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Abstract

Many of the meteorological phenomena occurring at meso-γ require observations
sufficiently close together in time and space. The multichannel microwave ra-
diometer (MMWR) provides continuous temperature and humidity profiles. We
demonstrate a method for profile bias correction that significantly improves verti-
cal temperature (T ) and water vapor density (δwv) profile accuracy. We compared
MMWR temperature (TRD) and humidity (δwvRD ) profiles during winter in the
Sierra of Guadarrama (Madrid) at 1150 m altitude with thousands of radiosonde
temperature (TRW ) and humidity (δwvRW ) soundings from a launch site at 610 m
altitude and 50 km distance. In spite of relatively large horizontal and vertical sep-
aration between the two sites, sounding differences above the boundary layer are
comparable to observation error typically assigned to radiosonde soundings when
they are assimilated into numerical weather models. Systematic bias between the
paired values of TRW and TRD and δwvRW and δwvRD ranges from 0.2 to 1.2 K
and 0.05 to 0.5 g m-3. This bias can be removed using a corrector function that is
applied at each T and δwv level. Using this method, the bias for both variables is
reduced to insignificant levels and their accuracy is significantly improved.
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1. Introduction

Atmospheric movements occur over a broad continuum of space and time
scales: from seconds to days and from microns to thousands of kilometers. Terrain
height variations and differential surface fluxes of heat momentum and moisture
affect meteorological phenomena on a wide range of scales. Many of them occur
at meso-γ as a result of topographic forcing-and a combination of a variety of insta-
bility operating on this scale. Consequently, those phenomena and the intensity to
which they occur can be featured by observations sufficiently close together in time
and space and, therefore, we can determine the mesoscale factors on which they
depend. However, the lack of observations necessary to define mesoscale systems
is a critical meteorological problem.

In order to settle this difficulty, one option is to use numerical models comple-
mented with sensibility analysis, since it allows us to study the mesoscale factors
that intervene in the appearance of a meteorological perturbation, and estimate the
influence of each one of these factors (for instance, Garcı́a-Ortega et al., 2007,
2009, Vich et al., 2011). However, the formulation of the models contains non-
linear equations of motion and continuity equations for mass heat and water, which
can only be solved with approximations. At the same time, the resolution of these
equations requires to know, for a given boundary, the initial meteorological con-
ditions. Again, we find ourselves with a situation in which the predictability of a
model depends on the initial conditions being established with the greatest detail
and precision possible. In other words, there are factors that intervene, such as the
density of meteorological observation stations on the surface, and the number of
weather balloons that can be used, among others. However, the number of rawin-
sonde launching stations included in the worldwide network is sparse and generates
data only twice per day.

In order to establish the initial conditions for a mesoscale model, we need to
perform a series of steps (Sashegyi and Madala, 1994), including: (i) quality con-
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trol, (ii) objective analysis and (iii) initialization and assimilation. Both in the first
and in the last step, the observed data intervenes in a decisive way. Here we see
that, in addition to being sparse, there tend to be errors and/or data gaps (Soden
and Lanzante, 1996, Schwartz and Doswell, 1991). Furthermore, there are two
additional aspects that have to be monitored in regard to meteorological observa-
tion and the treatment of databases: the registers have to be done with “adequate”
frequency, and a ”good“ method must be chosen to assimilate the data. With all
of this, we obtain, as accurately as possible, the state of the atmospheric flow on
a regular grid. If we pay attention to these two aspects, the characterization of
the initial conditions will be reasonably predicted. But, a small error in the initial
conditions affects the results of the numerical models, and as such, this affects the
quality of the forecast in terms of space and time. This is especially relevant for
many meteorological phenomena, and especially for those related to the precipita-
tion processes.

From all of the above, we can establish that the capacity to make forecasts us-
ing Numerical Weather Predictions (NWPs) depends, in large part, on the quality
and frequency of data observed. Introducing the time dimension in the assimila-
tion period guarantees a better treatment of the data, which is not centered solely
on the main synoptic time (Rabier, 2005). For instance, when we try to improve
the quality of the predicted precipitation field, one option is to use the observations
made by satellites and incorporate them into the initialization process. We have a
few examples, such as in the BOLAM model (Lanciani et al., 2008, Davolio and
Buzzi, 2004), which employs a data-assimilation scheme that takes into account
the precipitation field estimated by satellites. The results allow us to improve fore-
casts, even in the case of flooding conditions (Malguzzi et al., 2006). Other authors
(Michaelides et al., 2009), point out that the non-linear 4D-Var assimilation meth-
ods from geostationary satellite observations improve the models’ forecasting.

It seems reasonable to assume that the use of high-frequency sampling of ther-
modynamic profiles allows for a better understanding of some mesoscale phenom-
ena, since they improve the predictability of the NWPs. The sparce network of
rawinsonde launching stations, made it necessary to turn to different alternatives.
For instance, we can make use of polar orbiting satellites since they are capable of
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estimating vertical profiles of temperature and moisture. They have an advantage
since satellites have global coverage, but the accuracy and the vertical resolution at
lower levels are limited (Zhou et al., 2007).

If knowing the vertical profiles of temperature in the greatest number of obser-
vation points is important, along with it being done at a good frequency, the case of
the water vapor measurement is even more important due to its variability in terms
of space and time. In many processes, for example, cloud formation and precip-
itation, the role that water vapor plays is very important. Some Projects, such as
WALES (ESA, 2003) have allowed us to know the possibilities that represent the
different water vapor measurement systems taken from space. So, Wulfmeyer et al.
(2005) did a comparative analysis of active and passive water vapor remote sens-
ing from space by means of lidar technology. In the Global Water Vapor Project
of WMO (Randel et al., 2011), a combination of rawinsondes and passive remote
sensing systems were used to derive blended global water vapor data sets for cli-
mate research. In general, the difficulty involved in adequately measuring wa-
ter vapor in the atmosphere provokes limitations in the initialization of numerical
models, and, as a consequence, the quality of precipitation and cloud-formation
forecasting is affected (Hagemann et al., 2004).

At this point, it seems necessary to turn to methods other than rawinsondes.
There are basically two options: ground-based microwave radiometric profilers and
Fourier transform infrared emission spectroscopy (FTIR) (Knuteson et al., 2004a,
2004b). The former are very sensitive to precipitation, while the latter are impeded
in cloudy fields of vision and are restricted to the subcloud layer (and, as such,
they are used in studies orientated toward atmospheric contamination (Feltz at al.,
1998, Spänkuch at al., 1996, 1998, 2000) in the boundary layer. Multichannel
ground-based microwave radiometers (MMWR) can be used as profilers of tem-
perature and humidity since they allow us, unlike with traditional rawinsondes, to
obtain constant continuous measurements of water vapour profiles and estimated
integrated water vapor (IWV). They have the advantage of high-frequency sam-
pling of thermodynamic profiles, with a resolution at levels between 50 and 250 m,
and can reach a height of up to 10,000 meters. MMWR profiling methods make
use of atmospheric radiation measurement in the range of 20 to 200 GHz.
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MMWRs have been used in different projects. For example, in the Baltex
Bridge Campaign, CLIMA-NET and ARM (Cimini et al., 2011, Cimini et al.,
2006, Friedrich et al., 2012, Spänkuch et al., 2011, Löhnert and Maier, 2012,
Crewell et al., 2004, Güldner and Leps, 2005, Turner et al., 2003, Mattioli et al.,
2007), the results show the advantages of continuous measurements of water vapor
and its influence in cloud formation. Güldner and Spänkuch, 2001, investigated the
capacity of MMWRs to sound the thermodynamic state of the atmosphere almost
continuously, and found an accuracy of the retrieved temperature profiles from 0,6
K near the surface to 1,6 K at 7 km. In the case of water vapour density, the
accuracy of profiles was 0,2-0,3 g m-3 near the surface to 0.8-1.0 g m-3 at an alti-
tude of 2 km. Recently, Knupp et al. (2009) did an analysis of the capacity of a
ground-based passive profiling of MMRW to characterize the atmosphere in differ-
ent dynamic weather conditions. They selected a series of meteorological events
and, using MMWR, analyzed the continuous thermodynamic profiles of tempera-
ture and moisture. Iassamen et al., 2009 analyzed, via MMRW, the distribution of
tropospheric water vapor in clear and cloudy conditions, finding a close relation-
ship to those found by the European reanalysis meteorological database ERA 15.
Similarly, radiometric retrievals compare fairly well with the corresponding values
obtained from the operational rawinsonde dataset.

Within the context of TECOAGUA Project, a series of measurements that are
conducive to both characterizing the winter precipitation processes that affect the
Central Mountain Range of the Iberian Peninsula, and to improving the predictabil-
ity of snowfall in Madrid, were carried out. In this paper, we will focus on the com-
parison of the data of thermodynamic profiles using MMWR obtained during three
winter seasons with those provided by the rawinsonde station in Madrid-Barajas
Airport. All of this is done with the objective of knowing the accuracy of MMWR
measurements and to be able to introduce data assimilation techniques to the ini-
tialization of mesoscale models.

2. Radiometer and noise

The MMWR used is an MP-3000A Hyper-Spectral Microwave Radiometer
(manufactured by Radiometrics). Profiles are retrieved from a subset of 35 chan-
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nels (21 K-Band and 14 V-Band), by means of the Stuttgart Neural Network Sim-
ulator (SNNS) trained with 10 years of historical soundings from 3 rawinsonde
stations. Profiles of temperature (T ), and water vapor density (δwv) are obtained
approximately every 2.5 minutes.

Ten years of RAOBs from Madrid-Barajas and Coruña (both in Spain) and
Denver (USA) were used as the training set of a neural network. Denver was
chosen because it is located at a latitude and altitude similar to the placement of
the MMWR (N 41o W 4o, 1110 MSL), and there is no other similar station in
the Iberian Peninsula. The MMWR was placed in the Central Mountain Range,
(see Figure 1) at a height of 1150 MSL, about 70 km to the north of Madrid and
50 km from the rawinsonde station at Madrid-Barajas (situated at 610 MSL). The
neural network retrievals were based on all-season retrievals, although in this paper,
we only refer to those retrieved in the winter periods of 2009-10 and 2010-11
since some of the data obtained by the MMWR were used to support part of the
TECOAGUA Project (whose objectives were focused on the analysis of winter
cloud masses which produce snow precipitation in the Central Mountain Range).

Once the MMWR was placed on the field, we tested the LWP (liquid water
path) values on 52 completely cloudless days, since the expected value would be
0 mm. With a total of 54,325 profiles retrieved by the MMWR in these condi-
tions, we obtained an average LWP of 0.021 mm, which led us to establish that the
background noise is very low both during the day and at night.

Some authors, such as Hewison (2007), have established the threshold value of
LWP in conditions of completely cloudless skies at a value of 0.017 mm, which is
in accordance with our results. Therefore, we concluded that the power receiver of
our MMWR has a highly stable noise-diode as a gain reference.

3. Data stratification

The initial objective was to determine the validity of T and δwv retrievals for
each of the levels/profiles obtained via the MMWR. We had to consider that the
retrievals can be affected by liquid precipitation, which can alter the measurement
of the signal received. Some authors use this fact, along with data obtained from
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MMWRs, to make an estimate of rain (Marzano et al., 2002, 2006).

The MMWR that we used has a precipitation sensor that marks Yes/No for
precipitation, but in our case, we decided to complement it with a Visibility and
Present Weather sensor (VPF-730) that, along with presenting less uncertainty than
the MMWR sensor, it also classifies types of precipitated hydrometeors. Thus, for
each profile we can identify if it was affected by precipitation and if it was liquid
or snow.

To continue on to the comparison between the MMWR and the rawinsonde at
Madrid-Barajas at 0000 and 1200 UTC, we took the retrievals from the MMWR
between 2330 UTC to 0030 UTC, and we calculated the average values in order
to obtain mean temperature and water vapor profiles at 0000 UTC. Similarly, we
obtained data at 1200 UTC, taking the mean profile of the retrievals from 1130
UTC to 1230 UTC. Despite the fact that the precipitations have been mostly in
snow form, the data sample was stratified into three different groups, according to
the following criteria:

• Group 1: All of the vertical profiles for T and δwv at 0000 and 1200 UTC
independent of whether precipitation was registered over the MMWR. The
sample size (N ) used was of 18304 profiles.

• Group 2: Extracting the vertical profiles obtained while precipitation was
absent from Group 1. The sample size (N ) was of 6226 profiles.

• Group 3: Extracting the profiles obtained while precipitation was registered
over the MMWR from Group 1. The sample size (N ) was of 2645 profiles.

It is necessary to consider that the neural network retrieval outputs give 58
levels from the ground to 10 km AGL. The vertical resolution for the MMWR is
50 m near the surface to about 500 m, 100 m to about 2 km and 250 m to about
10 km. Consequently, the radiometer retrieval accuracy is higher near the surface
and decreases with height. Thus, on one hand, we took the values obtained at
each level for T and δwv, and, on the other hand, the same variables obtained with
the corresponding RAOB sounding at the Madrid-Barajas station. In doing this,
we were able to establish a correlation between estimated temperature from the
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MMWR and the observed T from RAOB at each level (i) (which will be named
from now on as TRDi and TRWi , respectively). Analogously, we could establish
a correlation between the estimated density of water vapor from MMWR and the
observed density from RAOB from Madrid-Barajas (named δwvRDi

and δwvRWi
,

respectively).

4. Results of the comparison between radiosounding vs. MMWR profiles

The results obtained from the comparison of T , for the three groups are shown
in Figures 2 to 4. Figures 5 to 7 show the comparison of δwv for the same three
groups. As can be seen, the correlation coefficients of T are of the order of 0.99 for
the three groups. The slopes are about 0.98. For δwv, the correlation coefficients
take values of 0.94, 0.90 and 0.96 for each of the three groups, respectively, and
slopes are 0.94, 0.91 and 1.00, respectively, for the groups. In other words, the
fit is slightly worse in situations with no precipitation. Although in general, the
MMWR and RAOB data from Madrid-Barajas fit well, we can see that in situa-
tions with precipitation and with greater water vapor concentration, the fit is better.
Thus, we can conclude that there are barely any differences between the different
groups. This result was expected, considering that in most of the occasions with
precipitation, it was in snow form and this affects neither the K-Band nor the V-
Band frequencies in which MMWR operates (Kneifel et al. 2010). So, we can
use the entire winter data sample independent of whether or not there is winter
precipitation.

Considering the importance that small variations of T and δwv have in the ini-
tialization of the mesoscale models, we have calculated the bias and the root mean
square (rms), along with the standard deviation. In Figures 8 to 10, we see the
results for each of the groups, both for T and δwv. In all three cases, the behavior
was similar. So, the temperature in the level closest to the ground shows an rms
that is somewhat greater than at the other levels (which is attributable to the envi-
ronmental conditions at the boundary layer, which are different from the location
of the MMWR and the rawinsonde at Madrid-Barajas). Above this layer, the tem-
perature presents an rms between 1.5 K and 3 K, except at the levels superior to 10
km, which reach about 4 K. Thus, the lowest rms values are found at levels below
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2.8 km MSL. It seems clear that above 9 km MSL, the retrievals obtained by the
MMWR separate from the RAOB measurements at Madrid-Barajas. In the case of
the biases, they are, on average, close to 0, with a tendency to be negative until the
first 5 km MSL. The biggest difference is registered at a height of about 3 km, and,
as we can see, the retrievals tend to underestimate the value of temperature until 6
or 7 km MSL. Beyond that point, the retrievals begin to overestimate temperature.
In the analysis of the standard deviations we can see that the variability is greater
in the profiles of the RAOB than for the MMWR, which seems to mean that the
RAOBs used are more sensitive to the changes in the values of the variables.

Upon analysing the results of water vapor density (Figures 8 to 10), the rms val-
ues obtained are very satisfactory since at the lower levels, they are below 1 g m-3

in the three groups, and the biases are close to 0 at every level, being somewhat
worse in the lower levels than in the higher ones.

As such, in the previous analysis, we can say that the retrievals of the T and
δwv profiles obtained by the MMWR for the winter campaigns are consistent with
data from the RAOB at Madrid-Barajas. The fact that there was a discrepancy in the
levels closest to the ground is due to the fact that they are located in different places
and at different heights. Above this level, the rms shows relatively stable values,
around 2.5 K. Thus, the reconstruction of the temperature and water vapor profiles
for our MMWR can be considered satisfactory and are better than those found by
Güldner and Spänkuch (2001) and Liljegren et al. (2001), when they compared
these same variables obtained with an MMWR similar to ours with data provided
by the RAOB of a nearby rawinsonde station. It is useful to point out that typical
observation error assigned to radiosonde soundings when they are assimilated into
models vary between 1.3 and 2.2 oC for temperature and 1.6 and 2.4 g m-3 for
humidity (Cimini et al., 2011, Knupp et al., 2009).

5. A method to diminish uncertainty: correcting the profiles layer by layer

Although the values for T and δwv retrieved by the MMWR are acceptable,
it is clear that we should try to diminish uncertainty. Keeping the importance of
these variables in mind, the existence of these discrepancies among the RAOB data
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from Madrid-Barajas and the MMWR, have motivated us to look for a correction
method that will simplify and improve systematically the reconstructions of the
atmospheric profiles. The special feature of this method is that it does not correct
the profile in its entirety; rather, it does so layer by layer. In doing so, at each layer,
a correction factor is calculated. The final objective is to reduce the discrepancy
between the TRDi and TRWi profiles, and between the δwvRDi

and δwvRWi
profiles

estimated by the MMWR and RAOB sounding, respectively. Thus, we can reduce
the retrievals’ uncertainties for the T and δwv and use them operatively at heights
greater than those proposed by other authors (at heights of 3 to 5 km, e.g. Güldner
and Spänkuch, 2001; Hewison, 2007).

This method is based on a linear regression, in which the correction factors are
calculated for each of the 58 layers. To do this, we used the following methodol-
ogy:

• First, the initial sample of 338 days was divided into two random sub-samples:
the first one (Sub-sample 1) contains 66.6% of the total days (225 days), and
was used to find the best possible fits (level by level). The second one (Sub-
sample 2) contains the remaining 33.4 % (113 days), and it was used to
validate the model-fitting.

• For each layer,i, and for Sub-samples 1 and 2, databases were constructed
obtaining the paired values for TRDi and TRWi , and δwvRDi

and δwvRWi
re-

spectively, according to the method described in the previous section. The
paired values from Sub-sample 1 were compared layer by layer, so that we
obtained a correction factor for each variable and for each layer. Figure 11
(left) shows the rms values obtained after comparing TRDi and TRWi of Sub-
sample 1 before (rms1) and after applying the model-fitting (rms1′). It can
be seen that the values were close to 2 K up to 3000 MSL and they exceed
3 K upwards of 9000 MSL. The rms1′ manifests lower values, especially
at high heights. In Figure 11 (right), rms1 is presented for water vapour
density. Although the uncertainty of the measurement can seem like a very
low value, an rms of 1 g m-3 at low levels usually represents situations of
precipitation to the order of 20-25% of water vapor density in the area in
winter.
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• Afterwards, we took Sub-sample 2 with the paired TRD2i and TRW2i, and
δwvRD2i

and δwvRW2i
data, respectively, and applied the model-fitting to a

stretch of data, following the methodology mentioned in the previous point.
In this way, with the second sub- sample, we can validate the fit and discuss
the results.

In order to validate the model-fitting, we applied the correction factors obtained
from Sub-sample 1 to the TRDi and δwvRDi

of Sub-sample 2. Figure 12 (left) shows
the rms of temperature before (rms2) and after (rms2′) the correction factors were
applied. As a result, the uncertainty of T diminished, since the error was reduced
at every level, and especially at higher altitudes, where rms2′ decreased more than
1 K. The correction factors applied to the δwvRDi

in Sub-sample 2 also improved
the retrievals of water vapor density. The rms2′ values are 0.2 g m-3 inferior to the
rms of Sub-sample 2 (rms2) at levels up to 4500 MSL, as we can see in Figure 12
(right).
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6. Discussion and conclusions

Continuous measurements done using MMWR can be very useful for the de-
tection of mesoscale phenomena that require very high spatial and temporal scales.
However, this measurement technology is based on an indirect measurement and,
as such, it is necessary to know the uncertainty of these measurements. In our case,
vertical profiles were initially retrieved from a subset of 35 channels by means of
the Stuttgart Neural Network Simulator trained with 10 years of historical sound-
ings from 3 rawinsonde stations.

In comparing data for temperature and water vapor density obtained by the
MMWR and from the rawinsonde station at Madrid-Barajas, we were able to prove
that there is a good correlation between both stations, with correlation coefficients
superior to 0.90 in the case of water vapor, and 0.99 for temperature. Since the
measurement campaigns were carried out in winter conditions and in a mountain-
ous area, the precipitation in snow form did not affect the measurements. When
T and δwv vertical profiles were analyized layer by layer, we were able to prove
that while some strati adjusted quite well (there are barely differences between the
RAOB and MMWR data), in other cases, some biases were detectable, and some
rms values were not very satisfactory.

Using a linear adjustment method, stratus by stratus, it was possible to limit the
discrepancy to be no greater than 1K at all heights, and in the case of water vapor
density, it did not exceed 0.2 g m-3.

In these conditions, the method allows us to diminish the characterization of the
initial conditions that can be done using continuous MMWR measurements. With
these values, we believe we have objective criteria that can be applied to improve
T and δwv retrievals. In turn, they can be used as data assimilation for improving
the forecasting of mesoscale phenomena with NWP models.
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[9] Güldner, J., D. Spänkuch, 2001. Remote Sensing of the Thermodynamic State
of the Atmospheric Boundary Layer by Ground-Based Microwave Radiome-
try. J. Atmos. Oceanic Technol. 18, 925-933.

[10] Hewison, T. J., 2007: Profiling temperature and humidity by ground-based
microwave radiometers. PhD Thesis, Department of Meteorology, University
of Reading, UK, 191 pp.

[11] Iassamen, A., H. Sauvageot, N. Jeannin, S. Ameur, 2009. Distribution of tro-
pospheric water vapor in clear and cloudy conditions from microwave radio-
metric profiling. Journal of Applied Meteorology and Climatology. 48 (3),
pp. 600-615.
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Figure 1: Guadarrama Mountains, Madrid, Barajas Airport and the Radiometer position.
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Figure 2: Comparison of radiometric and sounding temperature profiles using all the profiles at 0000
and 1200 UTC. The sample size, N , the correlation coefficient, (CORR.COEF), and the fitting are
shown.
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Figure 3: Comparison of radiometric and sounding temperature profiles using all the profiles when
no precipitation was detected at 0000 and/or at 1200 UTC. The sample size, N , the correlation
coefficient, (CORR.COEF), and the fitting are shown.
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Figure 4: Comparison of radiometric and sounding temperature profiles using all the profiles when
precipitation was detected at 0000 and/or at 1200 UTC. The sample size, N , the correlation coeffi-
cient, (CORR.COEF), and the fitting are shown.
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Figure 5: Comparison of radiometric and sounding profiles of water vapor density us- ing all the
profiles at 0000 and 1200 UTC. The sample size, N , the correlation coefficient, (CORR.COEF), and
the fitting are shown.
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Figure 6: Comparison of radiometric and sounding profiles of water vapor density using all the
profiles when no precipitation was detected at 0000 and/or at 1200 UTC. The sample size, N , the
correlation coefficient, (CORR.COEF), and the fitting are shown.
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Figure 7: Comparison of radiometric and sounding profiles of water vapor density using all the
profiles when precipitation was detected at 0000 and/or at 1200 UTC. The sample size, N , the
correlation coefficient, (CORR.COEF), and the fitting are shown.

196



Figure 8: Retrieval error statistics for temperature (left) and density of water vapor (right), for all
the profiles at 0000 and 1200 UTC. The bias, root mean square (rms), and standard deviation for the
RAOB (std RAOB) in Madrid Barajas and for MMWR (std radiom) are shown.
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Figure 9: Retrieval error statistics for temperature (left) and density of water vapor (right), for the
profiles when precipitation was not detected at 0000 and/or at 1200 UTC. The bias, root mean square
(rms), and standard deviation for the RAOB (std RAOB) in Madrid Barajas and for MMWR (std
radiom) are shown.

198



Figure 10: Retrieval error statistics for temperature (left) and density of water vapor (right), for the
profiles when precipitation was detected at 0000 and/or at 1200 UTC. The bias, root mean square
(rms), and standard deviation for the RAOB (stand RAOB) in Madrid Barajas and for MMWR (stand
radiom) are shown.
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Figure 11: On the left: original (dashed lines) and corrected (bold lines) RMS and BIAS for retrieved
temperature; and on the right for water vapor density. The bias and rms are shown for Sample 1 and
Sample 2.
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Figure 12: a) Original (dashed lines) and corrected (bold lines) RMS and BIAS for retrieved temper-
ature; and b) same as Figure 11a but for water vapor density.
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