CONDITIONAL OR RELATIVE PROBABILITY

José Félix Tobar-Arbulu

"God doesn't play dice with the world"

Albert Einstein

1. Introduction

All ohjects exist in some environment or other. The
scientist attempts to model material objects in terms of
properties. All the properties of a material object-in-
its-environment are lawfully related either deterministi-
cally (as in classical mechanics) or stochastically (as in
quantum mechanics).

Since the prohability calculus is wused in physical
science, biology, and sociology, in this paper we shall
sketch the calculus of probhability, CP for short, as a
mathematical abstract theory. We shall present it in an
axiomatic way following Rényi (1955, 1970a,b). Also we
shall deal with some interpretations of CP, in particular
its factual one as propensity of states or events.

2. Kolmogoroff's Axiomatization of CP

In CP we deal with the notion of 'event' and 'proha-
bility measure', as in the statement, "The probahility of
event x equals y". In principle any set qualifies as an
'event'. The probability of such an 'event' is a real num-
ber assigned to it by the probability function. The proba-
bility function P is defined on a family F of sets. (F
must be a 0 algebra, i.e. the union and the intersection
of any two members of F are in F; also F is closed under
complementation.)

Let then F be a 0 algebra on a non-empty set S, and P
: F >[0,1] a non-negative real-valued bounded function on
P
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Definition 1. P is called the absolute probability measure
on F iff

(i) P(R) 2 0, for every A e P(S),

(ii) P(A U B) = P(A) + P(B), for A,B e P(S) if AN B # ¢,
(iii) P(S) =1, i.e :
member of' and 'P(S
following theorem '
S - A.)

P is normed. ('e' abbreviates 'is a
abbreviates 'power set of S'; in the

il A
l
' denotes the complement of A in S=

)
A

Theorem 1.
P(A) = 1 - P(RA)

Proof. From condition (ii), A U A = S, and condition (iii)
directly.

Theorem 2.

0 = P(A) =1

Theorem 3.
P(A U B) = P(A) + P(B) - P(A ) B)

Proof. (See figure)

p(AUB) =P[AU [(ANB)U (AN B)]] =
plalU (anB)U (& nB)l="PlalU (A NB)]=
P(A) + P(A O B) (1)

P(B) pl(anB)U (AN B)] =P(ANB+ P(A N B) (2)
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Subtracting (2) from (1)

P(A U B)-P(B) = P(A) - P(A N B) Q.E.D.
(More theorems can be carried out. See Kolmogoroff 1950.)

Definition 2. A conditional probability measure, in
Kolmogoroff's sense, is defined as follows:

P(A / B) = def P(A N B) / P(B), where P(B) > 0 (3)

Remark. If P(A / B) = P(A) we say that A is independent of
B. If A is independent of B, then B is also independent of
A. Therefore P(B / A) = P(B)

In this case, from (3)
P(A) . P(B).

it follows that P(A N B) =

3. Rényi's Axiomatization of CP

The probability function P(A / B) maps pairs A,B of
sets of a family F of sets.

Let F be a 0 algebra on a non-empty set S, and

P(A/ B) : F> [0, 1] a non-negative real valued
function on F (i.e., the power set of S).

Definition 3. P(A / B) is called the conditional
probability measure of the event A with respect to the
event B, where A e P(s), and Be BC P(S) (where P(S) stands
for the power set of S) iff it satisfies the following
axioms:

Axiom 1. P(A / B) z 0, further P(B / B) =1 for every A e
P(S) and B e B.

Axiom 2. P(A, U A,/ B) = P(A,/ B) + P(A,/ B) for any B e B,
provided

(a) A, NA,= @; and
(b) Ay, A, e P(S).

Axiom 3. For any fixed B e B, if A,, A, e P(S) and
A, NB eB P(A,/ A, NB).P(A,/B) = P(A; NA,/ B).
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In what follows, if P(A / B) occurs, it is tacitly
assumed that A e P(S) and B e B & P(S).
Theorem 1.
P(A / B) = P(AN B/ B).
Proof. If in Axiom 3, B = A,, we have P(A;/ B).P(B / B) =
P(A,NB / B). Taking into account Axiom 1, namely P(B / B)
= 1, Theorem 1 follows.
Remark. P(S / B) =1

By Theorem 1 we have P(S / B) = P(SNB /B) =
P(B / B); by Axiom 1, we get P(S / B) =1.

Theorem 2.

P(A / B) = 1.

Proof. According to Axiom 2, we have
P(ANB/B) + P(A NB / B) = P(B / B). By Axiom 1,
P(B/ B)=1, and P(A N B / B) > 0. Therefore, it follows

P(A B / B) 1, and by Theorem 1, P(A / B) = 1.

Theorem 3.

P(® / B) =0.

Proof. According to Axiom 2,

P(¢ / B) = P(@U @ / B) = 2P(® / B). Therefore,
P(@p / B) = 0.
Remarks.

1. It follows from Theorem 3 that @ ¢ B, because if ¢
belonged to B, we would have P(@ / @) = 0 by Theorem
3. Thus the assumption ¢ e B leads to contradiction.
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I € N
P(A / B)

o

B = ¢, then from Theorems 1 and 3,
0.

Theorem 4.
If A A'S B'E B, then P(A / B) £ P(A' / B").

Proof.

P(A / B) P(ANA'NB'/ B)=
p(aNnN A"/ B'"N B).P(B' / B) =P(ANA"/B"') =

P(A' / B')-P(ANA'"/B') = P(A'" / B").

Remark. If A = A', then A € B' & B. Therefore,
P(A / B) = P(A /B").
For more theorems see Rényi 1955, 1970 a,b).
The advantage of Rényi's approach is that his axioma-

tization contains Kolmogoroff's as a special case. It 1is
richer than Kolmogoroff's as we shall see presently.

4. From Rényi's to Kolmogoroff's Axiomatization of CP

If P is a probability measure defined on a 0 algebra
F of subsets of the set S, and further if P(S) = 1, then
the triple <S, F, P >is called a probability space in the
sense of Kolmogoroff.

If we define X as the set of those sets B for which
P(B) > 0, and put P(A / B) = P(A N1 B)/P(B) for A e F and B
e X, then the quadruple <S, F, X, P(A / B) > is a con-
ditional probability space generated by the probability
space <8, F, P>,

Conversely, if <S, ¥, B, P(A / B)>, where B C© P(s)
(recall Section 3), is a conditional probability space and
C is an arbitrary element of B, putting P_(A) = P(A / C),
then <S, F, P.> will be a probability space in the sense
of Kolmogoroff.

Let us see the connection bhetween Rényi's and
Kolmogoroff's approach. If we put P_(A) = P(A / C) for A e
F with C e B fixed, and define, as usual in the theory of
Kolmogoroff, the conditional probability P*(A / B) for a
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set B e B for which P_(B) > 0 by p*(a / B)
P_.(A NB) / P.(B), then we have

P*(A / B) = P(ANB/ C) / P(B / C) and by Axiom 3

P*(pn / B) = P(A/BNC).P(B/ C)/ P(B/C)
P(A / B NC).

Remarks.

1. In case S e B, clearly <S, F, P> is a probability
space in the sense of Kolmogoroff.

2. In the previous case, remark Tz
<s, F, B, P(A / B)> may not bhe identical with the
probability space generated by <S, F, Ps> because
may contain sets B for which P(B / S) = 0 and at the
same time need not contain every set B for which
P(B / S) >0, i.e., the system consisting of all
sets B e F for which P(B / S) > 0 need not be
identical with B.

3. If P*(A / B) is defined by P¥(A [/ B) =
P(ANB/S) / PB/S) for Be By, we have P (A / B)
= P(A / B), provided that B e B.

Rényi's approach then is richer than Kolmogoroff's
and contains the theory of Kolmogoroff as a special case.

5. Some Interpretations of CP

We said above that CP is an abstract mathematical
theory devoid of any specifical factual content. Now we
can interpret the members of the universe S as a collec-

tion of events (propensity interpretation), data
(frequency interpretation), statements (some logicians
claim that S could only be a set of propositions (1) and

P(A) the probability that A be true (2)), or beliefs (for
criticism of the subjectivistic interpretation of probabi-
lity as the degree of belief see Popper 1956-1982).

Here is a sample of interpretations:

(i) Propensity interpretation (objective
probability): interpretation of S = set of possible
physical events of a kind; interpretation of P(A / B)
=natural dispositions of events(s) A to happen in environ-
ment B;

(ii) Randomness interpretation (ohjective chance):
Interpretation of S = set of random (mutually independent)
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events of a kind; interpretation of P(A / B) = the
objective odds of event(s) A given an environment B;

(iii) Statistical interpretation (relative ohserved
frequency): interpretation of S = population of empirical
data of a kind; interpretation of P(A / B) = relative
frequency of the sample A of obhservations in the context
B. (A has to be a random sample of S. P(A / B) are
rational numbers included in the unit interval.
Empirically found frequencies are therefore bound to
differ from calculated probabilities: while probahility
values are real numbers, frequencies are rational.)

6. Propensity in Quantum Theory

That chance is obhjective has bheen stressed, among
others, by Popper (1957, 1959). While some authors
interpret P(A) as the natural disposition of event(s) A to
happen, i.e., propensities are interpreted within the
framework of "absolute" probabilities, Popper's
interpretation applies to a quantum-system within an
environment. (See Settle 1974 for different interpreta-
tions of prohability in guantum theory.)

The prohability of an event in some environment sug-
gests not separating the two, bhut regarding them as
different features of a single indivisible block:
event-plus-surrounding. The statement 'P(A / B) = r e
[0, 11" can be interpreted in two ways:

(i) the system '"has" the prohahility;

(ii) system and environment enter the situation on
an equal basis, the probability belongs to both.

Tn our interpretation,in the above statement r is
predicated of a relation in which the quantum-system
stands to the environment, and not to the quantum-system
taken by itself. As Cini (1983, p. 53) reminds us:

"I want physics to describe reality without any
reference to the community of observers. But what I
mean by this is that it is not possible to describe
reality without any reference to the collection of
instruments and artifacts placed by the experimenter
in order to detect the properties of the objects he
is interested in. Not absolute properties, therefore,
hut properties which depend on the conditions he has
chosen to operate with., I do not want to speak of
ohservers bhecause they do not have any role 1in the
definition of the physical reality. They do not
interfere with reality when they look at a dial or a
pointer".
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A similar interpretation is supported by Fock
(1971, p. 3071):

"Probability is to be regarded as an essential
element of the description and not as an indication
of the incompleteness of our knowledge [as Einstein
thought 1; this follows already from the fact that,
for given external conditions, the result of the in-
teraction of the object with the measuring instrument
is (in the general case) not predetermined, but has
only some probability. A series of interactions leads
statistics that correspond to a definite probability
distribution. This probability distribution reflects
the potentiality that existed in the given conditions
before the interaction had taken place."

And by Omelyanovsky (1979, p. 136) when he states
that in quantum mechanics, "probablities are considered as
ocurring in the basic laws of nature, and their introduc-
tion reflects the potentially possible objectively
existing in certain real conditions".

Probability then is no longer interpreted as the
measure of human knowledge or ignorance but it is at the
very basis of the laws of quantum mechanics. Further, pro-
bability underlines the main trends in modern scientific
research, from physics to biology to sociology.

I claim, following Einstein, that the world of pho-
tons, electrons, and the like exists out there, even if we
do not observe it. Further, we must accept the qualitative
difference between the gquantum world and the classical

world, pace Einstein himself (Tobar-Arbulu 1985a).
According to quantum theory some properties, i.e., the
position, momentum, spin of a gquantum-system (electron,
proton, photon or whatnot) are represented by random
variables. Every property is representable by a variable
which in turn is an operator. The variables then are
assigned probabilities. Therefore, in gquantum theory
probability is primary and irreducible (3). Further,

relative or conditional probability is the mathematical
tool (Rényi 1955, pp. 285-6) which stands for the
objective propensity of the physical object-environment
cgmplex. Quantum physics introduces a random variable
Y7QVY, where Q is an operator acting on ¥, a place and time

dependent function that determines the position
probability density p = | ¥(x)|2. We consider, then,
propensities as physical and real. They are time

dependent. Further, Schrodinger equation tells wus how
probabilities change as time goes by. Schrodinger equation
is a law of changes of probabilities along time.

¥*QY are possesed all the time by the quantum-system,
they are real (though not directly observable) properties.
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Every one of the random variables stands for a property of
an individual thing-in-its-environment, not a collection
property of a whole bunch of similar entities. Thus some
stochastic properties (represented by random variables)
are basic. Further, since the physical object in question
is always in some environment or other (there is no thing
without environment except the universe as a whole), all
the properties are properties of a physical object-in-its-
environment. (Needless to say, here we are dealing with an
objective interpretation of quantum theory free from mea-
suring instruments, let alone from observers.)

To repeat, propensities are physical and real (Popper
1956-1982). Moreover, in quantum theory we deal with
superposition of probability amplitudes and their inter-
ference. (For example, the initial superposition state VY =
c,¥: + c,¥, "collapses" into state ¥; with probability
|c,|? or into state ¥, with probability |c,|2?.) The
superposition principle, which is responsible for adding
amplitudes instead of probhabilities, is one of the laws of
nature that we must accept as we accept the wuniversal
constancy of the speed of 1light. This principle is
responsible for the peculiar interference phenomena that
lead to quantum correlations quite different from clas-
sical ones. Physical reality at the quantum 1level connot
be defined in classical terms, as was attempted by
Einstein, Podolsky and Rosen in their famous paper. The
superposition principle is a principle of nature and
applies to single (though complex) individuals, such as
molecules.

So every individual is normally in a superposition of
eigenstates. Thus we can say that quantum theory deals
with potentialities (4) that get actualized only excep-
tionally, namely during measurements. The measuring ap-
paratus filters out all eigenstates '"projecting" the one
corresponding to the eigenvalue it measures.

As for measurement, with Margenau (1958), Pauli
(1980, p. 75) and Fock (1982, p. 19), we distinguish the
act of measurement from the preparation of the quan-
tum-system. In a specific measurement the potentialities
quantum theory is about get actualized (Fock 1982, p. 20):
In this case the environment is the apparatus itself.
Thus, Cini (1983) has developed a realistic theory of
measurement, treating the measurement process as a
particular one ocurring in a physical system. He has
studied the specific measurement of a single individual
with polarized counters and Stern-Gerlach devices as a
micro-macro interaction. Cini has shown that the so-called
"collapse of the wave-packet" or "projection of the state
function" occurs with a high degree of accuracy, though
not instantaneously, and as a consequence of basic
physical laws (5). The change brought about in the
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physical system due to the interaction with the measuring
apparatus is not interpreted to mean that ‘"reality is
created by measurement'. On the contrary, '"as soon as one
takes into account the physical fact that only the
microsystem together with the apparatus can be correctly
represented as an isolated system, the objectivity of
reality is restored and the causal evolution of the state
vector [gives ] information about the possible different
outcomes of the interaction of the microsystem with the
apparatus'" (Cini 1983, p. 50).

7. Conclusions

Our consideration of propensity in gqguantum theory is
free from any empiricist traits. However, it does take
into account the physical environment. Further, the act of
measurement takes into account the apparatus as a specific
environment. Our interpretation is close to Fock's. 1In
fact, Omelyanovsky, after reminding us (1983, p. 51) that
"the very nature of the micro-object is the basis of the
fact that its description is unthinkable without proba-
bilistic concepts and potential probability [...] for
probability itself is part of the 1laws of guantum
mechanics", states (Omelyanovsky 1983, p. 50), i
describing phenomena on the atomic scale one must not
ignore the physical conditions (experimentally recorded)
under which these phenomena are observed. This kind of
relativity with regard to the experimental devices or

instruments of observation (the concept and term
"relativity with regard to the instruments of observation'
were first introduced by Fock) [...] 1is a distinctive

feature of the description in quantum mechanics'". (For the
notion of relativity in quantum mechanics with regard to
the means of observation see Fock 1971, 1982.)

Thus with Fock (1971, p. 300) we can say that in
guantum mechanics "we introduce a new, important notion of
relativity with respect to means of observation which
constitutes a generalization of the o0ld and well-known
notion of relativity with respect to a reference frame". I
should add, however, that this new principle of relativity
is with regard to the surrounding physical environment and
it requires that physical reality has to be considered as
given in a physical reference frame.

McGill University (Montreal, Canada)
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NOTES

(1) The claim (Carnap 1950) that probability is a certain logical
relation between propositions is wrong., In fact, there are no
objective procedures for assigning probabilities to propositions, in
particular to probabilistic hypotheses such as probability distribu-
tions. On the contrary, such assignments are made either as the
strenght of measurements (as in technology) or of hypothetical random
mechanisms (as with genetic mutation in biology). The '"probability of
a proposition" connot be interpreted as "the probability of the fact
referred to by the proposition".

(2) The notion of probability has been used to elucidate the concept
of partial truth. This approach is misleading because the notion of
partial truth is prior to the concept of probabilty statement (Tobar-—
Arbulu 1986b). Further, we must have an independent notion of truth
if we want to know what the value of a given probability statement
is.

(3) In Holton's words (1984) nowadays physical themata presuppose
fundamental probabilism. I.e., probability in modern physical theo-
ries is primary and irreducible. It is to be regarded as "an essen-
tial element of the description and not as an indication of the in-
completeness of our knowledge" (Fock 1971, p. 301). Similar conside-
rations can be made in other fields: "The problem of the relation be-
tween a living system and the surrounding medium bears some res-
semblance with that of the relation between an atomic object and a
measuring device: an organism is characterized by its own properties
that are not reducible to those of the medium, but it cannot exist
independently and irrespectively of the surrounding medium" (Fock
1971, p. 3055).

(4) According to Pauli (1946, p. 30), "I shall only recall that the
statements of quantum mechanics are dealing only with possibilities,
not with actualities [...] The actual observation appears as an event
outside the range of a description by physical laws and brings forth
in general a discontonuous selection out of several possibilities
foreseen by the statistical laws of the new theory". (See, however,
Cini 1983 for a realistic interpretation of the act of measurement.)
Dirac (1928) at the fifth Conseil Solvay of Physics on "Electrons and
Photons" in Brussels, after commenting on the essential differences
between classical and quantum description of physical processes dealt
with the so-called 'wave-function'. Quantum theory, according to him,
describes a state by a time-dependent wave-function ¥, which can be

67



expanded at a given time t in a series containing wave functions Yn
with coefficients c,. The wave functions ¥Yn are such that they do not
interfere at an instant t > t,. For Dirac, Nature makes a choice some
time later and decides in favor of that state ¥, with probability
|c |2. This choice cannot be renounced and determines the future
evolution of the state. What Dirac calls "choice of Nature", we have
called "objective propensity" (Tobar—Arbulu 1986a). The quantum
mechanical principle of superposition of states is a principle of
Nature and has to be interpreted only in this way. Thus the quantum
object is characterized by a definite set of possibilities. In the
interaction of this quantum object with the apparatus (Cini 1983) the
possible gets actualized.

(5) Cini (1983) has proved quite convincingly that the postulate of
wave packet collapse, introduced as an extra assumption in quantum
mechanics in order to describe the change in the wave function of a
quantum object ocurring during the time interval which 1is necessary
to perform the measurement of one of its physical variables, can be
dropped and replaced by the Schrodinger time evolution of the state
vector of the total system object plus apparatus. This is proved,
strictly speaking, only for the ideal measuring processes described
by the interacting Hamiltomians introduced in his paper, and not for
any conceivable measuring apparatus. But, within these limits, the
.elimination of the projection postulate from the conceptual founda-
tions of quantum mechanics is shown to be consistent with the known
features of any physical measurement.
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RESUMEN

En el trahajo se presenta el cédlculo de probabilidades como
una teoria matemitica abstracta. Para ello seguimos los enfoques
de Kolmogoroff y Rényi. Se prueba que el enfoque de Rényi es més
rico que el de Kolmogoroff, pues incluye a éste.

Dado el carécter abstracto del cédlculo de probabilidades, puede
ser interpretado de forma diferente: como propensidad, azar o cambio
objetivo y, estadisticamente, como frecuencia observada.

Fn cuanto a la interpretacibén como propensidad, se da una inter-—
pretacién de la mecénica cuintica no-relativista siguiendo a Rohr.
Es decir, las probabilidades que aparecen en esta teoria fisica
se interpetan como irreducibles (por tanto, no expresan ninguna
subjetividad del observador) que hacen referencia a la potencialidad
o propensidad que posee un sistema cudntico en un cierto medio am-
biente. La probabilidad se refiere, por tanto, a relaciones, como
una y otra vez ha repetido Bohr. Tales potencialidades (nicamente
se actualizan en determinadas ocasiones: una de ellas cuando se
realiza la medicién.

70



