i>n</i>)	Control arm of adverse events (<i>n</i>)	Follow-up (months)	Jadad score	Delphi score	Parameters evaluated
NCT02279719	Open	=	First-line	Amcasertib + sorafenib	Sorafenib	NR	10/31	7/36	NR	7	ъ	ORR, DCR, AEs
NCT02178358	Double	=	First-line	Galunisertib	Sorafenib	20/38	20/38	20/38	24	ი	9	OS, ORR ^a , AEs
				Galunisertib + sorafenib		74/38	74/38	74/38				
NCT01988493 ²⁹	Open	=	First-line	Tepotinib	Sorafenib	38/37 ^b	38/37	45/44	28.3	∞	വ	ORR, DCR, AEs
NCT01761266 ³⁰	Open	≡	First-line	Lenvatinib	Sorafenib	478/476	478/476	476/475	41	œ	Q	OS, PFS, TTP, ORR, DCR, AEs
NCT01774344 ³¹	Quadruple	≡	Second- line	Regorafenib	Placebo	379/194	379/194	374/193	33	10	თ	OS, PFS, TTP, ORR, DCR, AEs
NCT01755767 ³²	Quadruple	≡	Second-	Tivantinib 120mg	Placebo	226/114	NR	225/114	36	10	0	OS, PFS, TTP, AEs
			line	Tivantinib 240 mg		NR	NR	28/15				
NCT01465464 ³³	Quadruple			Orantinib	Placebo	444/444 for 0S	NR	444/444	42	10	Ø	OS, TTP, AES
		≡	First-line			442/443 for TTP						
NCT01232296 ³⁴	Open	=	First-line	Dovitinib	Sorafenib	82/83	82/83	79/83	29.9	9	Ð	OS, TTP, ORR, DCR, AES
NCT01210495 ³⁵	Double	=	Second- line	Axitinib	Placebo	134/68	134/68	133/68	34	10	7	OS, PFS, TTP, ORR, DCR, AEs
NCT01164202 ³⁶	Quadruple	=	First-line	Sunitinib	Placebo	39/38 for 0S	36/34	39/38	36	ø	6	OS ^c , PFS ^c , ORR, AEs
						38/38 for PFS						
NCT01009593 ²³	Open	≡	First-line	Linifanib	Sorafenib	512/521 for 0S	514/521	510/519	27.5	9	വ	OS, PFS, TTP, ORR, AEs
						514/521 for PFS and TTP						
NCT00987935 ³⁷	Open	=	First-line	Nintedanib	Sorafenib	63/32	63/32	63/32	35	7	Q	OS, PFS, TTP, ORR, DCR, AEs
NCT01004003 ³⁸	Open	=	First-line	Nintedanib	Sorafenib	62/31	62/31	62/31	32	7	Q	OS, PFS, TTP, ORR, DCR, AEs
NCT00901901 ³⁹	Double	≡	First-line	Erlotinib + sorafenib	Sorafenib + placebo	362/358	362/358	362/355	32	10	7	OS, PFS, TTP, ORR, DCR, AEs
NCT00858871 ²⁴	Quadruple	≡	First-line	Brivanib	Sorafenib	577/578	577/578	575/575	35	10	0	OS, TTP, ORR, DCR, AES
NCT00855218 ⁴⁰	Quadruple	=	First-line	Sorafenib + TACE	Placebo + TACE	154/153	154/153	153/151	26.6	7	6	OS, TTP, ORR, DCR, AES
NCT00825955 ²⁵	Quadruple	≡	Second- line	Brivanib	Placebo	263/132	266/108	261/131	30	10	Ø	OS, TTP, ORR, DCR, AES
NCT00699374 ⁴¹	Open	≡	First-line	Sunitinib	Sorafenib	530/544	530/544	526/542	30.5	ø	Q	OS, PFS, TTP, ORR, DCR, AEs
NCT00692770 ⁴²	Quadruple	≡	Second- line	Sorafenib	Placebo	556/558	NR	559/548	64	6	6	OS, AEs

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 0 NUMBER 0 | Month 2024

(Continued)

15325355, 0, Downloaded from https://sapcionlinelbarg.wiley.com/doi/0100/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://online.bing.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://online.bing.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley O

3

Table 1 (Continued)

4

Clinical trial ID	Masking	Phase	Setting	Treatment arm	Control arm	Treatment/ Control arm of survival parameters (n)	Treatment/ Control arm of tumor response parameters (n)	Treatment/ Control arm of adverse events (n)	Follow-up (months)	Jadad score	Delphi score	Parameters evaluated
NCT00508001 ⁴³	Quadruple	=	First-line	Vandetanib 100 mg	Placebo	25/23	25/23	25/23	12	œ	თ	OS, PFS, ORR, DCR, AEs
				Vandetanib 300 mg		19/23	19/23	19/23				
NCT00494299 ⁴⁴	Triple	≡	First-line	Sorafenib	Placebo	229/229	NR	229/227	34	7	8	OS, TTP, AES
NCT00492752 ¹¹	Triple	≡	First-line	Sorafenib	Placebo	150/76	150/76	149/75	21.5	œ	œ	OS, TTP, TTSP, ORR, DCR, AEs
NCT00108953 ⁴⁵	Double	=	First-line	Sorafenib + doxorubicin	Placebo + doxorubicin	47/49	47/49	47/48	25	თ	7	OS, PFS, TTP, TTSP, ORR, AEs
NCT00105443 ¹⁰	Double	≡	First-line	Sorafenib	Placebo	299/303	299/303	297/302	17	თ	7	OS, TTP, TTSP, ORR, DCR, AEs
NCT01908426 ⁴⁶	Quadruple	≡	Second- line	Cabozantinib	Placebo	470/237	470/237	467/237	41	10	ი	OS, PFS, ORR, DCR, AEs
Abbreviations: AEs,	adverse event	s; DCR, dis	ease control	rate; NR, no reported;	ORR, objective re:	sponse rate; OS, c	werall survival; PF5	3, progression	I-free survival	; TACE, tra	Insarterial	chemoembolization; TKI,

YSTEMATIC REVIEW

We pooled the overall survival (OS), progression-free survival (PFS), time to progression (TTP), and time to symptomatic progression (TTSP) by hazard ratio (HR) and 95% confidence interval (CI). OS, PFS, TTP, and TTSP were determined from the start of the study treatment until the last follow-up date, disease progression, the first symptom appearance, or the death of the patient. We used the Parmar method²⁶ to estimate these data when no information was directly provided in the study. HR with 95% CI were combined throughout the studies.

The association between TKI treatment and the objective response rate (ORR), the disease control rate (DCR), and the presence of AEs was assessed by odds ratio (OR) with 95% CI. Combined HR <1 and OR >1 represented a higher benefit in prognosis or a higher tumor response and presence of AEs in the experimental arm, respectively. These associations were considered statistically significant when *P*-value <0.05.

Heterogeneity was assessed by Chi-squared-based Q-test along with the inconsistency (I^2) statistic, ranging from 0% (no heterogeneity) to 100% (maximal heterogeneity). Heterogeneity was considered significant when $I^2 \ge 50\%$ and/or Q-test P-value was <0.10, where the restricted maximum likelihood (REML) method was used as the random-effects model. Otherwise, the inverse variance (IV) method was employed as the fixed-effects model.²⁷

To evaluate the source of heterogeneity, subgroup analysis based on the follow-up was performed, as well as meta-regression.²⁸

Risk of publication bias was analyzed by funnel plot asymmetry and Egger's test, considering significance when asymmetry was found and Egger's test *P*-value was <0.05, in which case the trim-and-fill method was used to estimate a corrected effect size adjustment.

RESULTS

Clinical trials selection and characteristics

After a comprehensive search was performed in several public databases, a total of 310 clinical trials were identified. After duplicated records were eliminated and removal after screening was made, we obtained a total of 25 randomized clinical trials that were included for data extraction and quantitative analysis^{10,11,23–25,29–46} (plus NCT02279719 and NCT02178358, which results were obtained from ClinicalTrials.gov) (**Table 1**, **Figure S1**). Out of the 25 studies, 12 were evaluating TKI treatment vs. placebo as the control arm,^{10,11,25,31–33,35,36,42–44,46} eight assessed the effect of TKI treatment vs. sorafenib as the control arm,^{23,24,29,30,34,37,38,41} four determined the effect of TKIs in combined treatments^{39,40,45} (plus NCT02279719) and one had both TKI in monotherapy and combined TKI treatment vs. sorafenib (NCT02178358). For this, three groups were established for subsequent analyses (vs. placebo, vs. sorafenib and combined TKI treatment).

Overall survival

TKI treatment was significantly correlated with a higher OS in HCC patients compared with placebo (n = 13) (HR 0.81, 95% CI 0.72–0.92, P < 0.001). However, heterogeneity across studies was found to be statistically significant ($I^2 = 51.67\%$ and Q-test P = 0.01) (Figure 1a).

No improvement in the patient's OS was significant in the vs. sorafenib group (n=8), although global HR indicated a slightly more favorable outcome in the sorafenib treatment arm (HR 1.07, 95% CI 0.95–1.20, P=0.26). In this group, heterogeneity was also found to be significant ($I^2=51.92\%$ and Q-test P=0.05) (Figure 1a).

Finally, OS was higher but not significant in the combined TKI treatment compared with the control arm (n = 4) (HR 0.88, 95%)

SYSTEMATIC REVIEW

Figure 1 Forest plots of studies evaluating the association between (**a**) OS or (**b**) PFS and TKI therapy in the vs. placebo group, the vs. sorafenib group, and the combined TKI treatment group by HR in HCC patients. For each trial, the drug employed in the experimental arm is described. DCR, disease control rate; HCC, hepatocellular carcinoma; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; REML, restricted maximum likelihood; TACE, transarterial chemoembolization; TKI, tyrosine kinase inhibitor. *100 mg dose, **300 mg dose.

CI 0.76–1.01, P = 0.06). Remarkably, a moderate heterogeneity was detected among studies in this group ($I^2 = 49.16\%$ and Q-test P = 0.12) (Figure 1a).

Progression-free survival

The vs. placebo group (n=7) showed a statistically significant correlation between TKI treatment and a higher PFS in HCC patients (HR 0.61, 95% CI 0.48–0.78, P < 0.001). Despite this, heterogeneity across trials was significantly elevated ($I^2 = 74.77\%$ and Q-test P < 0.001) (Figure 1b).

In the vs. sorafenib group (n = 5), PFS was not improved with TKI treatment, being slightly more favorable in the TKI treatment over sorafenib (HR 0.94, 95% CI 0.72–1.22, P = 0.65). However, heterogeneity was also found to be remarkably high among studies ($I^2 = 87.21\%$ and *Q*-test P < 0.001) (Figure 1b).

Regarding the combined TKI treatment group (n=2), there was no relevant association with PFS compared with the control group, although global HR resulted favorable toward combined treatment (HR 0.82, 95% CI 0.41–1.65, P=0.58). In this case, heterogeneity was also significantly increased among studies ($I^2 = 81.34\%$ and Q-test P = 0.02) (Figure 1b).

Time to progression and time to symptomatic progression

A marked significance was found in the correlation between TKI treatment and a higher TTP in the vs. placebo group (n = 8) (HR 0.67, 95% CI 0.55–0.81, P < 0.001), finding an elevated heterogeneity ($I^2 = 81.78\%$ and Q-test P < 0.001) (Figure 2a). Moreover, when TTSP was analyzed in this group (n = 2), no association with TKI treatment (HR 1.02, 95% CI 0.86–1.21, P = 0.82) was found, and no heterogeneity among studies ($I^2 = 0.00\%$ and Q-test P = 0.33) (Figure 2b) was observed.

As the aforementioned analysis exhibited, TTP was also not significantly associated with TKI treatment (HR 0.99, 95% CI 0.79–1.25, P=0.95) in the vs. sorafenib group (n=7), while a high heterogeneity was detected ($I^2 = 87.53\%$ and Q-test P < 0.001) (Figure 2a).

Finally, the combined TKI treatment group (n=3) did not show any improvement in TTP of patients diagnosed with HCC (HR 0.81, 95% CI 0.52–1.26, P=0.34), exhibiting an elevated heterogeneity ($I^2 = 83.59\%$ and Q-test P < 0.01) (Figure 2a).

Tumor response rates

In the vs. placebo group (n = 9 for ORR; n = 9 for DCR), both ORR (OR 2.41, 95% CI 1.09–5.33, P = 0.03) and DCR (OR

Figure 2 Forest plots exhibiting HR for the association of TKI treatment with (a) TTP in the vs. placebo group, the vs. sorafenib group, and the combined TKI treatment group or with (b) TTSP in the vs. placebo group. For each trial, the drug employed in the experimental arm is described. HR, hazard ratio; REML, restricted maximum likelihood; TACE, transarterial chemoembolization; TKI, tyrosine kinase inhibitor; TTP, time to progression; TTSP, time to symptomatic progression.

2.31, 95% CI 1.68–3.17, P < 0.001) were found to be significantly correlated to TKI treatment, although a high heterogeneity was detected among pooled OR ($I^2 = 53.72\%$ and Q-test P = 0.03 for ORR; $I^2 = 64.22\%$ and Q-test P < 0.01 for DCR) (**Figure 3a**).

On the other hand, ORR (n = 8) and DCR (n = 7) were not associated with TKI treatment in the vs. sorafenib group, which could be explained due to the heterogeneity observed in both cases $(I^2 = 85.19\% \text{ and } Q\text{-test } P < 0.001 \text{ for ORR}; I^2 = 86.05\%$ and Q-test P < 0.001 for DCR) (Figure 3b).

Finally, combined TKI treatment group (n = 4 for ORR; n = 3 for DCR) only showed a significant correlation with ORR (OR 1.50, 95% CI 1.02–2.21, P = 0.04) with no heterogeneity detected among studies ($I^2 = 0.00\%$ and Q-test P = 0.78) (**Figure 3c**).

Adverse events

Dehydration (OR 2.45, 95% CI 1.07–5.60, P = 0.03), diarrhea (OR 2.88, 95% CI 1.56-5.33, P < 0.001) and hepatic encephalopathy (OR 2.03, 95% CI 1.14-3.62, P=0.02) were significantly correlated to TKI treatment in the vs. placebo group, not finding any heterogeneity across studies (Table 2). However, in the vs. sorafenib group, dehydration (OR 3.07, 95% CI 1.36-6.93, P = 0.01), diarrhea (OR 1.37, 95% CI 1.00-1.86, P = 0.049, nausea (OR 2.63, 95% CI 1.07-6.44, P = 0.03), vomiting (OR 3.91, 95% CI 2.07-7.37, P < 0.001), fatigue (OR 2.00, 95% CI 1.39–2.88, P < 0.001), hypoglycemia (OR 2.29, 95% CI 1.09–4.84, *P* = 0.03), hyponatremia (OR 2.01, 95% CI 1.24–3.26, P < 0.01), and hepatic encephalopathy (OR 2.56, 95% CI 1.75–3.75, P < 0.001) were significantly higher in the experimental arm (Table 2). Moreover, hyperbilirubinemia (OR 2.40, 95% CI 1.01–5.70, P = 0.049) and increased AST (OR 4.41, 95% CI 1.09–17.93, *P*=0.04) were found to be related to combined TKI treatment in HCC patients (Table 2). Heterogeneity was not found in any cases, except for the encephalopathy in TKI combined treatment group ($I^2 = 68.15\%$ and *Q*-test P = 0.08) (**Table 2**).

Meta-regression

The potential sources of heterogeneity found in all survival and tumor response parameters analyses were evaluated by performing a meta-regression, employing follow-up as the only available moderator (**Table 3, Figure S2**).

As shown in **Table 3**, follow-up was found to be mostly responsible for the high heterogeneity observed across studies for OS and DCR in the vs. placebo group ($I^2 = 34.68\%$, *Q*-test P = 0.16; $I^2 = 35.43\%$, *Q*-test P = 0.15; respectively), for OS in the vs. sorafenib group ($I^2 = 44.91\%$ and *Q*-test P = 0.10) and TTP in the combined TKI treatment group ($I^2 = 16.47\%$ and *Q*-test P = 0.27) after performing meta-regression. However, follow-up could partially or not explain the heterogeneity found in the rest of the parameters evaluated in all three groups (**Table 3**, **Figure S2**).

Subgroup analysis

Heterogeneity associated with TKI treatment and OS was resolved with follow-up as a moderator for the subgroups involving clinical trials performed in less than or equal to 20, 30 and 40 months ($I^2 = 0.00\%$, Q-test P = 0.47; $I^2 = 0.00\%$, Q-test P = 0.52; $I^2 = 34.37\%$, Q-test P = 0.13; respectively) in the vs. placebo group, maintaining a significant correlation with OS in all cases (Table 4). However, the subgroup comprising TKIs not approved for HCC treatment did not show a significant correlation with OS (HR 0.92, 95% CI 0.81–1.03, *P*=0.15), although no heterogeneity was found in the analysis ($I^2 = 36.12\%$ and Qtest P = 0.15) (Table 4). In regard to PFS, only the subgroup comprising studies evaluated in less than or equal to 30 months $(I^2 = 0.00\%$ and Q-test P = 0.81) and both subgroups of not approved and approved TKI treatment exhibited a reduced heterogeneity ($I^2 = 23.09\%$, Q-test P = 0.27; $I^2 = 0.00\%$, Q-test P = 0.77; respectively), having a significant association with this survival parameter in the last two subgroups (HR 0.78, 95% CI 0.66–0.93, *P* < 0.01; HR 0.45, 95% CI 0.39–0.52, *P* < 0.001; respectively) (Table 4). For TTP, heterogeneity was only solved in studies performed in less than or equal to 30 months

SYSTEMATIC REVIEW

(a)

(c)

Study

Overall

NCT02279719 - Amcasertib + sorafenib

NCT00108953 - Sorafenib + doxorubicin

NCT00901901 - Erlotinib + sorafenib

NCT00855218 - Sorafenib + TACE

Heterogeneity: I² = 0.00%, H² = 0.36

Test of $\theta_i = \theta_i$: Q(3) = 1.08, p = 0.78

Test of θ = 0: z = 2.08, p = 0.04

Fixed-effects inverse-variance model

Study	ORR (vs. placebo)	Odds Ratio with 95% CI	Weight (%)
NCT01774344 - Regorafenib		2.74 [1.26, 5.98]	19.51
NCT01210495 - Axitinib		3.55 [0.78, 16.19]	12.78
NCT01164202 - Sunitinib		0.38 [0.14, 1.03]	17.29
NCT00825955 - Brivanib		6.00 [1.39, 25.96]	13.22
NCT00508001 - Vandetanib		1.21 [0.02, 63.58]	3.43
NCT00508001 - Vandetanib**		0.92 [0.02, 48.33]	3.44
NCT00492752 - Sorafenib		2.59 [0.30, 22.54]	8.62
NCT00105443 - Sorafenib		3.61 [0.74, 17.51]	12.31
NCT01908426 - Cabozantinib		9.40 [1.25, 70.83]	9.40
$\label{eq:versel} \begin{split} & \text{Overall} \\ & \text{Heterogeneity: } r^2 = 0.68, \ l^2 = 53.72\%, \ H^2 = 2.16 \\ & \text{Test of } \theta_i = \theta_i; \ Q(8) = 16.88, \ p = 0.03 \\ & \text{Test of } \theta = 0; \ z = 2.17, \ p = 0.03 \end{split}$	1/32 1/4 2 16	2.41 [1.09, 5.33]	
Random-effects REML model			

Study	DC	CR (vs	. place	ebo)		Odds Ratio with 95% CI		Weigh (%)
NCT01774344 - Regorafenib				-	ŀ	3.31 [2.31, 4.]	76]	16.46
NCT01210495 - Axitinib						1.80 [0.98, 3.3	32]	11.78
NCT01164202 - Sunitinib						0.34 [0.01, 8.	71]	0.92
NCT00825955 - Brivanib				-	-	2.37 [1.48, 3.	79]	14.36
NCT00508001 - Vandetanib				-	_	1.40 [0.41, 4.]	79]	5.05
NCT00508001 - Vandetanib**			_			1.98 [0.63, 6.3	26]	5.57
NCT00492752 - Sorafenib				-+	-	3.30 [1.82, 5.	96]	12.11
NCT00105443 - Sorafenib			-			1.27 [0.89, 1.3	80]	16.66
NCT01908426 - Cabozantinib				-	ŀ	3.53 [2.54, 4.	91]	17.08
Overall				+		2.31 [1.68, 3.	17]	
Heterogeneity: τ^2 = 0.13, I ² = 64.22%, H ² = 2.79								
Test of $\theta_i = \theta_j$: Q(8) = 25.24, p = 0.00								
Test of θ = 0: z = 5.16, p = 0.00								
	1/64	1/8		1	8			
Random-effects REML model								

(b) Study	ORR (vs. sora	fenib)	Odds R with 95%	atio % Cl	Weight (%)
NCT01988493 - Tepotinib			9.78 [0.51,	188.43]	3.24
NCT01761266 - Lenvatinib			3.11 [2.14,	4.52]	19.01
NCT01232296 - Dovitinib			0.53 [0.17,	1.67]	11.49
NCT01009593 - Linifanib			0.70 [0.55,	0.90]	19.89
NCT00987935 - Nintedanib			2.10 [0.23,	19.62]	5.08
NCT01004003 - Nintedanib			0.24 [0.02,	2.73]	4.43
NCT00858871 - Brivanib			0.67 [0.45,	0.99]	18.88
NCT00699374 - Sunitinib	÷		1.09 [0.67,	1.79]	17.98
$\label{eq:overall} \begin{split} & \textbf{Overall} \\ & \text{Heterogeneity: } \tau^2 = 0.42, \ t^2 = 85.19\%, \ H^2 = 6.75 \\ & \text{Test of } \theta_i = \theta_i, \ Q(7) = 52.70, \ p = 0.00 \\ & \text{Test of } \theta = 0; \ z = 0.20, \ p = 0.84 \end{split}$	1/32 1/2	8 128	1.06 [0.59,	1.90]	
Random-effects REML model	1/32 1/2	0 120			

Odds Ratio Weiaht DCR (combined) Study with 95% CI (%) NCT02279719 - Amcasertib + sorafenib 2.49 [0.54, 11.44] 10.78 NCT00901901 - Erlotinib + sorafenib 0.71 [0.53, 0.95] 49.12 NCT00855218 - Sorafenib + TACE 1.24 [0.77, 2.00] 40.11 Overall 1.02 [0.58, 1.77] Heterogeneity: $r^2 = 0.14$, $I^2 = 65.69\%$, $H^2 = 2.91$ Test of $\theta_i = \theta_i$; Q(2) = 5.82, p = 0.05 Test of θ = 0: z = 0.06, p = 0.96 2 4 8 Random-effects REML model

Figure 3 Forest plots assessing the association of TKI treatment with ORR and DCR by OR in studies from (a) the vs. placebo group, (b) the vs. sorafenib group, and (c) the combined TKI treatment group. DCR, disease control rate; OR, odds ratio; ORR, objective response rate; REML, restricted maximum likelihood; TACE, transarterial chemoembolization; TKI, tyrosine kinase inhibitor. *100 mg dose, **300 mg dose.

 $(I^2 = 0.00\%$ and Q-test P = 0.96). Finally, subgroup analysis for tumor response parameters was performed in the vs. placebo group (Table 4). Studies performed in less than or equal to 20 and 30 months ($I^2 = 0.00\%$, Q-test P = 0.75; $I^2 = 0.00\%$, Q-test P = 0.86; respectively) and with approved TKIs and sorafenib in the experimental arm ($I^2 = 0.00\%$, Q-test P = 0.73; $I^2 = 0.00\%$, Q-test P = 0.81; respectively) appeared to be covariates responsible for the high heterogeneity found in the association of TKI treatment with ORR meta-analysis (Table 4). In regard to the association of DCR with TKI treatment, heterogeneity was markedly reduced for follow-up ≤ 20 ($I^2 = 0.00\%$ and Q-test P = 0.76) and > 20/30 months ($I^2 = 25.41\%$, Q-test P = 0.24; $I^2 = 45.89\%$, Q-test P=0.14; respectively) and for neither approved nor sorafenib treatment in the experimental arm ($I^2 = 0.00\%$, Q-test $P = 0.72; I^2 = 28.29\%, Q$ -test P = 0.21) (**Table 4**).

1/32

For the vs. sorafenib group, heterogeneity across studies analyzed for OS and ORR parameters was found to be solved. Specifically,

follow-up of less than and equal to 30 months ($I^2 = 8.80\%$ and Qtest P = 0.33) and follow-up of less than or equal to 40 months/ not approved TKI treatment in experimental arm $(I^2 = 30.06\%)$ and Q-test P = 0.20) were found to be potential sources of heterogeneity for OS, while observing a significant association with this survival parameter in the last subgroup (HR 1.13, 95% 1.05-1.22, P < 0.01) (Table 4). Meanwhile, follow-up of less than or equal than 30 months ($I^2 = 38.84\%$ and Q-test P = 0.19) and follow-up of less than or equal to 40 months/not approved TKI treatment in the experimental arm $(I^2 = 23.23\%$ and Q-test P = 0.25) subgroups resolved heterogeneity for the ORR parameter (Table 4). In both cases, a significant association with this tumor response parameter was found after heterogeneity resolution (ORR 0.70, 95% CI 0.55-0.90, P<0.01; ORR 0.74, 95% CI 0.61-0.90, P < 0.01; respectively) (**Table 4**).

Conversely, the combined TKI treatment group subgroup analysis did not solve heterogeneity in any cases (Table 4).

Table 2 Assessment of AEs correlation with TKI treatment in the three groups

				Pooled OR		Test for hete	rogeneity	
Adverse events		Clinical trials analyses (n)	OR	95% CI	P-value	l ²	Q-test P-value	Model used
vs. placebo								
GI disorders (1)	Abdominal pain	14	0.74	(0.50-1.10)	0.14	2.51%	0.42	FEM
	Ascites	12	1.11	(0.78–1.58)	0.56	2.64%	0.42	FEM
	Dehydration	9	2.45	(1.07–5.60)	0.03*	0.00%	0.83	FEM
	Diarrhea	12	2.88	(1.56–5.33)	0.00*	0.00%	0.99	FEM
GI disorders (2)	Esophageal varices hemorrhage	12	0.87	(0.55–1.38)	0.56	0.00%	0.77	FEM
	GI hemorrhage	9	1.40	(0.61–3.23)	0.43	0.00%	0.84	FEM
	Nausea	5	1.07	(0.29–3.97)	0.92	0.00%	0.63	FEM
	Upper GI hemorrhage	11	0.89	(0.50-1.59)	0.99	0.00%	0.99	FEM
	Vomiting	10	0.93	(0.46–1.86)	0.83	0.00%	0.84	FEM
General,	Fatigue	11	1.16	(0.60–2.22)	0.66	0.00%	0.77	FEM
hepatobiliary	Pyrexia	14	1.26	(0.77–2.06)	0.35	0.00%	0.96	FEM
infections	Hepatic failure	10	0.96	(0.61–1.51)	0.86	0.00%	0.57	FEM
	Hyperbilirubinemia	10	1.14	(0.55–2.35)	0.72	0.00%	0.87	FEM
	Cellulitis	10	1.22	(0.44–3.35)	0.70	0.00%	0.98	FEM
	Pneumonia	12	1.38	(0.80–2.38)	0.25	0.00%	0.75	FEM
Metabolic,	AST	9	1.99	(0.76–5.23)	0.16	0.00%	1.00	FEM
nervous and	Hypoglycemia	8	1.46	(0.59–3.59)	0.41	0.00%	0.88	FEM
disorders	Hyponatremia	9	0.78	(0.29–2.09)	0.62	0.00%	0.72	FEM
	Encephalopathy	10	1.28	(0.63–2.61)	0.49	0.00%	0.54	FEM
	Hepatic encephalopathy	8	2.03	(1.14–3.62)	0.02*	0.00%	0.82	FEM
	Dyspnea	9	1.94	(0.93–4.05)	0.08	0.00%	0.90	FEM
vs. sorafenib								
GI disorders (1)	Abdominal pain	10	1.15	(0.78–1.69)	0.48	0.00%	0.81	FEM
	Ascites	9	1.37	(0.95–1.96)	0.09	0.00%	0.68	FEM
	Dehydration	5	3.07	(1.36-6.93)	0.01*	0.00%	0.44	FEM
	Diarrhea	9	1.37	(1.00–1.86)	0.049*	0.00%	0.96	FEM
GI disorders (2)	Esophageal varices hemorrhage	7	1.36	(0.74–2.51)	0.32	0.00%	0.98	FEM
	GI hemorrhage	7	1.30	(0.67–2.52)	0.44	0.00%	0.56	FEM
	Nausea	7	2.63	(1.07–6.44)	0.03*	0.00%	0.66	FEM
	Upper GI hemorrhage	8	1.28	(0.71–2.30)	0.41	0.00%	0.77	FEM
	Vomiting	7	3.91	(2.07–7.37)	0.00*	0.00%	0.70	FEM
General,	Fatigue	8	2.00	(1.39–2.88)	0.00*	0.00%	0.97	FEM
hepatobiliary disorders and	Pyrexia	7	1.09	(0.69–1.71)	0.71	26.09%	0.23	FEM
infections	Hepatic failure	8	1.18	(0.71–1.95)	0.52	0.00%	0.78	FEM
	Hyperbilirubinemia	7	1.39	(0.91–2.14)	0.13	0.00%	0.96	FEM
	Cellulitis	6	3.15	(0.84–11.86)	0.09	0.00%	0.99	FEM
	Pneumonia	6	1.08	(0.55–2.13)	0.82	0.00%	0.81	FEM
Metabolic,	AST	7	1.00	(0.71-1.41)	0.99	0.00%	0.88	FEM
nervous and respiratory	Hypoglycemia	7	2.29	(1.09-4.84)	0.03*	0.00%	0.69	FEM
disorders	Hyponatremia	7	2.01	(1.24–3.26)	0.00*	26.71%	0.22	FEM
	Encephalopathy	4	2.03	(0.71–5.82)	0.19	0.00%	0.57	FEM
	Hepatic encephalopathy	9	2.56	(1.75–3.75)	0.00*	0.00%	0.52	FEM
	Dyspnea	4	1.39	(0.53-3.62)	0.50	0.00%	0.67	FEM

(Continued)

Table 2 (Continued)

				Pooled OR		Test for hete	rogeneity	
Adverse events		Clinical trials analyses (n)	OR	95% CI	P-value	l ²	Q-test P-value	Model used
Combined TKI treatm	nent							
GI disorders (1)	Abdominal pain	5	0.92	(0.53–1.60)	0.76	0.00%	0.53	FEM
	Ascites	4	1.34	(0.70–2.56)	0.38	0.00%	0.75	FEM
	Dehydration	4	2.14	(0.89–5.14)	0.09	0.00%	0.86	FEM
	Diarrhea	4	2.62	(1.00-6.86)	0.05	12.47%	0.33	FEM
GI disorders (2)	Esophageal varices hemorrhage	3	0.63	(0.28-1.40)	0.25	0.00%	0.43	FEM
	GI hemorrhage	2	3.32	(0.29–37.75)	0.33	0.00%	0.81	FEM
	Nausea	5	1.53	(0.37–6.37)	0.56	0.00%	0.74	FEM
	Upper GI hemorrhage	4	1.41	(0.63–3.13)	0.40	0.00%	0.64	FEM
	Vomiting	4	1.11	(0.32–3.83)	0.86	0.00%	0.41	FEM
General,	Fatigue	4	1.40	(0.63–3.15)	0.41	10.07%	0.34	FEM
hepatobiliary	Pyrexia	5	1.04	(0.54–2.01)	0.91	0.00%	0.70	FEM
infections	Hepatic failure	2	1.57	(0.16–15.78)	0.70	0.00%	1.00	FEM
	Hyperbilirubinemia	3	2.40	(1.01–5.70)	0.049*	0.00%	0.73	FEM
	Cellulitis	4	0.88	(0.24–3.31)	0.86	3.05%	0.38	FEM
	Pneumonia	5	1.36	(0.59–3.17)	0.47	0.00%	0.62	FEM
Metabolic,	AST	2	4.41	(1.09–17.93)	0.04*	0.00%	0.33	FEM
nervous and	Hypoglycemia	3	1.15	(0.25–5.37)	0.86	0.00%	0.77	FEM
disorders	Hyponatremia	2	1.50	(0.31–7.25)	0.62	0.00%	0.97	FEM
	Encephalopathy	2	1.68	(0.19–14.80)	0.64	68.15%	0.08	REM
	Dyspnea	3	2.33	(0.89-6.13)	0.09	0.00%	0.97	FEM

AEs, adverse events; AST, aspartate aminotransferase; CI, confidence interval; FEM, fixed-effects model; GI, gastrointestinal; OR, odds ratio; REM, randomeffects model; TKI, tyrosine kinase inhibitor.*Significant correlation, *P*-value <0.05.

Publication bias assessment

We analyzed the risk of publication bias present in this metaanalysis by assessing funnel plot asymmetry along with Egger's test outcome (Table 5, Figures S3–S6). While no significant publication bias was found in the association of TKI treatment with OS (Figure S3A), PFS (Figure S3B), TTSP (Figure S3C), ORR or DCR (Figure S3D), funnel plot asymmetry, and positive Egger's test outcome was found in combined TKI treatment for TTP (Table 5, Figure S3C). Sensitivity analysis by trimand-fill method was performed, imputing two missing studies and modifying the global effect size (HR 1.14, 95% CI 0.68– 1.91), switching the effect of TTP to being favorable toward the control arm after publication bias determination (Table 5). For AEs, no presence of publication bias was reported (Table 5, Figures S4–S6).

DISCUSSION

HCC is a highly lethal disease, constituting nowadays a major public health issue.^{1,5} The need to improve HCC therapy has been reflected in the approval of several TKIs that exhibited high efficacy by significantly extending patients' life expectancy.^{10,30,31,46}

In this study, we aimed to address the clinical benefits of approved and unapproved TKIs in advanced HCC as well as the presence of AEs derived from the treatments detected in randomized clinical trials. Although several authors analyzed the clinical efficacy of TKIs alone or in combined treatment in various types of cancer,^{47–50} our work constitutes the first systematic review with meta-analysis to address the risk vs. benefit evaluation of TKI treatment in patients with HCC.

Data from 25 high-quality randomized clinical trials comprising a total of 11,720 HCC patients treated with both approved and unapproved TKIs as first or second-line therapy were retrieved and included in the quantitative analysis. After performing statistical analysis, pooled results indicated that TKI treatment was correlated to a higher OS, PFS, and TTP compared with placebo. Surprisingly, treatment with the unapproved TKI vandetanib showed promising results for both OS and PFS but did not improve sorafenib outcome.⁴³ Treatment with TKIs was also found to be associated with a higher tumor response rate, being this response was more than two times higher in the experimental group than in the placebo one, which demonstrates a high effectiveness of any TKI for the treatment of advanced HCC. In addition, AEs positively correlated to TKI treatment vs. placebo included dehydration, diarrhea, and hepatic encephalopathy, which is a common and reversible neuropsychiatric condition associated with liver cirrhosis.⁵¹ Data obtained by Tavakoli et al.⁵² showed promising results regarding 15-year OS and disease-free survival, with an incidence of 65.70% and 57.83%,

						Residual heterogene	ity
Variables	Beta coefficient	z	P-value	95% CI	l ²	Q-test P-value	R ²
vs. placebo							
OS							
Follow-up	1.01	2.56	0.01	(1.00–1.02)	34.68%	0.16 ^a	49.31%
PFS							
Follow-up	0.99	-0.45	0.65	(0.97–1.02)	77.35%	0.00	0.00%
TTP							
Follow-up	1.02	1.43	0.15	(0.99–1.04)	77.58%	0.00	16.38%
ORR							
Follow-up	1.00	0.07	0.95	(0.91-1.11)	58.33%	0.02	0.00%
DCR							
Follow-up	1.03	2.27	0.02	(1.00-1.06)	35.43%	0.15ª	64.84%
vs. sorafenib							
OS							
Follow-up	0.99	-0.93	0.35	(0.97-1.01)	44.91%	0.10 ^a	13.98%
PFS							
Follow-up	0.98	-0.84	0.40	(0.93-1.03)	85.07%	0.00	0.00%
TTP							
Follow-up	0.97	-1.04	0.30	(0.92–1.03)	86.38%	0.00	0.00%
ORR							
Follow-up	1.10	1.98	0.048	(1.00–1.20)	66.10%	0.00	50.54%
DCR							
Follow-up	1.02	0.33	0.74	(0.91–1.15)	86.42%	0.01	0.00%
Combined TKI trea	atment						
TTP							
Follow-up	1.09	2.69	0.01	(1.02–1.17)	16.47%	0.27 ^a	93.71%
DCR							
Follow-up	_	-	-	_	-	_	_

Table 3 Estimation of the source of heterogeneity by meta-regression in global OS, PFS, TTP, ORR and DCR in all three groups

CI, confidence interval; DCR, disease control rate; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; TKI, tyrosine kinase inhibitor; TTP, time to progression. ^aHeterogeneity solved.

respectively, after treatment with imatinib in patients with chronic myeloid leukemia. Additionally, a recent clinical trial performed with cabozantinib achieved a 12-week PFS with stable disease or better in 45% of the patients enrolled with refractory, metastatic colorectal cancer, while being fatigue, diarrhea, hypertension, nausea, or decreased appetite were the most frequently detected AEs.⁵³ Interestingly, placebo-controlled studies included in Haber *et al.*⁴⁸ systematic review and meta-analysis reached a positive end point for OS, but no significant correlation was found with the disease etiology (viral or non-viral) in HCC patients treated with TKIs or antivascular endothelial growth factor therapies. With all, outcomes from our meta-analysis including placebo as control arm demonstrated that treatment with TKI achieves greater clinical benefits with a low presence of AEs and that can be controllable.

Regarding the vs. sorafenib group, primary pooled results found no positive association between TKI treatment and survival or tumor response parameters, although subgroup analysis exhibited significance in OS and ORR. However, global HR indicated that sorafenib treatment achieved a slightly greater OS benefit compared with the TKI treatment. The lack of significant improvement in sorafenib treatment can be partially explained by the presence of lenvatinib, the alternative to sorafenib as a first-line therapy for advanced HCC,⁷ as well as linifanib, in the experimental arm, which modifies the global effect analysis by slightly favoring TKI treatment. Likewise, sorafenib benefit did not manifest in 184 HCC patients in the study performed by Öcal et al.,54 and no significant improvement in OS, TTP, or treatment response was found by El Shorbagy et al.,⁵⁵ comparing to metformin plus sorafenib treatment in HCC. With respect to AEs evaluation in our study, dehydration, diarrhea, nausea, vomiting, fatigue, hypoglycemia, hyponatremia, and hepatic encephalopathy were significantly more frequent in the experimental arm than in the sorafenib one. Mostly low-grade GI or dermatologic AEs, such as diarrhea, abdominal pain, vomiting, rash, or hand-foot syndrome are detected after sorafenib^{55–58} or sunitinib⁵⁹ treatment in several clinical trials. Curiously, several studies confirmed the positive association between a better prognosis and the presence of AEs

Table 4 Subgroup analysis of OS, PFS, TTP, ORR and DCR association with TKI treatment in the three groups

				Pooled HR or OR		Test for he	terogeneity	
Subgroup	Clinical trials analyses (n)	Cases (n)	HR or OR	95% CI	P-value	l ²	Q-test P-value	Model used
vs. placebo								
OS								
Follow-up (mont	ths)							
>20	10	4,980	0.85	(0.75-0.97)	0.02*	52.5%	0.03	REM
≤20	3	692	0.66	(0.53–0.80)	0.00*	0.00%	0.47	FEM^\dagger
>30	8	4,359	0.88	(0.76–1.03)	0.11	56.98%	0.02	REM
≤30	5	1,313	0.71	(0.61-0.81)	0.00*	0.00%	0.52	FEM [†]
>40	3	2,709	0.93	(0.74-1.17)	0.53	67.88%	0.04	REM
≤40	10	2,963	0.76	(0.69–0.84)	0.00*	34.37%	0.13	FEM [†]
>50	1	1,114	0.99	(0.76-1.30)	_	-	-	-
≤50	12	4,558	0.80	(0.70-0.90)	0.00*	51.36%	0.02	REM
Approved treatr	nent							
No	7	1992	0.92	(0.81–1.03)	0.15	36.12%	0.15	FEM [†]
Yes	6	3,680	0.76	(0.66–0.89)	0.00*	49.11%	0.08	REM
Sorafenib treat	ment							
No	9	3,272	0.81	(0.69–0.95)	0.01*	55.21%	0.02	REM
Yes	4	2,400	0.82	(0.65-1.02)	0.08	56.27%	0.08	REM
PFS								
Follow-up (mont	ths)							
>30	5	1898	0.60	(0.45-0.81)	0.00*	83.87%	0.00	REM
≤30	2	90	0.67	(0.44-1.04)	0.07	0.00%	0.81	FEM [†]
>40	1	707	0.44	(0.36-0.54)	-	-	-	-
≤40	6	1,281	0.66	(0.51-0.85)	0.00*	66.48%	0.00	REM
Approved treatr	nent							
No	5	708	0.78	(0.66–0.93)	0.00*	23.09%	0.27	FEM [†]
Yes	2	1,280	0.45	(0.39–0.52)	0.00*	0.00%	0.77	FEM [†]
TTP								
Follow-up (mont	ths)							
>20	7	3,079	0.68	(0.54–0.85)	0.00*	83.75%	0.00	REM
≤20	1	602	0.58	(0.45-0.75)	-	-	-	-
>30	6	2,853	0.70	(0.54–0.90)	0.00*	86.35%	0.00	REM
≤30	2	828	0.58	(0.47-0.71)	0.00*	0.00%	0.96	FEM [†]
>40	1	885	0.86	(0.74–0.99)	-	-	-	-
≤40	7	2,796	0.64	(0.51-0.79)	0.00*	78.09%	0.00	REM
Approved treatr	nent							
No	4	1822	0.75	(0.58–0.96)	0.02*	74.53%	0.01	REM
Yes	4	1859	0.60	(0.45-0.80)	0.00*	82.3%	0.00	REM
Sorafenib treat	ment							
No	5	2,395	0.66	(0.50-0.89)	0.01*	87.23%	0.00	REM
Yes	3	1,286	0.67	(0.51-0.89)	0.01*	70.68%	0.03	REM
ORR								
Follow-up (mont	ths)							
>20	6	2,112	2.50	(0.94–6.65)	0.07	67.95%	0.01	REM
≤20	3	692	2.68	(0.68–10.62)	0.16	0.00%	0.75	FEM [†]

(Continued)

Table 4 (Continued)

				Pooled HR or OR		Test for he	terogeneity	
Subgroup	Clinical trials analyses (n)	Cases (n)	HR or OR	95% CI	P-value	l ²	Q-test P-value	Model used
>30	4	1,552	2.10	(0.56-7.80)	0.27	78.35%	0.00	REM
≤30	5	1,252	3.64	(1.46-9.04)	0.01*	0.00%	0.86	FEM [†]
>40	1	707	9.40	(1.25-70.83)	_	-	-	-
≤40	8	2097	2.09	(0.92-4.76)	0.08	53.79%	0.04	REM
Approved treatr	nent							
No	5	696	1.64	(0.42-6.36)	0.48	62.01%	0.02	REM
Yes	4	2,108	3.22	(1.71-6.05)	0.00*	0.00%	0.73	FEM [†]
Sorafenib treat	ment							
No	7	1976	2.29	(0.85-6.16)	0.10	63.49%	0.01	REM
Yes	2	828	3.21	(0.90-11.51)	0.07	0.00%	0.81	FEM [†]
DCR								
Follow-up (mont	ths)							
>20	6	2,112	2.99	(2.47-3.62)	0.00*	25.41%	0.24	FEM [†]
≤20	3	692	1.32	(0.96-1.83)	0.09	0.00%	0.76	FEM [†]
>30	4	1,552	3.11	(2.48-3.89)	0.00*	45.89%	0.14	FEM [†]
≤30	5	1,252	1.96	(1.28-3.01)	0.00*	56.25%	0.05	REM
>40	1	707	3.53	(2.54-4.91)	-	-	-	-
≤40	8	2097	2.12	(1.51-2.97)	0.00*	57.50%	0.01	REM
Approved treatr	nent							
No	5	696	2.02	(1.44–2.83)	0.00*	0.00%	0.72	FEM^\dagger
Yes	4	2,108	2.62	(1.59–4.31)	0.00*	84.71%	0.00	REM
Sorafenib treat	ment							
No	7	1976	2.68	(2.05-3.49)	0.00*	28.29%	0.21	FEM [†]
Yes	2	828	1.98	(0.78–5.05)	0.15	86.52%	0.01	REM
vs. sorafenib								
OS								
Follow-up (mont	ths)/Approved treatme	ent						
>30	5	3,371	1.06	(0.90-1.25)	0.46	66.39%	0.02	REM
≤30	3	1,256	1.06	(0.92-1.22)	0.4	8.8%	0.33	FEM [†]
>40/Yes	1	954	0.92	(0.79–1.07)	-	-	-	-
≤40/No	7	3,673	1.13	(1.05–1.22)	0.00*	30.06%	0.20	FEM^\dagger
PFS								
Follow-up (mont	ths)/Approved treatme	ent						
>30	4	2,216	1.00	(0.71-1.40)	0.98	87.89%	0.00	REM
≤30	1	1,035	0.81	(0.70-0.95)	-	-	-	-
>40/Yes	1	954	0.66	(0.57–0.76)	-	-	-	-
≤40/No	4	2,297	1.04	(0.82-1.31)	0.77	72.16%	0.01	REM
ТТР								
Follow-up (mont	ths)/Approved treatme	ent						
>30	5	3,371	0.99	(0.75-1.31)	0.97	87.79%	0.00	REM
≤30	2	1,200	1.01	(0.55-1.87)	0.96	89.05%	0.00	REM
>40/Yes	1	954	0.63	(0.53-0.75)	-	-	-	-
≤40/No	6	3,617	1.07	(0.88-1.30)	0.52	76.73%	0.00	REM

(Continued)

15325355, 0, Downloaded from https://sapcionlinelbarg.wiley.com/doi/0100/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Se the Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://onlinelbarg.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://online.bing.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley Online Library on [2106/2024]. Settem Terms and Conditions (https://online.bing.wiley.com/doi/o1010/2cpt.3312 by Bucle - Unterstidad De Leon, Wiley O

Table 4 (Continued)

				Pooled HR or OR		Test for he	terogeneity	
Subgroup	Clinical trials analyses (n)	Cases (n)	HR or OR	95% CI	P-value	I ²	Q-test P-value	Model used
ORR								
Follow-up (mor	nths)/Approved treatme	ent						
>30	5	3,371	1.21	(0.56–2.63)	0.63	85.74%	0.00	REM
≤30	3	1,275	0.70	(0.55–0.90)	0.00*	38.84%	0.19	FEM^\dagger
>40/Yes	1	954	3.11	(2.14-4.52)	-	-	-	-
≤40/No	7	3,692	0.74	(0.61-0.90)	0.00*	23.23%	0.25	FEM^\dagger
DCR								
Follow-up (mor	nths)/Approved treatme	ent						
>30	5	3,371	0.98	(0.60-1.62)	0.95	88.1%	0.00	REM
≤30	2	240	1.58	(0.34–7.26)	0.65	84.97%	0.01	REM
>40/Yes	1	954	2.01	(1.53–2.66)	-	-	-	-
≤40/No	6	2,657	0.98	(0.84–1.15)	0.85	0.00%	0.05	REM
Combined TKI	treatment							
TTP								
Follow-up (mor	nths)/vs. sorafenib							
>30/Yes	1	720	1.14	(0.94–1.36)	-	-	-	-
≤30/No	2	403	0.66	(0.42-1.04)	0.07	57.68%	0.12	REM
DCR								
Sorafenib treat	tment							
No	1	307	1.24	(0.77–2.00)	-	-	-	-
Yes	2	761	1.05	(0.34–3.31)	0.93	60.25%	0.11	REM

CI, confidence interval; DCR, disease control rate; FEM, fixed-effects model; HR, hazard ratio; OR, odds ratio; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; REM, random-effects model; TKI, tyrosine kinase inhibitor; TTP, time to progression.*Significant association, *P*-value <0.05. $^{+}$ Heterogeneity solved (l^{2} <50% and *Q*-test *P*-value >0.10).

in HCC patients.^{57,58,60–62} In line with our results, this indicates that the presence of AEs might play a crucial role in determining clinical outcomes in patients treated with sorafenib, being positively correlated with higher survival rates.

No significant association between combined TKI treatment in survival or DCR was observed in our meta-analysis. Nonetheless, the ORR was found to be slightly higher than in the control arm. Besides, hyperbilirubinemia and increased levels of AST were related to combined TKI treatment. In contrast, results obtained by Wu et al.⁶³ exhibited a high median PFS and tumor response, while detecting mild or moderate AEs that are easily manageable in patients suffering from retroperitoneal soft tissue sarcoma treated with anlotinib plus camrelizumab. Nevertheless, a recent metaanalysis evaluated the efficacy of transarterial chemoembolization (TACE) combined with TKIs in HCC patients with portal vein tumor thrombus. Treatment with TACE and sorafenib or apatinib enhanced OS and both ORR and DCR comparing to TACE alone, while TACE plus lenvatinib exhibited higher ORR and TTP than TACE and sorafenib.⁴⁷ Ding et al.⁶⁴ also assessed the presence of AEs in HCC patients receiving combined TACE plus sorafenib and TACE plus lenvatinib, being the incidence of AEs of any grade 96.9% and 100%, respectively. Altogether, combined TKI treatment showed diverse outcomes regarding survival, tumor response, and the presence of AEs, while not providing a clear clinical benefit. The present study constitutes the first complete and detailed systematic review with meta-analysis evaluating the efficacy and safety of a wide range of TKIs employed in HCC patient's treatment. Although previous studies demonstrated systemic therapy effectiveness for advanced HCC,^{48,65} no analysis of the risk and clinical benefit of approved and unapproved TKIs was performed. It should be highlighted that the presence of heterogeneity among studies and the risk of publication bias was evaluated, and sources of heterogeneity were analyzed by meta-regression and subgroup analysis. Notwithstanding this, our investigation has several limitations that need to be addressed to improve the comprehension of the advanced HCC treatment landscape and help develop future investigations in this field.

In our study design, no randomization was established as an exclusion criterion to minimize allocation and selection bias, leading to the rejection of 176 potentially useful clinical trials. Moreover, four initially selected clinical trials did not have publicly available results, which excludes likely relevant data to be used for this metaanalysis. Furthermore, eight trials did not employ any blinding strategy to prevent patient's performance bias.

Etiology plays an important role in determining HCC development and response to treatment⁷; however, this information was missing in most studies included, which could lead to the misinterpretation of the outcomes achieved. While demographic information was missing in some investigations, others included only Asian

	Oliniaal triala	Edday's tost		Tri	m-and-fill	analys	sis	lune un c	منامينهم اممه
Survival parameter	analyses (<i>n</i>)	P-value	Model used	HR		95%	CI	— impl	(n)
vs. placebo									
OS	13	0.38	REM	-	-			-	
PFS	7	0.46	REM	-	-				
TTP	8	0.51	REM	-	_			-	
TTSP	2	0.33	REM	_	_			_	
vs. sorafenib									
OS	8	0.32	REM	_	_			_	
PFS	5	0.19	REM	-	_			_	
TTP	7	0.10	REM	-	_			_	
Combined TKI treatment									
OS	4	0.11	FEM	_	_			_	
PFS	2	**	REM	_	_			_	
TTP	3	0.00*	REM	1.14	(0.6	8-1.9	1)	2	
					Trim-and	-fill an	alysis		
Tumor response parameter	Clinical trials analyses (n)	Egger's te <i>P</i> -value	st Model	used	OR	ç	95% CI	— Impi	ited studies (n)
vs. placebo									
ORR	9	0.85	REM	-		_		-	
DCR	9	0.19	REM	-		_		_	
vs. sorafenib									
ORR	8	0.76	REM	_		_		_	
DCR	7	0.47	REM	_	-	_		_	
Combined TKI treatment									
ORR	4	0.73	FEM	_	-	_		_	
DCR	3	0.09	REM	_	-	_		_	
							Trim	-and-fill alvsis	
Adverse events			Clinical trials analyses (n)	Egger's <i>P</i> -val	test Mo ue us	odel sed	OR	95% CI	Imputed studies (n)
vs. placebo									
GI disorders (1)	Abdominal pain		14	0.2	4 I	EM	_	_	_
	Ascites		12	0.8	0 1	EM	_	_	_
	Dehydration		9	0.9	4 I	EM	_	_	_
	Diarrhea		12	0.9	6 I	EM	_	_	_
GI disorders (2)	Esophageal var	ices hemorrhage	12	0.3	9 1	EM	_	_	_
	GI hemorrhage		9	0.9	7 1	EM	_	_	_
	Nausea		5	0.6	5 I	EM	_	_	_
	Upper GI hemo	rhage	11	0.5	9 1	EM	_	_	_
	Vomiting		10	0.8	6 1	EM	_	_	_
General, hepatobiliary	Fatigue		11	0.5	2 1	EM	_	_	_
disorders and infections	Pyrexia		14	0.6	6 I	EM	_	_	_
	Hepatic failure		10	0.3	0 1	EM	_	_	_
	Hyperbilirubine	nia	10	0.6	7 1	EM	_	_	_
	Cellulitis		10	0.7	3 I	EM	_	_	_
	Pneumonia		12	0.6	4	FM	_	_	_

Table 5 Risk of publication bias assessment for survival, tumor response parameters and AEs

Table 5 (Continued)

		Clinical trials Egger's tes analyses (n) P-value	Esta de test	t Model used	Trim-and-fill analysis		luce and a d
Adverse events			Egger's test P-value		OR	95% CI	Imputed studies (<i>n</i>)
Metabolic, nervous and respiratory disorders	AST	9	0.59	FEM	_	_	_
	Hypoglycemia	8	0.79	FEM	-	_	-
	Hyponatremia	9	0.60	FEM	-	-	-
	Encephalopathy	10	0.65	FEM	-	_	-
	Hepatic encephalopathy	8	0.63	FEM	_	_	_
	Dyspnea	9	0.92	FEM	_	-	_
vs. sorafenib							
GI disorders (1)	Abdominal pain	9	0.36	FEM	-	_	_
	Ascites	9	0.99	FEM	_	_	_
	Dehydration	5	0.33	FEM	_	_	_
	Diarrhea	9	0.91	FEM	-	-	-
GI disorders (2)	Esophageal varices hemorrhage	7	0.45	FEM	-	-	-
	GI hemorrhage	7	0.56	FEM	-	-	-
	Nausea	7	0.48	FEM	-	-	-
	Upper GI hemorrhage	8	0.72	FEM	-	-	-
	Vomiting	7	0.49	FEM	-	-	-
General, hepatobiliary disorders and infections	Fatigue	8	0.59	FEM	_	_	_
	Pyrexia	7	0.62	FEM	_	_	_
	Hepatic failure	8	0.87	FEM	_	_	_
	Hyperbilirubinemia	7	0.85	FEM	_	_	_
	Cellulitis	6	0.67	FEM	_	_	_
	Pneumonia	6	0.59	FEM	_	_	_
Metabolic, nervous and respiratory disorders	AST	7	0.92	FEM	_	_	_
	Hypoglycemia	7	0.78	FEM	_	_	_
	Hyponatremia	7	0.53	FEM	_	_	_
	Encephalopathy	4	0.48	FEM	-	-	-
	Hepatic encephalopathy	9	0.83	FEM	-	-	-
	Dyspnea	4	0.83	FEM	-	-	-
Combined TKI treatment							
GI disorders (1)	Abdominal pain	5	0.23	FEM	-	-	-
	Ascites	4	0.66	FEM	-	-	-
	Dehydration	4	0.93	FEM	-	-	-
	Diarrhea	4	0.18	FEM	-	-	-
GI disorders (2)	Esophageal varices hemorrhage	3	0.19	FEM	-	-	-
	GI hemorrhage	2	0.81	FEM	-	-	-
	Nausea	5	0.63	FEM	-	-	-
	Upper GI hemorrhage	4	0.70	FEM	-	-	-
	Vomiting	4	0.19	FEM	-	-	-
General, hepatobiliary disorders and infections	Fatigue	4	0.93	FEM	-	-	-
	Pyrexia	5	0.88	FEM	_	_	_
	Hepatic failure	2	1.00	FEM	_	-	-
	Hyperbilirubinemia	3	0.54	FEM	_	_	_
	Cellulitis	4	0.15	FEM	_	_	_
	Pneumonia	5	0.73	FEM	_	_	_

Table 5 (Continued)

		Oliviaal trials	Estavia taat	Madal	Trim-and-fill analysis		Imputed studies (<i>n</i>)
Adverse events		analyses (n)	P-value	used	OR	95% CI	
Metabolic, nervous and respiratory disorders	AST	2	0.33	FEM	_	_	_
	Hypoglycemia	3	0.96	FEM	_	_	_
	Hyponatremia	2	0.97	FEM	_	_	_
	Encephalopathy	2	_	REM	_	_	_
	Dyspnea	3	0.92	FEM	_	_	_

AST, aspartate aminotransferase; CI, confidence interval; DCR, disease control rate; FEM, fixed-effects model; GI, gastrointestinal; HR, hazard ratio; OR, odds ratio; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; REM, random-effects model; TKI, tyrosine kinase inhibitor; TTP, time to progression.*Significant publication bias, *P*-value <0.05.**Convergence not achieved during tau2 estimation.

population or patients from both Asia and Western regions. Since some etiology factors are more prominent in certain regions,¹ this could lead to the presence of deviation in the results obtained in the present meta-analysis. HCC pathology was assessed based on different criteria such as diverse versions of the Response Evaluation Criteria in Solid Tumors (RECIST).^{66–68} Moreover, patients with slightly distinct tumor grades, but still eligible for systemic therapy, and having received different doses of TKIs as well as treatment (first, second-line or adjuvant therapy) before trial enrollment, were included in our research. All this could contribute to the high heterogeneity described among studies in most of the analyses performed.

Clinical outcomes obtained in the present systematic meta-analysis were not consistent among the clinical trials selected. In addition, one study did not retrieve information about survival parameters³⁶ but could be estimated from Kaplan–Meier curves using Parmar method, causing a slight variation in the global effect obtained in the analysis. Curiously, the majority of included studies presented different sample sizes for survival parameters, tumor response, and AEs evaluation, possibly due to treatment discontinuation before achieving expected end points. Missing information about patient's outcomes could lead to an inaccurate interpretation of results.

Regarding treatment efficacy and safety, a small number of patients had to discontinue treatment or undergo dose reduction due to disease progression or high toxicity levels, triggering the development of AEs that could threaten patient's life. This led to the loss of relevant information that could contribute to a better understanding of the effect of TKI treatment for advanced HCC.

Overall, these results support the beneficial effects of HCC treatment with TKIs, but also provide a broader insight into different aspects that must be considered in the clinical setting. This systematic review with meta-analysis exhibits a complete and global analysis of both the effectiveness and risks of TKIs treatment in HCC patients affecting their outcomes, therefore providing a useful tool to take more accurate clinical decisions.

SUPPORTING INFORMATION

Supplementary information accompanies this paper on the *Clinical Pharmacology & Therapeutics* website (www.cpt-journal.com).

FUNDING

This work was supported by the Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) [project PID2020-119164RB-I00]; «Fondo de Investigaciones Sanitarias, Instituto de

Salud Carlos III», Spain (PI19/00819 and PI22/00526), co-funded by European Regional Development Fund/European Social Fund, "Investing in your future"; "Junta de Castilla y Leon" (SA074P20); and Fundació Marato TV3 (Ref. 201916–31). CIBERehd is funded by Instituto de Salud Carlos III (ISCIII), Spain. T.P.-S. is supported by the Asociación Española Contra el Cáncer (AECC) – Junta Provincial de León, Spain; P.F.-P. by the Ministry of Education of Spain (MCIN/ AEI/10.13039/501100011033) (FPU17/01995 grant); and M.R. by the Ministry of Education of Spain (FPU19/01825) (BOE-B-2019-44783).

CONFLICT OF INTEREST

The authors declared no competing interests for this work.

AUTHOR CONTRIBUTIONS

T.P.-S., C.M.-B., P.F.-P. and J.M.-G wrote the manuscript; M.R., J.J.O.-U., J.G.-G., J.J.G.M, J.L.M. and B.S.-M designed the research; T.P.-S., C.M.-B., P.F.-P. and J.M.-G performed the research; T.P.-S., C.M.-B., P.F.-P. and J.M.-G analyzed the data.

© 2024 The Author(s). *Clinical Pharmacology & Therapeutics* published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

- 1. Sung, H. *et al.* Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* **71**, 209–249 (2021).
- Peeters, F. & Dekervel, J. Considerations for individualized firstline systemic treatment in advanced hepatocellular carcinoma. *Curr. Opin. Pharmacol.* **70**, 102365 (2023).
- Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).
- Leowattana, W., Leowattana, T. & Leowattana, P. Systemic treatment for unresectable hepatocellular carcinoma. *World J. Gastroenterol.* 29, 1551–1568 (2023).
- 5. Allaire, M. *et al.* What to do about hepatocellular carcinoma: recommendations for health authorities from the international liver cancer association. *JHEP Rep.* **4**, 100578 (2022).
- Tümen, D. et al. Pathogenesis and current treatment strategies of hepatocellular carcinoma. Biomedicine 10, 3202 (2022).
- Llovet, J.M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primer. 7, 6 (2021).
- Reig, M. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J. Hepatol. 76, 681–693 (2022).
- Argemi, J., Ponz-Sarvise, M. & Sangro, B. Immunotherapies for hepatocellular carcinoma and intrahepatic cholangiocarcinoma:

current and developing strategies. *Adv. Cancer Res.* **156**, 367–413 (2022).

- Llovet, J.M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).
- 11. Cheng, A.L. *et al.* Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. *Lancet Oncol.* **10**, 25–34 (2009).
- Méndez-Blanco, C., Fondevila, F., García-Palomo, A., González-Gallego, J. & Mauriz, J.L. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. *Exp. Mol. Med.* 50, 1–9 (2018).
- Jindal, A., Thadi, A. & Shailubhai, K. Hepatocellular carcinoma: etiology and current and future drugs. J. Clin. Exp. Hepatol. 9, 221–232 (2019).
- Fondevila, F., Méndez-Blanco, C., Fernández-Palanca, P., González-Gallego, J. & Mauriz, J.L. Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. *Exp. Mol. Med.* **51**, 109 (2019).
- Li, Y., Gao, Z.H. & Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. *Basic Clin. Pharmacol. Toxicol.* 116, 216–221 (2025).
- Doycheva, I. & Thuluvath, P.J. Systemic therapy for advanced hepatocellular carcinoma: an update of a rapidly evolving field. J. *Clin. Exp. Hepatol.* 9, 588–596 (2019).
- Lal, L.S., Aly, A., Le, L.B., Peckous, S., Seal, B. & Teitelbaum, A. Healthcare costs related to adverse events in hepatocellular carcinoma treatment: a retrospective observational claims study. *Cancer Rep.* 5, e1504 (2021).
- Li, X., Ding, X., Li, W. & Chen, J. Treatment options for unresectable hepatocellular carcinoma with hepatitis virus infection following sorafenib failure. *Cancer Immunol. Immunother.* 72, 1395–1403 (2023).
- Rimassa, L., Danesi, R., Pressiani, T. & Merle, P. Management of adverse events associated with tyrosine kinase inhibitors: improving outcomes for patients with hepatocellular carcinoma. *Cancer Treat. Rev.* 77, 20–28 (2019).
- Page, M.J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 372, n71 (2021).
- Jadad, A.R. *et al.* Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control. Clin. Trials* **17**, 1–12 (1996).
- 22. Verhagen, A.P. *et al.* The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. *J. Clin. Epidemiol.* **51**, 1235–1241 (1998).
- 23. Cainap, C. *et al.* Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. *J. Clin. Oncol.* **33**, 172–179 (2015).
- 24. Johnson, P.J. *et al.* Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. *J. Clin. Oncol.* **31**, 3517–3524 (2013).
- Llovet, J.M. *et al.* Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. *J. Clin. Oncol.* **31**, 3509–3516 (2013).
- Parmar, M.K.B., Torri, V. & Stewart, L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. *Stat. Med.* **17**, 2815–2834 (2028).
- 27. Fondevila, F. *et al.* Association of FOXO3 expression with tumor pathogenesis, prognosis and clinicopathological features in hepatocellular carcinoma: a systematic review with meta-analysis. *Cancer* **13**, 5349 (2021).
- Fernández-Palanca, P. *et al.* Neuropilin-1 as a potential biomarker of prognosis and invasive-related parameters in liver and colorectal cancer: a systematic review and meta-analysis of human studies. *Cancer* 14, 3455 (2022).
- 29. Ryoo, B.Y. et al. Randomised phase 1b/2 trial of tepotinib vs sorafenib in Asian patients with advanced hepatocellular carcinoma with MET overexpression. *Br. J. Cancer* **125**, 200–208 (2021).

- Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet **391**, 1163–1173 (2018).
- Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 389, 56–66 (2017).
- Rimassa, L. et al. Tivantinib for second-line treatment of METhigh, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. *Lancet Oncol.* 19, 682–693 (2018).
- Kudo, M. et al. Orantinib versus placebo combined with transcatheter arterial chemoembolisation in patients with unresectable hepatocellular carcinoma (ORIENTAL): a randomised, double-blind, placebo-controlled, multicentre, phase 3 study. *Lancet Gastroenterol. Hepatol.* 3, 37–46 (2018).
- Cheng, A.L. et al. Randomized, open-label phase 2 study comparing frontline dovitinib versus sorafenib in patients with advanced hepatocellular carcinoma. *Hepatology* 64, 774–784 (2016).
- Kang, Y.K. et al. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. Ann. Oncol. 26, 2457–2463 (2015).
- Turpin, A. et al. Liver transarterial chemoembolization and sunitinib for unresectable hepatocellular carcinoma: results of the PRODIGE 16 study. *Clin. Res. Hepatol. Gastroenterol.* 45, 101464 (2021).
- Yen, C.J. et al. A phase l/randomized phase II study to evaluate the safety, pharmacokinetics, and efficacy of nintedanib versus sorafenib in Asian patients with advanced hepatocellular carcinoma. *Liver Cancer* 7, 165–178 (2018).
- Palmer, D.H. et al. A multicentre, open-label, phase-I/ randomised phase-II study to evaluate safety, pharmacokinetics, and efficacy of nintedanib vs. sorafenib in European patients with advanced hepatocellular carcinoma. *Br. J. Cancer* **118**, 1162–1168 (2018).
- Zhu, A.X. et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 33, 559–566 (2015).
- Lencioni, R. *et al.* Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. *J. Hepatol.* 64, 1090–1098 (2016).
- Cheng, A.L. et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J. Clin. Oncol. **31**, 4067–4075 (2013).
- Bruix, J. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. *Lancet Oncol.* 16, 1344– 1354 (2015).
- Hsu, C. *et al.* Vandetanib in patients with inoperable hepatocellular carcinoma: a phase II, randomized, double-blind, placebo-controlled study. *J. Hepatol.* 56, 1097–1103 (2012).
- 44. Kudo, M. *et al.* Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. *Eur. J. Cancer* **47**, 2117–2127 (2011).
- Abou-Alfa, G.K. *et al.* Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. *JAMA* **304**, 2154–2160 (2010).
- Abou-Alfa, G.K. *et al.* Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. *N. Engl. J. Med.* **379**, 54–63 (2018).
- Deng, J., Liao, Z. & Gao, J. Efficacy of transarterial chemoembolization combined with tyrosine kinase inhibitors for hepatocellular carcinoma patients with portal vein tumor thrombus: a systematic review and meta-analysis. *Curr. Oncol.* 30, 1243–1254 (2023).
- Haber, P.K. *et al.* Evidence-based management of hepatocellular carcinoma: systematic review and meta-analysis of randomized

controlled trials (2002-2020). *Gastroenterology* **161**, 879–898 (2021).

- 49. Rinninella, E. et *al.* Prognostic value of skeletal muscle mass during tyrosine kinase inhibitor (TKI) therapy in cancer patients: a systematic review and meta-analysis. *Intern. Emerg. Med.* **16**, 1341–1356 (2021).
- 50. Ying, H.Q. *et al.* The effect of BIM deletion polymorphism on intrinsic resistance and clinical outcome of cancer patient with kinase inhibitor therapy. *Sci. Rep.* **5**, 11348 (2015).
- Bohra, A., Worland, T., Hui, S., Terbah, R., Farrell, A. & Robertson, M. Prognostic significance of hepatic encephalopathy in patients with cirrhosis treated with current standards of care. *World J. Gastroenterol.* 26, 2221–2231 (2020).
- 52. Tavakoli, S. et al. Comparable outcomes of pre- versus posttyrosine kinase inhibitor era treatment in chronic myeloid leukemia: a retrospective cohort study with long-term follow-up. *Cell Transplant.* **32**, 9636897231163212 (2023).
- 53. Scott, A.J. et al. A phase II study investigating cabozantinib in patients with refractory metastatic colorectal cancer (AGICC 17CRC01). *Cancer Res. Commun.* **2**, 1188–1196 (2022).
- 54. Öcal, O. et al. Prognostic value of baseline imaging and clinical features in patients with advanced hepatocellular carcinoma. *Br. J. Cancer* **126**, 211–218 (2022).
- 55. El Shorbagy, S. *et al.* Prognostic significance of VEGF and HIF-1 α in hepatocellular carcinoma patients receiving sorafenib versus metformin sorafenib combination. *J. Gastrointest. Cancer* **52**, 269–279 (2021).
- Cho, J.Y. *et al.* Clinical parameters predictive of outcomes in sorafenib-treated patients with advanced hepatocellular carcinoma. *Liver Int.* **33**, 950–957 (2013).
- Koschny, R., Gotthardt, D., Koehler, C., Jaeger, D., Stremmel, W. & Ganten, T.M. Diarrhea is a positive outcome predictor for sorafenib treatment of advanced hepatocellular carcinoma. *Oncology* 84, 6–13 (2013).
- Reig, M. et al. Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. J. Hepatol. 61, 318–324 (2014).

- Lacouture, M.E., Reilly, L.M., Gerami, P. & Guitart, J. Hand foot skin reaction in cancer patients treated with the multikinase inhibitors sorafenib and sunitinib. *Ann. Oncol.* **19**, 1955–1961 (2008).
- 60. Branco, F. *et al.* The impact of early dermatologic events in the survival of patients with hepatocellular carcinoma treated with sorafenib. *Ann. Hepatol.* **16**, 263–268 (2017).
- Shin, S.Y. & Lee, Y.J. Correlation of skin toxicity and hypertension with clinical benefit in advanced hepatocellular carcinoma patients treated with sorafenib. *Int. J. Clin. Pharmacol. Ther.* **51**, 837–846 (2013).
- Di Costanzo, G.G. *et al.* Sorafenib off-target effects predict outcomes in patients treated for hepatocellular carcinoma. *Future Oncol.* **11**, 943–951 (2015).
- Wu, J. et al. Efficacy and safety of anlotinib plus camrelizumab in treating retroperitoneal soft tissue sarcomas: a single-center retrospective cohort study. Ann. Transl. Med. 11, 212 (2013).
- Ding, X. et al. Transarterial chemoembolization plus lenvatinib versus transarterial chemoembolization plus sorafenib as firstline treatment for hepatocellular carcinoma with portal vein tumor thrombus: a prospective randomized study. *Cancer* **127**, 3782–3793 (2021).
- 65. Fulgenzi, C.A.M. et al. Efficacy and safety of frontline systemic therapy for advanced HCC: a network meta-analysis of landmark phase III trials. *JHEP Rep.* **5**, 100702 (2013).
- Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 92, 205–216 (2000).
- Eisenhauer, E.A. *et al.* New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). *Eur. J. Cancer* 45, 228–247 (2009).
- Lencioni, R. & Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 30, 52–60 (2010).