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Abstract. A fuel-type map of a predominantly shrub-land area in central Portugal was generated for a fire research
experimental site, by combining airborne light detection and ranging (LiDAR), and simultaneous color infrared ortho
imaging. Since the vegetation canopy and the ground are too close together to be easily discerned by LiDAR pulses,
standard methods of processing LiDAR data did not provide an accurate estimate of shrub height. It was demonstrated
that the standard process to generate the digital ground model (DGM) sometimes contained height values for the top of
the shrub canopy rather than from the ground. Improvement of the DGM was based on separating canopy from ground
hits using color infrared ortho imaging to detect shrub cover, which was measured simultaneously with the LiDAR data.
Potentially erroneous data in the DGM was identified using two criteria: low vegetation height and high Normalized
Difference Vegetation Index (NDVI), a commonly used spectral index to identify vegetated areas. Based on the height of
surrounding pixels, a second interpolation of the DGM was performed to extract those erroneously identified as ground in
the standard method. The estimation of the shrub height improved significantly after this correction, and increased deter-
mination coefficients from R2 = 0.48 to 0.65. However, the estimated shrub heights were still less than those observed in
the field.
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Introduction

A fuel type is defined as ‘an identifiable association of fuel
elements of distinctive species, form, size, arrangement and con-
tinuity that will exhibit characteristic fire behavior under defined
burning conditions’ (Merrill and Alexander 1987). Since fuel
characteristics have a strong influence in predicting fire behav-
ior, improving fire risk estimation and fire effects assessment
(e.g. gas emissions, regeneration capacity), accurate informa-
tion on fuel types is critical in most phases of fire management
(Chuvieco et al. 2003). In addition to classifying fuel types, the
estimation of fuel height is commonly used as a good proxy
of plant biomass and particle-size distribution. Plant height
increases rapidly during the early post-fire years, and implies
a rapid increase of fire hazard in a given area. Assessing fuel
build-up on large scales will improve management of fire-prone
areas, and advance current efforts to perform prescribed burning
in those areas identified as most dangerous.

Shrub fuel types are commonly classified according to height,
which corresponds to different fire behavior. For example, the
European Prometheus fuel-type classification system, used by
Riaño et al. (2002), distinguishes three different heights: sur-
face shrubs (<0.6 m), medium-height shrubs (0.6–2 m) and tall
shrubs (2–4 m). Similar approaches follow the classification
of the Northern Forest Fire Laboratory (NFFL) (Albini 1976;
Anderson 1982) and the National Fire Danger Rating System
(NFDRS) (Deeming et al. 1978). Shrub height is traditionally
determined in the field using transects and a measuring tape, but
this technique can only inform about the spatial distribution at
a very local scale. Passive remote sensing can provide vegeta-
tion percentage cover estimates from the analysis of the spectral
response and spatial texture that is only indirectly related to shrub
height (Riaño et al. 2002).

Research using airborne light detection and ranging (LiDAR)
generally focuses on estimating tree parameters such as height,
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biomass, crown diameter or crown volume (Riaño et al. 2003;
Morsdorf et al. 2004). Since there is a large gap in height between
them, laser pulses that hit the ground are generally well discerned
from ones than hit within tree canopies or branches. Therefore,
tree height estimations from LiDAR are generally very accurate
(Riaño et al. 2004).

Shrub height differentiation can be done with airborne
LiDAR scanners, because they provide height accuracy up to
5–15 cm (Baltsavias 1999a). However, laser pulses that hit within
shrub canopies are often misclassified as ground rather than
canopy, which can cause severe accuracy problems when esti-
mating shrub height. Weltz et al. (1994) have demonstrated
the ability to measure shrub height using a pioneering airborne
LiDAR profiler. Rango et al. (2000) have further established that
shrub coppice dunes could be identified on color infrared images,
and that an underestimated shrub height could be extracted
from airborne LiDAR. Marsh vegetation height has also been
underestimated (Rosso et al. 2006).

The main purpose of this study is to evaluate the efficiency of
LiDAR data to obtain shrub height in order to distinguish shrub
fuel types for fire management applications. If LiDAR estima-
tions are accurate enough for shrub height mapping, this data
could improve operational use of fire behavior models, which
often lack accurate descriptions of fuel conditions, especially

Fig. 1. Color infrared ortho image in greyscale of the study area, Gestosa (Portugal). The location of thirty-three sampled plots are shown
in white with identification numbers on top.

from the under story layers. In addition, LiDAR estimations
provide a spatial view of observed areas, which overcomes dif-
ficulties in obtaining the same data from traditional fieldwork.
Therefore, this information will greatly enhance spatial analysis
of fire behavior and fire risk.

Methods

Gestosa is a fire research experimental site for shrub vegetation
located in central Portugal (Fig. 1).The main shrub species of this
region are Erica australis L., Erica umbellata L., Pterospartum
tridentatum (L.) Willk and Halimium alyssoides (Lam.) C. Koch,
which generally have a high density of more than 80%. In recent
years, this area has been used extensively for experimental burn-
ings for European fire-research projects (Viegas et al. 2002;
Allgöwer et al. 2003).

Average shrub height was calculated in the field for 33 plots
(Fig. 1).Twenty-nine plots were measured using one, two or three
transects depending on plot size. The height of all individual
plants were measured in plots 503, 504, 508 and 512, and three
2 m by 2 m subplots were averaged within each plot (Table 1).
The average standard deviation (s.d.) of all plant individuals for
these four plots was 0.27 m. Plots were quite homogeneous not
only in height but also in spectral response. The Normalized
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Difference Vegetation Index (NDVI) values, a spectral index to
identify vegetated areas (Carlson and Ripley 1997), increased
with shrub height (Table 1), with an average s.d. of 0.18. Plot size
was selected according to the different burning experiments that
were to take place in the study site. Plots were easy to identify in
the image, since several firebreaks were constructed around each
plot before image acquisition (Fig. 1), thus ensuring the corre-
spondence between the field measurements and the image data.

An area of 1882 m by 1422 m (longitude, 8◦09′32.57′–
8◦10′51.95’ W; latitude, 40◦02′16.89’–40◦03′02.94’ N, ellip-
soid: Hayford 1924, datum: European 1950) was over
flown in August 2002 with the Toposys II LiDAR sys-
tem (Baltsavias 1999b), which is also called FALCON II
(http://www.toposys.com).Airborne LiDAR measures the time–
distance to an intercepted point on the ground using a scanner
that emits a high laser pulse frequency (Wehr and Lohr 1999).
The flying height was ∼1000 m and the scan angle was ±7◦,
which renders a scan width of ∼250 m. This LiDAR system
recorded first and last laser returns (first and last intercepted
return) with a 0.5-m footprint diameter at a spatial density of
3.5 points m−2, 1.95 m and 0.15 m in the across track and along
the track direction, respectively. The recording height accuracy

Table 1. Average shrub height, plot size, number of field transects
and average Normalized Difference Vegetation Index (NDVI) for each

shrub plot

Plot Height (m) Size (m2) Transects NDVI

523 1.11 1949 1 0.27
527 1.02 3290 2 0.36
528 1.26 4781 2 0.47
529 1.16 4054 2 0.38
531 0.64 8306 2 0.14
532 0.74 7077 2 0.22
533 1.00 7539 2 0.25
534 0.91 5997 2 0.24
503 0.85 1088 Individuals 0.32
504 0.88 1384 Individuals 0.33
508 1.68 1268 Individuals 0.45
512 1.51 1379 Individuals 0.38
600 0.89 1183 1 0.31
601 0.70 1528 1 0.24
602 0.51 1647 1 0.26
603 0.50 1443 1 0.23
604 1.08 1146 1 0.41
605 0.87 1473 1 0.36
606 0.90 1565 1 0.35
607 0.84 1470 1 0.35
608 0.93 1214 1 0.39
609 1.06 1633 1 0.40
610 1.18 1745 1 0.46
611 0.92 1507 1 0.34
612 1.34 1274 1 0.60
613 1.05 6400 3 0.46
614 1.06 1390 1 0.38
615 1.15 1116 1 0.54
616 1.03 1537 1 0.35
617 1.20 1512 1 0.48
618 1.08 1611 1 0.46
619 1.08 1551 1 0.45
620 1.10 1518 1 0.43

was claimed to be 0.20 m. A simultaneous color infrared
ortho image, with spectral bands in the blue (450–490 nm),
green (500–580 nm), red (580–660 nm) and near infrared
(770–890 nm), was also acquired at 0.5-m spatial resolution
(Fig. 1). The data provider, Toposys, generated a 1-m resolu-
tion digital surface model (DSM) and a digital ground model
(DGM) based on the bisection principle (von Hansen and Vög-
tle 1999). The DSM is defined as the upper height of the ground
vegetation cover, while the DGM is defined from the baseline
ground surface height. The color infrared image was ortho rec-
tified taking the LiDAR DSM as reference. The ortho images
were resampled to 1 m to match the DSM and DGM.

From these standard products, it was straightforward to esti-
mate vegetation height as the simple difference between DSM
and DGM. However, problems with these estimations were
observed, since in the dense shrub canopy of the study area,
on several occasions laser pulses from the canopy were identi-
fied as ground pulses, which therefore created inaccuracies in
the DGM for those areas. Shrub height values were also unre-
alistically close to zero, since both DSM and DGM had similar
values.

It was difficult to differentiate between false and true ground
hits because of the low height of shrubs and the rough topography
of the study area. An alternative way to improve the DGM was
to identify which pulses actually came from the shrub canopy by
using the spectral information derived from the color infrared
ortho image acquired simultaneously with the LiDAR data. The
identification of vegetation hits was based on the spectral con-
trast between bare soil background and vegetation cover that is
clearly observed in red and near-infrared reflectance (Carlson
and Ripley 1997). In the former band, the leaves present low
reflectance because of the chlorophyll absorption, while in the
latter, the reflectance is much higher because of the multiple
scattering in the mesophyll layer. This contrast is not observed
in other land cover types, such as bare soil, and therefore the
higher the reflectance contrast between near-infrared and red
reflectance, the more likely it is that the cover is dense and
healthy in vegetation. This is the basis of most spectral vege-
tation indices that are routinely used for monitoring vegetation
trends at local and global scales.

For this study the identification of vegetation LiDAR hits was
based on using a well-known vegetation index, NDVI, defined
as the difference divided by the sum of near-infrared and red
channels (Carlson and Ripley 1997). The NDVI was computed
from un-calibrated near-infrared and red digital values from the
color infrared ortho image, which were resampled to the same
resolution as the LiDAR grid. A cross-section over shrub vege-
tation and bare soil background is represented in Fig. 2, which
shows the higher NDVI over shrub vegetation compared to the
un-vegetated background.

The following classification rules were tested as a basis
to identify vegetated LiDAR pulses, where height information
came from the vegetation canopy (Fig. 3):

if height (H = DSM − DGM) < X and NDVI > Y then

DGM = false

else
DGM = true



344 Int. J. Wildland Fire D. Riaño et al.

Fig. 2. Near-infrared reflectance (NIR), red reflectance (R) and Normalized Difference Vegetation Index (NDVI)
cross-section over bare soil background and shrub vegetation.

DSM-DGM < 0.2, 0.6,1 m NDVI > 0.08–0.35

Mask

&

Fig. 3. Generation of mask to identify erroneous pixels in the digital ground model (DGM).

When the DGM was false, the pixel was deleted from the
base elevation grid to compute a corrected DGM. Height (X)
and NDVI (Y) were iteratively changed to study the improve-
ments in final height estimation from several threshold values.
The X (threshold of height difference) was changed to 0.2, 0.6
or 1 m, while Y (threshold of NDVI) was changed from 0.08
to 0.35 every 0.01. Because NDVI comes from un-calibrated
near-infrared and red channels, the NDVI threshold applied in
this work cannot be extrapolated to other studies. DGM height
was recalculated for the erroneous (false) pixels using spatial

interpolation techniques (Fig. 4). We applied a morphology
dependent interpolation procedure by means of a conic search
using the software PCI Geomatics 9.1 (www.pcigeomatics.com,
Canada).To avoid interpolating over large areas that had no valid
data in the DGM, the models were forced to select erroneous pix-
els in areas smaller than a window of 11 m by 11 m. Therefore,
it was assured that a valid value was found at least every 5 m.

Since the field data were obtained at the plot level, the cor-
relation between LiDAR-estimated height and field-measured
height was based on extracting the average LiDAR height for
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Fig. 4. Linear interpolation for the generation of the corrected digital ground model (DGM).

Table 2. Shrub height estimation (DSM−DGM) from the standard
Toposys DGM generation techniques

Field-derived height and LiDAR-derived height were the dependent and
independent variable, respectively. Average and standard deviation plot field

derived height was 1.01 m and 0.25 m, respectively

Estimation Slope Intercept (m) R2 P-value RMSE (m)

90th percentile 2.28 0.67 0.48 <0.001 0.18
Mean 1.31 0.76 0.20 0.009 0.22

each plot. The 90th percentile of all heights in the plot was also
extracted to avoid the influence of extreme cases. Fitting between
LiDAR and field data was measured from the Pearson determi-
nation coefficient (R2) and the root mean squared error (RMSE)
between observed and predicted plot shrub height values.

Results

Shrub height estimates using the DSM minus DGM generated
through the standard Toposys methods is presented in Table 2.
The 90th percentile provided a better result than the average
value, but the slope does not follow a 1 : 1 relationship with the
field data. In both cases, the R2 values are low, which confirms
the poor accuracy of the standard methods of deriving DGM in
areas of low and close vegetation cover.

The generation of a new DGM based on the vegetation mask
significantly improved estimates of shrub height (Fig. 5). The
RMSE decreased from 0.18 m to 0.15 m, although changes in
the height or NDVI thresholds for creating the vegetation mask
implies fluctuations. The best results were found using a shrub
height limit of <0.6 m. A higher limit implied that more pixels
could be corrected.The best NDVI corrections were encountered
for NDVI values >0.15 to >0.25, with most stable results for
the mean value. Lowering the NDVI threshold implied a higher
number of pixels to be corrected and, therefore, a decrease also
in DGM values.

NDVI combined with the height limit correction caused the
predictive slope to be closer to a 1 : 1 relationship. Based on
the slope, R2 and RMSE, the 90th percentile was a much better
predictor of shrub height.The intercept did not vary much among
corrections with values between 0.6 and 0.8 m. The best result
from the vegetation masking was used to obtain a shrub fuel-type
map of the study area (Fig. 6).

Discussion

The DGM created from standard techniques used to process
LiDAR data in this study area clearly contained information
from the vegetation canopy. The contour lines generated from
the standard DGM clearly show how ground heights were erro-
neously identified with shrub heights (grey lines, Fig. 7). As
observed in the white lines shown in Fig. 7, the corrected contour
lines derived from the interpolation of the DGM after vegetation
masking produced a better adaptation to the measured ground
height.

The upper range of shrub height limit and NDVI values tested
to build the mask was adequate, since R2 had a maximum within
the centre of the distribution and decreased in both directions.
The lower shrub height limit of <0.2 m required almost no cor-
rection, since those pixels that were identified as vegetation
according to NDVI had higher height values. On the other hand,
a shrub height limit of <1 m removed not only vegetation but
also true ground pixels, since shrubs had heights measured in
the field between 0.50 and 1.68 m. The use of a lower minimum
NDVI caused the slope to be much closer to a 1 : 1 relationship
(Fig. 5), but R2 was lower probably because too many pixels
were included in the mask. The error distribution was signifi-
cantly positively correlated with NDVI, meaning that the error
was larger for plots with higher NDVI, which also had higher
shrub height.

The standard height difference between the DSM and DGM
provided inaccurate estimations of shrub height, which led to
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Fig. 5. Shrub height estimation using 90th percentile and mean plot value (n = 33). Slope, intercept, R2 and
root mean squared error (RMSE) are represented for Normalized Difference Vegetation Index (NDVI) values from
>0.08 to >0.35 and vegetation heights under 0.2 (line), 0.6 (line with crosses) and 1 m (line with circles). P-value
<0.001 in all cases. Field-derived height and LiDAR-derived height were the dependent and independent variable,
respectively. Average and standard deviation plot field-derived height was 1.01 m and 0.25 m, respectively.
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Fig. 6. Shrub fuel-type map generated by combining LiDAR with color infrared ortho image using Normalized Difference Vegetation
Index (NDVI) >0.11 and height <0.6 m.

Fig. 7. Color infrared ortho image with uncorrected (grey) and cor-
rected (white, Normalized Difference Vegetation Index (NDVI) >0.11 and
height <0.6 m) contour lines from the digital ground model (DGM).

poor correlations between LiDAR estimates and field measure-
ments. The DGM was generated based on a slope threshold
between neighboring LiDAR hits. If the slope between an initial
ground LiDAR hit and its neighbor was large enough it was iden-
tified as belonging to the vegetation canopy.The small difference
in height, between shrub height and ground, made it harder to
determine the proper slope thresholds to distinguish vegetation
from ground hits. Given that some laser returns, used to build the

DSM, were not coming from the top, but somewhere in between
the ground and the top of the canopy, the 90th percentile pre-
dicted better shrub height than the plot average. The mean was
more sensitive to those laser returns than at the 90th percentile.

Validation of the DSM and DGM was performed in 33 plots,
which had small height ranges.This range is at the limit of record-
ing accuracy for the LiDAR instrument. Since the intercept did
not change, an under-estimation of the shrub height was still
encountered after the correction of 0.6–0.8 m. This effect was
also observed in a previous study on shrub coppice dunes (Rango
et al. 2000). Gaveau and Hill (2003) quantified a 1.02-m under-
estimation in tall shrubs of 4 to 8 m. Therefore, it is difficult to
discern shrub fuel types of less than 0.6-m height with LiDAR
data since it could be confused with ground observations, unless
color infrared ortho imaging analysis is included to differentiate
between vegetation canopy and bare ground. The combination
of airborne LiDAR with color infrared ortho imaging served to
identify pixels in the DGM that were derived from the vegeta-
tion. Once these pixels were removed, the overall shrub height
estimation was clearly improved.

The final vegetation and terrain maps can be used to improve
accuracy in fire behavior modeling or to estimate fire biomass
consumption. We could also relate LiDAR shrub height to shrub
biomass. Riaño et al. (2004) related tree foliar biomass to mean
LiDAR height and 99th percentile. Additional tests for a set of
classification rules are to be used to identify mixed information
coming from the ground or the vegetation in the DGM. The
method that maintains the slope close to a 1 : 1 relationship with
a high R2 and low RMSE should be selected. In our case (Fig. 5),
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an appropriate solution for this identification was NDVI >0.11
and vegetation height <0.6 m.

The shrub fuel-type map (Fig. 6) provides a spatial repre-
sentation of shrub height variation, which can be directly linked
to spatial models of fire behavior (Finney 1998), or fire effects
assessment (Reinhardt et al. 2001).
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