

Escuela Superior y Técnica de Ingenieros de Minas

GRADO EN INGENIERÍA DE LA ENERGÍA

Trabajo Fin de Grado

ESTUDIO TÉCNICO-ECONÓMICO DE LA IMPLANTACIÓN DE UN SISTEMA ENERGÉTICO SIGUIENDO CRITERIOS DE EDIFICIO DE CONSUMO CASI NULO EN UNA VIVIENDA UNIFAMILIAR EN ZAMORA.

León, julio de 2016

Autor: Leyre Gude Urdangarín

Tutor: Alberto González Martínez

El presente proyecto ha sido realizado por Dña. Leyre Gude Urdangarín, alumna de la Escuela Superior y Técnica de Ingenieros de Minas de la Universidad de León para la obtención del título de Grado en Ingeniería de la Energía.

La tutoría de este proyecto ha sido llevada a cabo por D. Alberto González Martínez, profesor del Grado en Ingeniería de la Energía.

Visto Bueno

Fdo.: Dña. Leyre Gude Urdangarín El autor del Trabajo Fin de Grado Fdo.: D. Alberto González Martínez El Tutor del Trabajo Fin de Grado

RESUMEN

La finalidad del presente estudio consiste en implementar sistemas energéticos en una vivienda unifamiliar en proyecto para aumentar su eficiencia energética hasta alcanzar los criterios exigidos a edificios de consumo energético casi nulo.

En primer lugar, se determina la energía demandada y consumida por la vivienda, así como las instalaciones térmicas utilizadas, con el objetivo de conocer el valor de la eficiencia energética que le corresponde.

Una vez determinados estos parámetros se estudian una serie de soluciones energéticas para aumentar la eficiencia energética de la vivienda. Las mejoras propuestas se analizan desde un punto de vista energético y económico, para comparar de forma representativa su viabilidad energética y económica.

Finalmente, se decide cuáles son las mejoras más eficientes y se determina la energía demandada y consumida por la vivienda, con el objetivo de conocer la eficiencia energética de la solución adoptada.

ABSTRACT

The purpose of this study is to implement an energetic system in a project of a single family home, to upgrade it's energy efficiency untill reach the criteria required by nearly zero-energy buildings.

Firstly, it's determined the energy demand and consumption of the house, as well as the heating systems, in order to know the value of the energy efficiency.

When the parametres are determined, some energy solutions, to increase the energy efficiency, are studied. The proposed solutions are studied from an energetic and economic point of view, to compare, representatively, it's energetic and economic feasability.

Finally, it's chosen the most efficient improvements and it's calculated the energy demand and consumption of the house, with the purpose of knowing the energy efficiency of the chosen solution.

ÍNDICES Página I

ÍNDICE

Contenido

1	Inti	roduc	cción	1
	1.1	Con	ceptos generales	. 1
	1.1.	1	Eficiencia energética.	. 1
	1.1.	2	Edificio de consumo energético casi nulo	. 2
	1.1.	3	Arquitectura bioclimática	. 2
	1.1.	4	Demanda energética.	. 2
	1.1.	5	Consumo energético.	. 3
	1.1.	6	Calificación energética.	. 3
2	Alc	ance	y objetivos principales	.4
3	Ma	rco n	ormativo	5
	3.1	Cód	igo Técnico de la Edificación	. 5
	3.1.	1	Sección HE 0: Limitación del consumo energético	. 5
	3.1.	2	Sección HE 1: Limitación de la demanda energética	. 5
	3.1.	3	Sección HE 2: Rendimiento de las instalaciones térmicas	. 6
	3.1.	4	Sección HE 3: Eficiencia Energética de las Instalaciones de Iluminación	. 6
	3.1.	5	Sección HE 4: Contribución solar mínima de agua caliente sanitaria	. 6
	3.1.	6	Sección HE 5: Contribución fotovoltaica mínima de energía eléctrica	. 6
	3.2 Instala		Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de es Térmicas en los Edificios (RITE).	. 6
	3.2.	1	PARTE I. Disposiciones generales	. 6
	3.2.	2	PARTE II. Instrucciones Técnicas	. 7
	3.3	Dire	ctiva Europea 2010/31/UE, relativa a la eficiencia energética de los edificios	. 8
	3.4	Dire	ctiva Europea 2012/27/UE, relativa a eficiencia energética	. 8
	3.5 para la		Decreto 235/2013, de 5 de abril, por el que se aprueba el procedimiento básico ificación de la eficiencia energética de los edificios.	. 8
4	Car	acter	ísticas de la vivienda	9
	4.1	Situa	ación, entorno y ubicación geográfica	. 9
	4.1.	1	Clima	10
	4.2	Dist	ribución de espacios y huecos	11

ÍNDICES Página II

	4.2.1		Distribución de espacios.	11
	4.	2.2	Distribución de huecos.	13
	4.3	Dim	nensiones de la vivienda	16
	4.4	Car	acterísticas técnicas	17
	4.	4.1	Cerramientos opacos de la envolvente térmica.	17
	4.	4.2	Compartimentación interior.	21
	4.	4.3	Huecos	22
	4.	4.4	Caudal de ventilación.	24
	4.	4.5	Puentes térmicos.	26
5	D	eman	da energética de climatización	28
	5.1	Cua	ntificación de la exigencia.	28
	5.	1.1	Limitación de la demanda energética de calefacción	28
	5.	1.2	Limitación de la demanda energética de refrigeración	28
	5.	1.3	Limitación de descompensaciones.	28
	5.2	Per	fil de uso	30
	5.3	Cálo	culo de la demanda energética de la vivienda	30
	5.	3.1	Demanda energética de calefacción	31
	5.	3.2	Demanda energética de refrigeración.	31
	5.	3.3	Balance energético de la vivienda	32
	5.	3.4	Transmisión de calor a través de los elementos constructivos	34
6	D	eman	da energética de agua caliente sanitaria	35
	6.1	Der	nanda de ACS de la vivienda	35
	6.2	Der	nanda energética de ACS	35
	6.3	Con	tribución solar mínima de agua caliente sanitaria	37
7	D	eman	da térmica	39
	7.1	Der	nanda térmica de calefacción	39
	7.2	Der	nanda térmica de refrigeración	40
8	E	quipos	instalados	42
	8.1	Cald	dera de condensación de gas natural	42
	8.2	Bon	nba de calor reversible	43
	8.3	Inst	alación solar térmica	43
9	Co	onsum	o energético	45
	9.1		sumo energético final.	

ÍNDICES Página III

9	0.2	Con	sumo de energía primaria no renovable	. 45
	9.2.	1	Cuantificación de la exigencia.	. 45
	9.2.	2	Consumo energético de energía primaria no renovable de la vivienda	. 46
10	C	alific	ación energética de la vivienda	.47
1	.0.1	Calif	ficación energética de la vivienda en emisiones	. 47
1	.0.2	Calif	ficación energética de la vivienda en consumo de energía primaria no renovable.	. 47
11	N	/lejor	as orientadas a reducir la demanda energética de la vivienda	.49
1	1.1	Mej	oras pasivas	. 49
	11.1	l.1	Mejoras en la envolvente térmica.	. 49
	11.1	1.2	Muro trombe	. 59
	11.1	1.3	Galería acristalada	. 65
	11.1	L.4	Zonas tampón o de amortiguamiento térmico.	. 73
	11.1	1.5	Comparación entre las mejoras pasivas	. 79
	11.1	L.6	Descripción de la solución adoptada.	. 81
1	1.2	Mej	oras activas.	. 85
	11.2	2.1	Ventilación mecánica con recuperación de calor.	. 85
12 de		-	ras destinadas a cubrir la demanda energética mediante energía procede enovables	
1	2.1	Cald	lera de biomasa densificada	. 91
	12.1	1.1	Descripción de la solución estudiada	. 91
1	2.2	Bom	nba de calor de alta eficiencia	. 93
	12.2	2.1	Descripción de la solución estudiada	. 93
13	С	alific	ación energética de la vivienda con las mejoras propuestas	.95
1	.3.1	Calif	ficación energética de la vivienda con mejoras en emisiones	. 95
1	3.2	Calif	ficación de la vivienda con mejoras en consumo de energía primaria no renovable	.95
14	E	studi	io económico	.97
1	4.1	Elen	nentos estructurales	. 98
	14.1	l.1	Edificación inicial.	. 98
	14.1	1.2	Edificación con mejoras.	. 98
1	4.2	Peri	odo de amortización de los elementos estructurales	. 99
1	4.3	Inst	alaciones térmicas	100
	14.3	3.1	Instalaciones térmicas de la vivienda inicial.	100
	14.3	3.2	Instalaciones térmicas propuestas	101

ÍNDICES Página IV

14.4	4 Periodo de amortización de las instalaciones térmicas	103
15	Resumen de las mejoras propuestas y de los resultados obtenidos	104
16	Conclusiones.	105
17	Bibliografía	106
ANEX	(O I: CÁLCULOS	108
ANEX	(O II: PLANOS	134
ΔNFX	(O III: PRESUPUESTO	139

ÍNDICES Página V

ÍNDICE DE FIGURAS

Figura 4.1 – Ubicación de la vivienda: calle de Cabañales, Zamora9
Figura 4.2 – Orientación de la vivienda10
Figura 4.3 – Distribución de los espacios de la vivienda en la planta baja12
Figura 4.4– Distribución de los espacios de la vivienda en la primera planta13
Figura 4.5 – Distribución de los huecos en la fachada Oeste14
Figura 4.6 – Distribución de huecos en la fachada Sur15
Figura 4.7– Distribución de los huecos en la fachada Norte15
Figura 4.8– Distribución de los huecos en la fachada Este16
Figura 4.9 – Detalle de los componentes del suelo en contacto con el terreno18
Figura 4.10 – Detalle de los componentes de la fachada
Figura 4.11 – Detalle de los componentes de la cubierta tipo 120
Figura 4.12 – Detalle de los componentes de la cubierta tipo 221
Figura 4.13 – Detalle de los componentes de las particiones interiores verticales21
Figura 4.14 – Detalle de los componentes del forjado entre plantas22
Figura 4.15 – Perfil de uso normalizado de la vivienda. Fuente: Código Técnico de la Edificación
Figura 5.1 – Comparación entre el valor calculado y el límite de la demanda energética de calefacción31
Figura 5.2 – Comparación entre el valor calculado y el límite de la demanda energética de refrigeración32
Figura 5.3 – Gráfica del balance energético mensual de la vivienda33
Figura 5.4 – Gráfica de la demanda energética mensual de calefacción y de refrigeración33
Figura 5.5 – Gráfica de transmisión de calor a través de los elementos de la envolvente.
Figura 9.1 – Comparación entre el valor límite y el calculado del consumo energético de energía primaria no renovable46
Figura 10.1 – Certificación energética de la vivienda47
Figura 10.2 – Calificación energética de la vivienda en emisiones47
Figura 10.3– Calificación energética de la vivienda en consumo de energía primaria no renovable

ÍNDICES Página VI

Figura 11.1 - Detalle constructivo de los componentes del suelo en contacto con el terreno tras la mejora50
Figura 11.2 – Detalle constructivo de los componentes de la fachada tras la mejora51
Figura 11.3 – Detalle constructivo de los componentes de la cubierta tipo 1 tras la mejora
Figura 11.4 – Detalle constructivo de los componentes de la cubierta tipo 2 tras la mejora53
Figura 11.5 – Huecos añadidos en la fachada Sur56
Figura 11.6 – Gráfica de las reducciones alcanzadas en la demanda energética tras la implementación de las mejoras en la envolvente térmica57
Figura 11.7 – Esquema del funcionamiento de un muro trombe60
Figura 11.8 – Circulación del aire entre el muro trombe y la vivienda en verano y en invierno
Figura 11.9 – Detalle constructivo de los componentes del muro trombe62
Figura 11.10 – Gráfica de las reducciones alcanzadas en la demanda energética tras la incorporación del muro trombe64
Figura 11.11 – Esquema del proceso de efecto invernadero en una galería65
Figura 11.12 – Circulación del aire entre la galería y la vivienda en invierno66
Figura 11.13 – Circulación del aire entre la galería y la vivienda en verano67
Planta 44 44 All and a Charles
Figura 11.14 – Alzado Sur de la galería69
Figura 11.15 – Alzado Sur de la galería69 Figura 11.15 – Alzado Este de la galería69
Figura 11.15 – Alzado Este de la galería69
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería
Figura 11.15 – Alzado Este de la galería

ÍNDICES Página VII

Figura 11.28 – Alzado Este vivienda con las mejoras implementadas83
Figura 11.29 – Alzado Sur vivienda con las mejoras implementadas83
Figura 11.30 – Gráfica de las reducciones alcanzadas en la demanda energética tras la implementación conjunta de las mejoras pasivas84
Figura 11.31 – Esquema del funcionamiento de un sistema de ventilación mecánica controlada con recuperación de calor
Figura 11.32 – Esquema de funcionamiento de un intercambiador de flujo paralelo a contracorriente86
Figura 11.33 – Recuperador de calor serie FLEXEO, casa Soler & Palau87
Figura 11.34 – Curva de rendimiento del recuperador de calor87
Figura 11.35 - Gráfica de las reducciones alcanzadas en la demanda energética tras la implementación de las mejoras pasivas y del recuperador de calor
Figura 11.36 – Gráfica comparativa de la potencia térmica de la vivienda antes y después de la implementación de las mejoras pasivas con recuperador de calor90
Figura 13.1 – Calificación energética de la vivienda con mejoras95
Figura 13.2 – Calificación energética de la vivienda con mejoras en emisiones95
Figura 13.3 – Calificación energética de la vivienda con mejoras en consumo de energía primaria no renovable96

ÍNDICES Página VIII

ÍNDICE DE TABLAS

Tabla 4.1 – Coordenadas geográficas de la ubicación de la vivienda	9
Tabla 4.2 – Coordenadas UTM de la ubicación de la vivienda	9
Tabla 4.3 – Datos climatológicos de Zamora. Fuente: AEMET	11
Tabla 4.4– Distribución de los huecos según la planta y la orientación de la fachada	14
Tabla 4.5– Superficie construida de la vivienda, total y por plantas	16
Tabla 4.6 – Volumen y superficie útiles de la vivienda, total y por recintos	17
Tabla 4.7 – Componentes del suelo en contacto con el terreno	18
Tabla 4.8 – Componentes de las fachadas	19
Tabla 4.9 – Componentes de la cubierta tipo 1	20
Tabla 4.10 – Componentes de la cubierta tipo 2	20
Tabla 4.11 – Componentes de las particiones interiores verticales	21
Tabla 4.12 – Componentes del forjado entre plantas	22
Tabla 4.13 – Características de las ventanas	23
Tabla 4.14 – Características de la puerta exterior	24
Tabla 4.15 – Caudales de ventilación mínimos exigidos por locales	25
Tabla 4.16 – Caudales de ventilación calculados por locales	26
Tabla 4.17 – Valores de los puentes térmicos	27
Tabla 4.18 – Comparación de las transmitancias térmicas de los elementos de la envolvente térmica con las transmitancias térmicas límites	29
Tabla 5.1 – Transmisión de calor a través de los distintos elementos de la envolvente térmica.	34
Tabla 6.1 – Cálculo de la demanda de agua caliente sanitaria de la vivienda	35
Tabla 6.2 - Temperatura mensual del agua de la red en Zamora	36
Tabla 6.3 – Demanda energética mensual de ACS	37
Tabla 6.4 – Cálculo de la contribución solar mínima de agua caliente sanitaria	38
Tabla 7.1 – Condiciones de ambiente interior y exterior en invierno	39
Tabla 7.2 – Demanda térmica máxima simultánea de refrigeración por recintos	40
Tabla 7.3 – Condiciones de ambiente interior y exterior en verano	40
Tabla 7.4 – Demanda térmica máxima simultánea de refrigeración por recintos	41
Tabla 8.1 – Características principales de la caldera a condensación de gas natural	42
Tabla 8.2 – Características principales del gas natural	42

ÍNDICES Página IX

Tabla 8.3 – Potencia térmica de los radiadores por recintos43
Tabla 8.4 – Características principales de la bomba de calor reversible43
Tabla 9.1 – Consumos de energía final en la vivienda45
Tabla 11.1 – Mejora de los componentes del suelo en contacto con el terreno50
Tabla 11.2 – Mejora de los componentes de la fachada51
Tabla 11.3 – Mejora de los componentes de la cubierta tipo 152
Tabla 11.4 – Mejora de los componentes de la cubierta tipo 253
Tabla 11.5 – Comparación de las transmitancias térmicas de los cerramientos opacos antes y después de mejorar los aislamientos53
Tabla 11.6 – Comparación de las características térmicas entre los huecos iniciales y los nuevos55
Tabla 11.7 – Valores de la demanda energética de la vivienda antes y después de las mejoras principales en la envolvente térmica57
Tabla 11.8 – Coste de ejecución de las mejoras propuestas en la envolvente térmica59
Tabla 11.9 – Ventajas e inconvenientes del muro trombe61
Tabla 11.10 – Componentes del muro trombe62
Tabla 11.11 – Valores de la demanda energética de la vivienda antes y después de la incorporación del muro trombe64
Tabla 11.12 – Coste de ejecución del muro trombe65
Tabla 11.13 – Distribución y dimensiones de los acristalamientos de la galería68
Tabla 11.14 – Dimensiones de la galería68
Tabla 11.15 – Energía almacenada en la galería por ganancia de calor solar71
Tabla 11.16 – Valores de la demanda energética de la vivienda antes y después de la incorporación de la galería72
Tabla 11.17 – Coste de ejecución de la galería73
Tabla 11.18 – Componentes del suelo en contacto con el terreno del garaje74
Tabla 11.19 – Componentes de la fachada del garaje74
Tabla 11.20 – Componentes de la cubierta del garaje75
Tabla 11.21 – Dimensiones del garaje75
Tabla 11.22 – Valores de la demanda energética de la vivienda antes y después de la incorporación del garaje78
Tabla 11.23 – Comparación energético-económica entre las mejoras pasivas propuestas79
Tabla 11.24 – Ventajas e inconvenientes de las mejoras pasivas propuestas81
Tabla 11.25 - Valores de la demanda energética de la vivienda antes y después de la implementación conjunta de las mejoras pasivas84

ÍNDICES Página X

Tabla 11.27 - Valores de la demanda energética de la vivienda antes y después de la implementación de las mejoras pasivas y el recuperador de calor88
Tabla 11.28 – Demanda térmica de climatización y de ACS de la vivienda antes y después de la implementación de las mejoras pasivas y el recuperador de calor89
Tabla 12.1 – Características principales de los pellets de madera estándar92
Tabla 12.2 - Características principales de la caldera pellets92
Tabla 12.3 – Características principales de la bomba de calor93
Tabla 14.1 – Precios base de energía final97
Tabla 14.2 – Demanda energética total de la vivienda con y sin mejoras97
Tabla 14.3 – Presupuesto de los elementos estructurales de la edificación inicial 98
Tabla 14.4 – Presupuesto de las mejoras orientadas a reducir la demanda energética de la vivienda99
Tabla 14.5 – Periodo de amortización de las mejoras orientadas a reducir la demanda energética de la vivienda
Tabla 14.6 – Presupuesto de la instalación de la caldera de gas natural100
Tabla 14.7 – Presupuesto de la instalación solar térmica
Tabla 14.8 – Presupuesto de la instalación de la bomba de calor reversible101
Tabla 14.9 – Presupuesto de la instalacion de la caldera de biomasa102
Tabla 14.10 – Presupuesto de la instalación de la bomba de calor reversible de alta eficiencia
Tabla 14.11 – Periodo de amortización de la instalación térmica de refrigeración propuesta

1 Introducción.

La necesidad de estudiar soluciones para aumentar la eficiencia energética de los edificios surge de la creciente demanda energética en el sector residencial y del consumo monopolista de combustibles fósiles. Estas tendencias características del campo energético en la edificación, suponen un consumo de energía no renovable y, consecuentemente, unas emisiones de gases de efecto invernadero a la atmósfera inaceptables.

En edificios de uso residencial prácticamente el 50 % del consumo energético se debe al consumo por climatización y, casi un 30 % al consumo derivado de la producción de agua caliente sanitaria.

La demanda energética de climatización puede reducirse drásticamente mediante una edificación que aproveche al máximo la energía solar de forma pasiva, es decir, construyendo edificios basados en los principios de arquitectura bioclimática. De esta forma, se reduce proporcionalmente el consumo de energía final en las viviendas.

Además, la mayoría de los edificios utilizan energía no renovable para cubrir su demanda energética. Si los sistemas de climatización convencionales se sustituyen por otros que utilicen energía procedente de fuentes renovables, se conseguirá, además de mejorar la eficiencia energética, reducir el coste anual derivado del consumo energético.

Esto significa que, combinando soluciones energéticamente eficientes en la edificación de las viviendas con sistemas térmicos de climatización de alta eficiencia y alimentados con energía renovable, es posible mejorar la calidad ambiental en el sector doméstico gastando menos dinero.

El objetivo de potenciar este tipo de soluciones en la edificación, además de reducir la demanda energética de los edificios y de utilizar energía más limpia y más barata, es que, a partir del año 2020 todos los edificios de nueva construcción deberán ser edificios de consumo energético casi nulo, de acuerdo con lo establecido en la Directiva Europea 2010/31/UE, relativa a la eficiencia energética de los edificios.

En conclusión, mediante este estudio se pretende demostrar que es posible encontrar mejoras viables desde un punto de vista energético y económico para alcanzar consumos mínimos de energía en los edificios.

1.1 Conceptos generales.

A continuación se explican conceptos relacionados con el ahorro y la eficiencia energética en la edificación, con el objetivo de comprender el estudio de forma clara.

1.1.1 Eficiencia energética.

La eficiencia energética en la edificación es una práctica basada en alcanzar el bienestar óptimo en el interior de edificios consumiendo una cantidad mínima de energía. De forma que únicamente se consuma la energía necesaria para alcanzar las condiciones de confort demandadas por las personas.

Esto se consigue mediante un diseño correcto del edificio o mediante la rehabilitación energética de edificios, en caso de los edificios existentes.

Además, mediante esta práctica se potencia el uso de energía de origen renovable para satisfacer la demanda energética de los edificios.

En conclusión, la eficiencia energética en la edificación se alcanza mediante un diseño óptimo del edificio y mediante la implantación directa e indirecta de energías renovables.

1.1.2 Edificio de consumo energético casi nulo.

Un edificio de consumo energético casi nulo es un edificio con un nivel de eficiencia energética muy elevado. En este tipo de edificaciones, la cantidad casi nula de energía requerida debe estar cubierta en muy amplia medida por energía procedente de fuentes renovables.

Un edificio de consumo casi nulo se caracteriza por alcanzar un óptimo confort térmico mediante un consumo energético mínimo. Esto se logra cumpliendo una serie de principios:

- Aislamiento bueno y continuo.
- Reducción al mínimo de los puentes térmicos.
- Ventilación mecánica con recuperación de calor.
- Huecos de elevadas prestaciones térmicas.
- Optimización del aprovechamiento térmico de la energía solar.
- Uso de instalaciones de alta eficiencia.
- > Uso de instalaciones que utilicen energía procedente de fuentes renovables.

1.1.3 Arquitectura bioclimática.

La arquitectura bioclimática es una práctica en el diseño de edificios basada en aprovechar los recursos disponibles del entorno teniendo en cuenta las condiciones climáticas.

El objetivo de este tipo de diseño es reducir la demanda energética de los edificios, reduciendo así el impacto ambiental generado por los mismos.

La base de la arquitectura bioclimática es una óptima adaptación al clima, teniendo en cuenta los siguientes parámetros:

- Correcta distribución de los espacios y los huecos en función de la orientación del edificio.
- Introducción de elementos de protección solar.
- Óptimo aislamiento térmico de la envolvente térmica.

1.1.4 Demanda energética.

Es la energía útil necesaria que tendrían que proporcionar las instalaciones térmicas para mantener en el interior del edificio unas condiciones de bienestar definidas reglamentariamente. Se expresa en kWh/m²año.

Está constituida por la demanda de calefacción, de refrigeración y de producción de agua caliente sanitaria.

La demanda energética se considera únicamente para la superficie útil de los espacios habitables del edificio.

1.1.5 Consumo energético.

Es la energía primaria necesaria para satisfacer la demanda energética de las instalaciones de calefacción, refrigeración y producción de agua caliente sanitaria. Se expresa en kWh/m²año.

El consumo energético se considera únicamente para la superficie útil de los espacios habitables del edificio.

1.1.6 Calificación energética.

La calificación energética se determina mediante la certificación energética, constituida por una letra que indica la clase de eficiencia energética para un parámetro determinado de un edificio.

En edificios nuevos la calificación energética varía desde A hasta E, en orden de mayor a menor eficiencia energética.

El objetivo de la calificación energética de un edificio es conocer la eficiencia energética del mismo. Para ello, se expresa en función de dos indicadores: el consumo de energía primaria no renovable y emisiones de CO_2 .

2 Alcance y objetivos principales.

El objetivo del presente estudio es analizar las posibles mejoras energéticas para alcanzar los requisitos de edificio de consumo de energía casi nulo en una vivienda unifamiliar de nueva construcción, situada en Zamora.

En primer lugar, se debe determinar la energía demandada y consumida por la vivienda para conocer su nivel de eficiencia energética.

Una vez conocidos estos parámetros, se estudian una serie de mejoras energéticas con el objetivo de aumentar el nivel de eficiencia energética de la vivienda. Estas mejoras se analizarán desde un punto de vista energético y económico.

Finalmente, se decidirá cuáles son las mejoras más eficientes, teniendo en cuenta los resultados obtenidos.

3 Marco normativo.

A continuación se analiza el marco normativo relativo a la eficiencia energética en la edificación. Mediante dicho análisis se pretende enmarcar los criterios de diseño y de cálculo del presente estudio.

Dicho estudio se desarrolla siguiendo los criterios y las exigencias expuestas en las siguientes normas españolas y europeas:

3.1 Código Técnico de la Edificación.

El Código Técnico de la Edificación (CTE) está constituido por los siguientes Documentos Básicos (DB), de obligado cumplimiento:

- Documento Básico SE: Seguridad estructural (DB-SE).
- Documento Básico SI: Seguridad en caso de incendio (DB-SI).
- Documento Básico SUA: Seguridad de utilización y accesibilidad (DB-SUA).
- Documento Básico HE: Ahorro de energía (DB-HE).
- Documento Básico HR: Protección frente al ruido (DB-HR).
- Documento Básico HS: Salubridad (DB-HS).

El Documento Básico de Ahorro de energía (DB-HE) se analizará con más detalle, puesto que establece las exigencias relativas a la eficiencia energética en la edificación.

Este documento se divide en 5 secciones. Cada sección se corresponde con una exigencia básica que debe cumplirse y justificarse.

3.1.1 Sección HE 0: Limitación del consumo energético

En esta sección se establece el cálculo para obtener los valores límites correspondientes al consumo de energía primaria de origen no renovable del edificio.

El consumo de energía primaria no renovable está limitado en función de la zona climática correspondiente a la ubicación del edificio y del uso previsto del mismo.

Para conocer el consumo energético de los distintos servicios que constituyen el edificio, esta sección remite a la justificación de las Exigencias Básicas HE 1, HE 2 y HE 3.

Por tanto, debe definirse la demanda energética de calefacción, refrigeración, agua caliente sanitaria (ACS) y de iluminación (exclusivamente en edificios terciarios) para calcular el consumo energético del edificio.

3.1.2 Sección HE 1: Limitación de la demanda energética

En esta exigencia se determinan los valores límites de las demandas de calefacción y de refrigeración del edificio. Estos valores se establecen en función de la zona climática correspondiente a la ubicación del edificio y del uso previsto del uso previsto del mismo.

Con el objetivo de limitar la demanda energética del edificio, también se establecen unos valores límites de las transmitancias térmicas y de la permeabilidad al aire de los diferentes elementos de la envolvente del edificio. Estas limitaciones se establecen en función de la severidad climática en invierno correspondiente a la ubicación del edificio.

3.1.3 Sección HE 2: Rendimiento de las instalaciones térmicas

Esta sección remite directamente al Reglamento de Instalaciones Térmicas en los Edificios (RITE).

Dicho reglamento se analizará con detalle en el siguiente apartado.

3.1.4 Sección HE 3: Eficiencia Energética de las Instalaciones de Iluminación

En esta sección se determinan los procesos para calcular el Valor de Eficiencia Energética de la Instalación (VEEI).

Además, se establecen los valores máximos del VEEI para cada zona del edificio y de la potencia total instalada a nivel global, que no han de superarse.

También se debe justificar la existencia de un sistema de control y, cuando sea necesario, de regulación que optimice el aprovechamiento de la luz natural.

Es importante destacar que esta sección no es de obligada aplicación al interior de viviendas.

3.1.5 Sección HE 4: Contribución solar mínima de agua caliente sanitaria

En esta sección se establece la contribución solar mínima para la demanda de agua caliente sanitaria, o de climatización de piscina cubierta, que ha de ser cubierta mediante sistemas de captación, de almacenamiento y de utilización de energía solar de baja temperatura.

El valor de la demanda que debe cubrirse mediante estos sistemas se establece en función de la severidad climática en verano correspondiente a la ubicación del edificio.

Además, se establecen los criterios para el diseño y el dimensionado de la instalación.

3.1.6 Sección HE 5: Contribución fotovoltaica mínima de energía eléctrica

En esta sección se establece la contribución fotovoltaica mínima de energía eléctrica obtenida por captación de energía solar mediante sistemas fotovoltaicos para cubrir una parte de la demanda eléctrica o para suministro a la red.

Así, se establece la potencia mínima a instalar en función de la severidad climática en invierno correspondiente a la ubicación del edificio y del uso previsto del mismo.

3.2 Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en los Edificios (RITE).

En el RITE se establecen los criterios de diseño y de dimensionado de las instalaciones térmicas que constituyen el edificio. Siendo las instalaciones térmicas: las instalaciones fijas de climatización (calefacción, refrigeración y ventilación) y las destinadas a producción de agua caliente sanitaria.

Este reglamento se divide en dos partes:

3.2.1 PARTE I. Disposiciones generales

Esta parte está constituida por 10 capítulos en los que se establecen las exigencias técnicas de las instalaciones térmicas, las condiciones administrativas, las condiciones para la ejecución de las instalaciones térmicas, las condiciones para la puesta en servicio de la instalación, las condiciones para el uso y mantenimiento de la instalación, la inspección, las empresas habilitadas para la instalación y el mantenimiento de las

instalaciones térmicas, el régimen sancionador y la Comisión Asesora para las instalaciones térmicas de los edificios.

Exigencia técnica de eficiencia energética

A continuación se analiza con más detalle la exigencia técnica de eficiencia energética.

En esta exigencia se establece la necesidad de reducir el consumo de energía por parte de las instalaciones térmicas y de reducir las emisiones de gases de efecto invernadero, mediante el uso de sistemas energéticamente eficientes.

Con este fin se establecen los siguientes requisitos, que deben cumplirse en todas las instalaciones térmicas:

- 1. Rendimiento energético.
- 2. Distribución de calor y frío.
- 3. Regulación y control.
- 4. Contabilización de consumos.
- 5. Recuperación de energía.
- 6. Utilización de energías renovables.

3.2.2 PARTE II. Instrucciones Técnicas

La segunda parte del reglamento está constituida por 4 Instrucciones Técnicas:

1. INSTRUCCIÓN TÉCNICA IT.1 DISEÑO Y DIMENSIONADO

En esta IT se establecen los criterios a seguir en el diseño y dimensionado de las instalaciones térmicas relativos a las diferentes exigencias.

Exigencia de bienestar e higiene.

En el caso de viviendas, los requisitos de calidad del aire interior se establecen en la Sección HS 3 del CTE.

> Exigencia de eficiencia energética.

Se establecen dos procedimientos para la verificación de esta exigencia: el procedimiento simplificado y el procedimiento alternativo.

Si se desarrolla siguiendo el procedimiento simplificado, deben seguirse una serie de verificaciones relativas a la exigencia de eficiencia energética.

Exigencia de seguridad.

2. INSTRUCCIÓN TÉCNICA IT.2 MONTAJE

El objetivo de esta IT es establecer el procedimiento de la puesta en servicio de las instalaciones térmicas del edificio.

3. INSTRUCCIÓN TÉCNICA IT.3 MANTENIMIENTO Y USO

El objetivo de esta IT establece las exigencias que deben cumplir las instalaciones térmicas para asegurar que su funcionamiento sea energéticamente eficiente.

4. INSTRUCCIÓN TÉCNICA IT.4 INSPECCIÓN

En esta IT se establecen los procedimientos a seguir relativos a la inspección de las instalaciones térmicas de los edificios.

3.3 Directiva Europea 2010/31/UE, relativa a la eficiencia energética de los edificios.

EL objetivo principal de esta Directiva Europea es fomentar la eficiencia energética de los edificios.

Mediante esta Directiva Europea se establecen los requisitos mínimos de eficiencia energética en los edificios. Estos requisitos deben alcanzarse mediante la implantación de las medidas necesarias por parte de los Estados miembros.

Para ello, se establece la necesidad de adoptar una metodología de cálculo de la eficiencia energética en los edificios.

También se adopta un procedimiento de cálculo de los niveles óptimos de rentabilidad de los requisitos mínimos de eficiencia energética.

En lo relativo a edificios de consumo de energía casi nulo, se garantiza que: "los Estados miembros se asegurarán de que a más tardar el 31 de diciembre de 2020, todos los edificios nuevos sean edificios de consumo de energía casi nulo [...]".

3.4 Directiva Europea 2012/27/UE, relativa a eficiencia energética.

Esta Directiva establece los requisitos que los estados miembros deben cumplir relativos a eficiencia energética. De forma que cada estado miembro deberá limitar un objetivo nacional de eficiencia energética.

Así, cada estado miembro deberá transponer dicha directiva aplicando una normativa nacional.

3.5 Real Decreto 235/2013, de 5 de abril, por el que se aprueba el procedimiento básico para la certificación de la eficiencia energética de los edificios.

El objetivo de este Real Decreto es fomentar la eficiencia energética de los edificios mediante la obligación de informar a compradores y usuarios sobre la eficiencia energética de un edificio mediante la certificación energética del mismo.

Con este objetivo se determinan las condiciones técnicas y administrativas para ejecutar las certificaciones energéticas de los edificios, estableciendo la metodología de cálculo de la calificación de eficiencia energética.

Además, mediante este Real Decreto, se aprueba la etiqueta de eficiencia energética.

4 Características de la vivienda.

4.1 Situación, entorno y ubicación geográfica.

La vivienda se ubicará en la calle de Cabañales, Zamora. En la siguiente imagen se puede observar el emplazamiento concreto.

Figura 4.1 – Ubicación de la vivienda: calle de Cabañales, Zamora.

Las coordenadas geográficas correspondientes a la ubicación son (huso 30):

Tabla 4.1 – Coordenadas geográficas de la ubicación de la vivienda.

Latitud	Longitud
41°29'28.02"N	5°44'42.95"O

Las coordenadas UTM correspondientes a la ubicación son:

Tabla 4.2 – Coordenadas UTM de la ubicación de la vivienda.

X	Υ
270820,04	4596997,64

La altitud del emplazamiento es igual a 650 m.

El entorno de la ubicación de la vivienda está formado por viviendas, la mayoría de obra nueva, y por parcelas sin edificar.

La entrada principal de la vivienda está orientada hacia el Oeste. Ninguna de las fachadas limita con otra vivienda.

En la siguiente imagen se puede observar la orientación del edificio. Se representa la orientación Sur, ya que es la que recibe una mayor radiación solar en los meses de invierno.

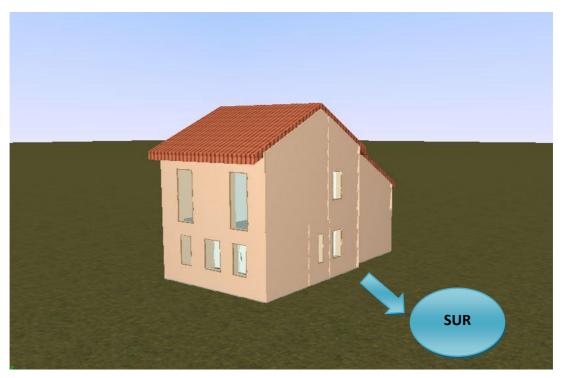


Figura 4.2 – Orientación de la vivienda.

4.1.1 Clima

El clima es uno de los parámetros que más condicionan el comportamiento energético de los edificios. Los niveles de demanda energética de un mismo edificio variarán significativamente en función del clima correspondiente a su emplazamiento.

Además, las posibles mejoras a realizar en un edificio también están altamente condicionadas por el clima característico del emplazamiento. En edificios ubicados en climas secos y cálidos serán más eficientes unas determinadas mejoras, sin embargo, en climas más suaves serían poco acertadas.

Por este motivo es imprescindible estudiar de forma detallada el clima correspondiente al emplazamiento del edificio.

Zona climática según el Código Técnico de la Edificación.

De acuerdo con lo establecido en el Apéndice B de la Sección HE 1 del DB HE del CTE, a Zamora le corresponde una zona climática D2. Por tanto presenta:

- ➤ Una severidad climática de invierno D, lo que equivale a una severidad igual a 4 en una escala entre 1 y 5, en orden creciente de severidad.
- Una severidad climática de verano 2, que equivale a una severidad igual a 2 en una escala entre 1 y 4, en orden creciente de severidad.

Datos climatológicos de la Agencia Estatal de Meteorología (AEMET)

A partir de la información ofrecida por la AEMET se obtienen los siguientes datos, para la localidad de Zamora:

- La temperatura medias mensual/anual (T).
- La precipitación mensual/anual media (R).
- > La humedad relativa media (H).

Estos datos se pueden observar en la siguiente tabla:

Tabla 4.3 – Datos climatológicos de Zamora. Fuente: AEMET.

Mes	T (°C)	R (mm)	Н (%)
Enero	4.6	32	82
Febrero	6.4	25	73
Marzo	9.5	22	63
Abril	11.2	39	62
Mayo	15.0	43	58
Junio	19.8	23	51
Julio	22.7	12	47
Agosto	22.3	13	50
Septiembre	18.8	28	57
Octubre	13.6	50	69
Noviembre	8.4	45	78
Diciembre	5.5	46	82
Año	13.1	31.5	64

4.2 Distribución de espacios y huecos.

A continuación de describe detalladamente la distribución de los recintos y de los huecos. La distribución, especialmente la de los huecos, supondrá una influencia considerable en la eficiencia energética de la vivienda.

4.2.1 Distribución de espacios.

La vivienda se divide en dos plantas: planta baja (PB) y primera planta (p1)

Las unidades de uso de la vivienda son: salón, cocina, dos baños y tres dormitorios dobles. Todos los espacios de la vivienda son habitables y presentan el mismo nivel de acondicionamiento.

La planta baja contiene los siguientes recintos:

- Recibidor.
- > Salón.
- Cocina.
- Zona de lavado.

- Distribuidor 1.
- Baño 1.
- > Dormitorio 1.

La primera planta contiene los siguientes recintos:

- Distribuidor 2.
- Baño 2.
- Dormitorio 2.
- Dormitorio 3.

En las siguientes imágenes se muestra la distribución de los recintos en cada planta.

Figura 4.3 – Distribución de los espacios de la vivienda en la planta baja.

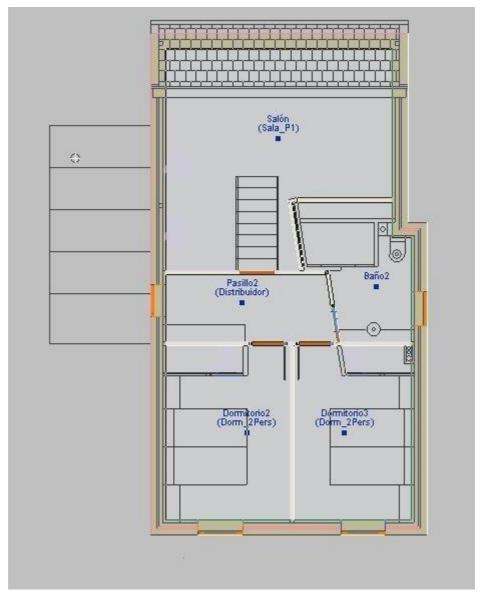


Figura 4.4– Distribución de los espacios de la vivienda en la primera planta.

4.2.2 Distribución de huecos.

La vivienda cuenta con un total de catorce ventanas y una puerta exterior.

En la siguiente tabla se describe la distribución de los huecos según la planta y la fachada en la que estén ubicados.

Tabla 4.4– Distribución de los huecos según la planta y la orientación de la fachada.

Hueco	Cantidad	Planta	Fachada	
Ventana 1	1	РВ	Oeste	
Ventana 2	1	РВ	Oeste	
Ventana 3	1	PB	Oeste	
Ventana 4	2	P1	Oeste	
Ventana 5	5	PB	Este	
Ventana 6	1	P1	Norte	
Ventana 7	1	PB	Sur	
Ventana 8	1	РВ	Sur	
Ventana 9	1	P1	Sur	
Puerta exterior 1	1	РВ	Oeste	

En las siguientes imágenes se muestra la descripción anterior relativa a la distribución de los huecos.



Figura 4.5 – Distribución de los huecos en la fachada Oeste.

Figura 4.6 – Distribución de huecos en la fachada Sur.

Figura 4.7– Distribución de los huecos en la fachada Norte.

Figura 4.8– Distribución de los huecos en la fachada Este.

4.3 Dimensiones de la vivienda.

A continuación se determinan las diferentes dimensiones de la vivienda, según las plantas y los recintos que la constituyen.

Superficie construida:

Tabla 4.5– Superficie construida de la vivienda, total y por plantas.

Superficie	Planta baja (PB)	Primera planta (P1)	Total vivienda
construida (m²)	86.17	76.48	162.65

Superficie y volumen útiles:

Tabla 4.6 – Volumen y superficie útiles de la vivienda, total y por recintos.

Recinto	Volumen útil (m³)	Superficie útil (m²)
Recibidor	15.95	6.2
		31.9 (PB)
Salón	148.57	25.12 (P1)
Cocina	18.95	7.7
Zona de lavado	7.77	3.1
Baño 1	8.47	3.4
Distribuidor 1	7.97	3.2
Dormitorio 1	39.12	15.8
Distribuidor 2	29.5	6.8
Baño 2	28.02	7.3
Dormitorio 2	54.53	12.6
Dormitorio 3	51.84	12
Total vivienda	410.97	135.12

4.4 Características técnicas.

A continuación se describen las características de la vivienda más relevantes para realizar un estudio térmico.

4.4.1 Cerramientos opacos de la envolvente térmica.

La envolvente térmica de un edificio es el conjunto de cerramientos, horizontales y verticales, que separan los espacios interiores habitables del exterior. Se entiende como exterior: terreno, aire, otros edificios y espacios no habitables del mismo edificio.

Los cerramientos opacos de la envolvente son los muros en contacto con el exterior, suelos en contacto con el terreno y las cubiertas.

A continuación se detallan el espesor y las características térmicas de los materiales que constituyen la envolvente.

De acuerdo con lo establecido en el CTE, los materiales de los cerramientos se deben definir mediante las siguientes características:

- Espesor (cm).
- > Conductividad térmica, λ (W/m·K).
- Factor de resistencia a la difusión del agua, μ.
- \triangleright Densidad, ρ (kg/m³).
- ➤ Calor específico, c_p (J/kg·K).

1. Suelo en contacto con el terreno:

Los componentes de los cerramientos horizontales se enumeran desde arriba hacia abajo.

Tabla 4.7 – Componentes del suelo en contacto con el terreno.

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg·K)
1-Madera frondosa de peso medio 565 <d<750< th=""><th>2</th><th>0.180</th><th>50</th><th>660</th><th>1300</th></d<750<>	2	0.180	50	660	1300
2-Poliestireno [PS]	1	0.160	100 00	1050	1300
3-Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>8</th><th>0.550</th><th>10</th><th>1250</th><th>1000</th></d<1250<>	8	0.550	10	1250	1000
4-Forjado unidireccional 10+5 cm (Bovedilla de hormigón)	15	1.32	120	2000	1000
5-XPS expandido con CO ₂	12	0.034	100	37.5	1000
ESPESOR TOTAL	38				

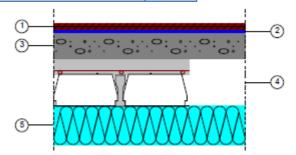


Figura 4.9 – Detalle de los componentes del suelo en contacto con el terreno.

2. Fachadas:

Los componentes de los cerramientos verticales se enumeran desde el exterior hacia el interior.

Tabla 4.8 – Componentes de las fachadas.

Material	e (cm)	λ (W/m·K)	μ ρ (kg/m³)		c _p (J/kg⋅K)		
1-Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>2</th><th>0.550</th><th>10</th><th>1250</th><th>1000</th></d<1250<>	2	0.550	10	1250	1000		
2-Tabicón de LH doble Gran Formato	12	0.212 10 630 10					
3-Cámara de aire sin ventilar	3	Resistencia térmica (m²·K/W) = 0.18					
4-XPS expandido con CO₂	10	0.034 100 37.5 1000					
5-Tabicón de LH doble Gran Formato	8	0.212	10	630	1000		
6-Enlucido de yeso 1000 <d<1300< th=""><th>1.5</th><th>0.570</th><th>6</th><th>1150</th><th>1000</th></d<1300<>	1.5	0.570	6	1150	1000		
ESPESOR TOTAL	36.5			•	-		

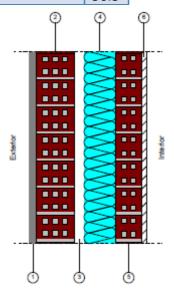


Figura 4.10 – Detalle de los componentes de la fachada.

3. Cubierta tipo 1:

Tabla 4.9 – Componentes de la cubierta tipo 1.

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg·K)
1-Zinc	0.3	110	1·10 ⁶	7200	380
2-Tableros de fibras incluyendo MDF 350 <d<550< th=""><th>2</th><th>0.140</th><th>12</th><th>450</th><th>1700</th></d<550<>	2	0.140	12	450	1700
3-Losa alveolar con capa de compresión	20	1.404	80	1810	1000
4-XPS expandido con CO₂	8	0.034	10	37.5	1000
5-Enlucido de yeso	1.5	0.570	6	1150	1000
ESPESOR TOTAL	31.8				

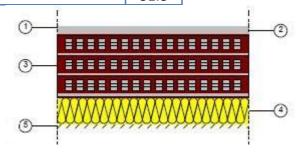


Figura 4.11 – Detalle de los componentes de la cubierta tipo 1.

4. Cubierta tipo 2:

Tabla 4.10 – Componentes de la cubierta tipo 2.

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg·K)
1-Esquisto pizarra	1	2.2	800	2400	1000
2-Cloruro de polivinilo [PVC]	0.3	0.170	5·10 ⁵	1390	900
3-Tablero contrachapado	1.2	0.170	90	550	1600
4-XPS expandido con CO₂	12	0.034	10	37.5	1000
5-Forjado unidireccional 15+5 cm (Bovedilla de hormigón)	20	1.32	120	2000	1000
6- Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>2</th><th>0.550</th><th>10</th><th>1250</th><th>1000</th></d<1250<>	2	0.550	10	1250	1000
ESPESOR TOTAL	36.5		•	•	•

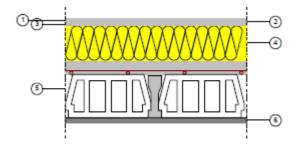


Figura 4.12 – Detalle de los componentes de la cubierta tipo 2.

4.4.2 Compartimentación interior.

Las particiones interiores separan unidades de del mismo uso dentro de un edificio. Por tanto, estas unidades presentan el mismo nivel de climatización.

A continuación se describen los materiales de estas particiones, tanto las horizontales como verticales. También se definen sus características térmicas.

1. Particiones interiores verticales:

Tabla 4.11 – Componentes de las particiones interiores verticales.

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg⋅K)
1-Enlucido de yeso	1	0.570	6	1150	1000
2-Tabicón de LH doble	8	0.212	10	630	1000
3-Enlucido de yeso	1	0.570	6	1150	1000
ESPESOR TOTAL	9				

Figura 4.13 – Detalle de los componentes de las particiones interiores verticales.

2. Forjado entre plantas:

Tabla 4.12 – Componentes del forjado entre plantas.

Material	e λ (cm) (W/m·K)		μ	ρ (kg/m³)	c _p (J/kg⋅K)	
1-Madera frondosa de peso medio	2	0.180	50	660	1300	
2-Poliestireno [PS]	1	0.160	1·10 ⁴	1050	1300	
3- Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>8</th><th>0.550</th><th>10</th><th>1250</th><th>1000</th></d<1250<>	8	0.550	10	1250	1000	
4-Forjado unidireccional 25+5 cm (Bovedilla de hormigón)	30	1.32	120	2000	1000	
5- Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>2</th><th>0.550</th><th>10</th><th>1250</th><th>1300</th></d<1250<>	2	0.550	10	1250	1300	
ESPESOR TOTAL	43					

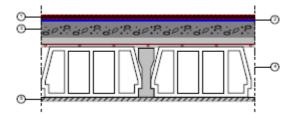


Figura 4.14 – Detalle de los componentes del forjado entre plantas.

4.4.3 Huecos.

Los huecos de la vivienda están constituidos por las ventanas y las puertas. Dichos huecos están formados por un vidrio y un marco. Se debe conocer el porcentaje de cada componente con el fin de calcular su transmitancia térmica.

De acuerdo con lo establecido en el CTE deben definirse las siguientes características de los huecos:

- La transmitancia térmica del vidrio y del marco (Ugy Uf).
- > La superficie del vidrio y del marco.
- > El factor solar del vidrio.
- La absortividad de la cara exterior del marco.
- ➤ En el caso de puertas cuya superficie semitransparente sea inferior al 50 %, se definirán únicamente la transmitancia térmica de la puerta y su absortividad.
- ➤ La permeabilidad al aire del conjunto marco vidrio.

Previamente a realizar la descripción de los huecos se definen algunos conceptos con el objetivo de entender dicha descripción de forma óptima.

<u>Factor solar del vidrio</u>: es la relación entra la energía total que entra en un espacio a través de un vidrio y la radiación solar a incidencia normal. La energía total está constituida por la energía solar que entra por transmisión directa y la energía cedida por el vidrio al espacio interior, debido a su calentamiento.

<u>Absortividad del marco:</u> es la fracción de la radiación solar que es absorbida por la superficie sobre la que incide. La absortividad varía desde 0 hasta 1.

<u>Permeabilidad al aire:</u> es la capacidad de un hueco de dejar pasar el aire cuando se encuentra sometido a una presión diferencial determinada.

Los huecos se clasifican en función de si son ventanas o puertas. A continuación se especifica la cantidad de huecos y además, se describen sus principales características.

Ventanas:

En la vivienda se dispone de un total de 14 ventanas. 10 de ellas están situadas en la planta baja y las 4 restantes, en la primera planta.

Todas las ventanas están constituidas por un vidrio doble 4-12-4 en posición vertical. Este vidrio presenta aislamiento térmico reforzado y es de la casa Saint-Gobain, modelo PANITHERM ULTRA N.

Además, 9 de las ventanas están constituidas por un marco de apertura oscilobatiente, de la casa Exlabesa, modelo EXL-55. Las 5 ventanas restantes están constituidas por un marco de apertura tipo corredera, de la casa Exlabesa, modelo SLIDE. Los dos tipos de marcos son de PVC.

En la siguiente tabla se recogen las principales características de las ventanas.

Ventana	V1	V2	V3	V4	V5	V6	V7	V8	V9
Unidades	1	1	1	2	5	1	1	1	1
Superficie (m²)	1.18	1.05	1.44	2.5	2.86	0.81	0.56	1.12	1.12
% marco	10	10	10	10	10	10	10	10	10
U _g (W/m ² K)	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
U _f (W/m ² K)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Factor solar	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62
Absortividad	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Permeabilidad	Clase								
al aire	4	4	4	4	4	4	4	4	4

Tabla 4.13 – Características de las ventanas.

Puerta exterior:

La vivienda dispone de una puerta exterior, que está constituida exclusivamente por marco. Dicho marco es de PVC y pertenece a la casa Exlabesa, modelo EXL-55.

En la siguiente tabla se recogen las principales características de la puerta exterior

Puerta	P1
Superficie (m²)	2.25
% marco	100
U _g (W/m ² K)	-
U _f (W/m ² K)	2.7
Factor solar	-
Absortividad	0.6
Permeabilidad al aire	Clase 4

Tabla 4.14 – Características de la puerta exterior.

4.4.4 Caudal de ventilación.

El caudal de ventilación en las viviendas se determina a partir de lo establecido en la Sección HS 3: "Calidad del aire interior" del Documento Básico de Salubridad del Código Técnico de la Edificación.

Las viviendas deben disponer de un sistema de ventilación. El aire de admisión entra por los locales secos mediante las aberturas de admisión. Este aire circula hacia los locales húmedos a través de las zonas de paso. Por último, el aire de extracción se extrae por de los locales húmedos mediante las aberturas de extracción, que están conectadas a conductos de extracción.

La ventilación de la vivienda es forzada, es decir, se realiza por sistemas mecánicos.

El sistema de ventilación utilizado en la vivienda es mecánica controlada de doble flujo. Es decir, la instalación de ventilación está constituida por dos circuitos, un circuito de admisión y otro de extracción.

Este tipo de instalación de ventilación presenta una serie de ventajas, además de posibilitar la incorporación de elementos de recuperación de calor:

- Aumento de la estanqueidad al aire de la vivienda.
- > Aumento del aislamiento acústico.
- Posibilidad de implementar sistemas de filtrado, aumentando la calidad del aire de admisión.
- ➤ Aumento de la calidad del aire interior derivado del control de los niveles de humedad y de CO₂.
- Posibilidad de utilizar el aire de admisión como fluido caloportador.
- > Posibilidad de control el caudal de aire.

El caudal de ventilación óptimo en una vivienda se calcula para evitar la estanqueidad del aire. Una mala ventilación puede provocar una reducción del confort térmico en el interior de la vivienda y la formación de humedades o condensaciones.

Esta caudal de ventilación suele expresarse como renovaciones/hora de la vivienda. Este término indica el número de veces que es necesario intercambiar el aire interior de la vivienda por aire nuevo del exterior, para mantener unas condiciones adecuadas de calidad de aire interior.

Para determinar las renovaciones/hora de la vivienda es necesario calcular previamente el caudal mínimo de ventilación de la misma, y el caudal real de ventilación.

1. Caudal de ventilación mínimo exigido:

En la siguiente tabla se muestran los caudales de ventilación mínimos por locales, definidos en el capítulo 2 de la Sección 3 del Documento Básico HS de Salubridad del Código Técnico de la Edificación.

	Tipo local	Caudal de ventilación mínimo (q _v)		
Local		l/s	m³/h	
Salón	Seco	18	64.8	
Cocina	Húmedo	15.02	54.072	
Zona de lavado	Húmedo	60.06	21.816	
Baño 1	Húmedo	15	54	
Baño 2	Húmedo	15	54	
Dormitorio 1	Seco	10	36	
Dormitorio 2	Seco	10	36	
Dormitorio 3	Seco	10	36	

Tabla 4.15 – Caudales de ventilación mínimos exigidos por locales.

2. Caudal de ventilación calculado:

Se aplica un procedimiento de equilibrado de caudales de admisión (q_{va}) y caudales de extracción (q_{ve}), basado en la circulación del aire según la distribución de los locales. Así, se obtiene el caudal de ventilación real de la vivienda.

	Caudal de extracción, q _{ve}		
Locales húmedos	l/s	m³/h	
Cocina	16.9	60.84	
Zona de lavado	6.1	21.96	
Baño 1	15	54	
Baño 2	15	54	
Total	53	190.8	
	Caudal de admisión, q _{va}		
Locales secos	I/s	m³/h	
Salón	18	64.8	
Dormitorio 1	15	54	
Dormitorio 2	10	36	
Dormitorio 3	10	36	
Total	53	190.8	

Tabla 4.16 – Caudales de ventilación calculados por locales.

3. Renovaciones por hora necesarias:

Conociendo el caudal de ventilación de la vivienda (190.8 m^3/h) y el volumen útil de la misma (410.69 m^3), se obtiene un valor de ventilación igual a 0.46 renovaciones/hora.

4.4.5 Puentes térmicos.

Los puentes térmicos (PT) son las zonas de la envolvente de la vivienda en las que se pierde la uniformidad constructiva. Esto da lugar a una reducción de la resistencia térmica en el punto con respecto al resto de la envolvente térmica.

Los puentes térmicos pueden ser de dos tipos:

- 1. Puentes térmicos integrados en fachada: se deben a un cambio constructivo en el cerramiento.
- 2. Puentes térmicos lineales: se deben a discontinuidades geométricas (encuentros entre cerramientos, elementos exteriores, etc).

Los puentes térmicos se estudian en la fase de proyecto. Es importante analizar las soluciones óptimas para minimizar las pérdidas energéticas a través de los puentes térmicos, ya que en viviendas muy bien aisladas los puentes térmicos mal dimensionados pueden suponer un 50 % de las pérdidas energéticas totales a través de los cerramientos.

Además, los puentes térmicos pueden dar lugar a la formación de condensaciones en los cerramientos de las viviendas, lo que supone una minoración considerable del confort térmico por problemas relacionados con la salubridad del aire interior.

Los puentes térmicos en la envolvente de la vivienda se calculan de acuerdo con el método general. Este método consiste en introducir los datos constructivos de la vivienda

en un software de cálculo, en este caso en CYPECAD MEP, mediante el que se obtienen los valores de los puentes térmicos.

Los puentes térmicos se calculan mediante dos parámetros:

- ➤ Longitud (m): es la longitud de la envolvente térmica afectada por el puente térmico considerado.
- Coeficiente lineal de pérdidas, Ψ (W/mK): representa el flujo de calor entre dos ambientes a diferente temperatura, por unidad de longitud y de temperatura.

En la siguiente tabla se muestran los valores calculados de puentes térmicos en la envolvente de la vivienda.

Tabla 4.17 – Valores de los puentes térmicos.

Puente térmico		Longitud (m)	Ψ (W/mK)
Encuentro de fachada con suelo		35.99	0.31
Encuentro de fachada con forjado intermedio		32.72	0.31
Encuentro de fachada con cubierta		7.79	0.56
	Esquinas salientes	41.6	0.05
Encuentro entre fachadas	Esquinas entrantes	8.52	-0.07
	Alféizar	12.97	0.51
Encuentro de fachada con	Dintel	12.97	0.5
carpintería	Jambas	54.84	0.5

5 Demanda energética de climatización.

El cálculo de la demanda energética de la vivienda se realiza utilizando el software CYPECAD MEP.

En el cálculo, los parámetros de la vivienda relativos a su demanda energética se calculan de acuerdo con lo establecido en la Sección HE 1 del DB HE del CTE.

5.1 Cuantificación de la exigencia.

En la Sección HE 1 del DB HE del CTE se establecen los valores límites de demanda de calefacción y de demanda de refrigeración para edificios de uso residencial privado.

5.1.1 Limitación de la demanda energética de calefacción.

La demanda energética de calefacción de la vivienda está limitada por la siguiente expresión:

$$D_{cal, lim} = D_{cal, base} + F_{cal, sup}/S$$

Siendo:

- D_{cal, lim}: el valor límite de la demanda energética de calefacción, considerando la superficie útil de los espacios habitables. Se expresa en kWh/m²año.
- D_{cal, base}: el valor base de la demanda energética de calefacción, que depende de la zona climática correspondiente a la ubicación del edificio. Se expresa en kWh/m²año.
- F_{cal, sup}: el factor corrector por superficie de la demanda energética de calefacción, que depende de la zona climática correspondiente a la ubicación del edificio.
- S: la superficie útil de los espacios habitables de la vivienda, expresada en m².

Sabiendo que la zona climática correspondiente a la vivienda es D2, a partir de la tabla 2.1 de la Sección HE 1 del DB HE del CTE se obtienen los siguientes valores:

- $D_{cal. base} = 27 \text{ kW} \cdot \text{h/m}^2 \cdot \text{año.}$
- $F_{cal. sup} = 2000$.

La superficie útil de los espacios habitables de la vivienda es igual a 135.12 m².

Por tanto, el valor límite de la demanda energética de calefacción para la vivienda es igual a 41.8 kW·h/m²·año.

5.1.2 Limitación de la demanda energética de refrigeración.

La demanda energética de calefacción está limitada por un valor que depende de la severidad climática de verano correspondiente a la ubicación de la vivienda.

Sabiendo que la zona climática de verano de la vivienda equivale a 2, el valor límite de la demanda energética de refrigeración ($D_{ref, lim}$) es igual a 15 kWh/m²año.

5.1.3 Limitación de descompensaciones.

Transmitancia térmica.

En primer lugar, se explica el concepto de transmitancia térmica con el objetivo de comprender claramente los valores que se describirán posteriormente.

La transmitancia térmica (U) es la medida de flujo de calor que fluye a través de un área de un elemento constructivo que separa dos ambientes en los que existe un gradiente de temperatura. Se expresa en W/m²K.

La transmitancia térmica de un elemento formado por varias capas de materiales se calcula según la siguiente expresión:

$$U = 1/R_T$$

Donde R_T es la suma de las resistencias térmicas de cada capa de material que constituyen el elemento constructivo.

La resistencia térmica de un material (R_i) se calcula en función del espesor de la capa de dicho material (e_i) y de la conductividad térmica de dicho material (λ_i), según la siguiente expresión:

$$R_i = e_i / \lambda_i$$

La resistencia térmica se expresa en m²K/W.

En conclusión, cuanto menor sea la transmitancia térmica de un elemento, menor será la energía cedida hacia el exterior del edificio, y por tanto, más eficiente será dicho edificio. Por ello, es importante utilizar elementos caracterizados por una resistencia térmica elevada. Esto se consigue eligiendo materiales caracterizados por una conductividad térmica mínima.

Cálculo de las descompensaciones.

Con el objetivo de limitar las descompensaciones, en la Sección HE 1 del DB HE del CTE se establecen unos valores límites referentes a la transmitancia térmica de los huecos y de los cerramientos que conformen la envolvente térmica.

Estos valores límites se establecen en función de la zona climática de invierno correspondiente a la ubicación de la vivienda.

En la siguiente tabla se comparan los valores límites para la zona climática de invierno D y los valores calculados para la vivienda de estudio.

Tabla 4.18 – Comparación entre las transmitancias térmicas de los elementos de la envolvente térmica con las transmitancias térmicas límites.

Elemento co	onstructivo	U _{max} para zona climática D (W/m²K)	U calculada en la vivienda (W/m²K)
Muros de fachada		0.66	0.23
Suelos		0.49	0.18
Cubierta 1		0.00	0.36
Cubiertas	Cubierta 2		0.25
	Ventanas		1.71
Huecos	Puerta exterior	2.7	2.7

Como se puede observar en la tabla anterior, ninguno de los elementos constructivos supera la transmitancia térmica límite.

5.2 Perfil de uso.

El perfil de uso es la descripción hora a hora de las cargas internas y temperaturas de consigna de los espacios habitables de la vivienda.

Se determina a partir de los siguientes parámetros:

- > El uso del espacio habitable.
- > El nivel de cargas internas del espacio habitable.
- Su periodo de utilización.

Para la vivienda de estudio, estos parámetros son:

- Uso del espacio habitable: residencial privado.
- Nivel de cargas internas: único para uso residencial.
- Periodo de utilización: 24 horas.

De acuerdo con lo establecido en el Apéndice C de la Sección HE 1 del DB HE del CTE, para los parámetros anteriormente citados, se obtiene el siguiente perfil de uso normalizado:

USO RESIDENCIAL		(24	h, BAJ	A)	
	1-7	8	9-15	16-23	24
Temp Consigna Alta (°C)					
Enero a Mayo	-	-	-	-	-
Junio a Septiembre	27	-	-	25	27
Octubre a Diciembre	-	_	_	-	_
Temp Consigna Baja (°C)					
Enero a Mayo	17	20	20	20	17
Junio a Septiembre	-	-	-	-	-
Octubre a Diciembre	17	20	20	20	17
Ocupación sensible (W/m²)					
Laboral	2,15	0,54	0,54	1,08	2,15
Sábado y Festivo	2,15	2,15	2,15	2,15	2,15
Ocupación latente (W/m²)					
Laboral	1,36	0,34	0,34	0,68	1,36
Sábado y Festivo	1,36	1,36	1,36	1,36	1,36
lluminación (W/m²)					
Laboral, Sábado y Festivo	0,44	1,32	1,32	1,32	2,2
Equipos (W/m²)					
Laboral, Sábado y Festivo	0,44	1,32	1,32	1,32	2,2
Ventilación verano ¹					
Laboral, Sábado y Festivo	4,00	4,00	*	*	*
Ventilación invierno ²					
Laboral, Sábado y Festivo	*	*	*	*	*

Figura 4.15 – Perfil de uso normalizado de la vivienda. Fuente: Código Técnico de la Edificación.

5.3 Cálculo de la demanda energética de la vivienda.

Los valores de la demanda energética de la vivienda se obtienen mediante el uso de la herramienta informática CYPECAD MEP.

5.3.1 Demanda energética de calefacción.

Se obtiene un valor de demanda energética de calefacción igual a 33.19 kWh/m²año.

Por tanto, el valor calculado de la demanda energética de calefacción es inferior al valor límite:

$$33.19 \text{ kWh/m}^2 \text{año} < 41.8 \text{ kWh/m}^2 \text{año}$$

En la siguiente gráfica se muestra la comparación entre el valor límite y el calculado de la demanda energética de calefacción:

Demanda energética de calefacción (kWh/m²año)

Figura 5.1 – Comparación entre el valor calculado y el límite de la demanda energética de calefacción.

5.3.2 Demanda energética de refrigeración.

Se obtiene un valor de demanda energética de refrigeración igual a 11.03 kWh/m²año.

Por tanto, el valor calculado de la demanda energética de calefacción es inferior al valor límite:

$$11.03 \text{ kWh/m}^2$$
año < 15 kWh/m^2 año

En la siguiente gráfica se muestra la comparación entre el valor límite y el calculado de la demanda energética de refrigeración:

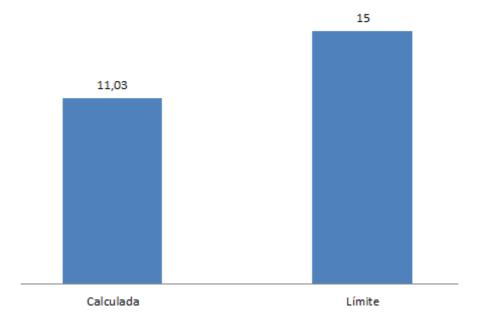


Figura 5.2 – Comparación entre el valor calculado y el límite de la demanda energética de refrigeración.

5.3.3 Balance energético de la vivienda.

En la siguiente gráfica se muestra el balance energético mensual de la vivienda. Para determinar el balance energético se consideran los siguientes parámetros:

- Energía perdida o ganada por transmisión térmica al exterior a través de los elementos pesados (Q_{tr, op}).
- ➤ Energía perdida o ganada por transmisión térmica al exterior a través de los elementos ligeros (Q_{tr, w}).
- Energía intercambiada por ventilación (Q_{ve}).
- Ganancia interna sensible neta (Q_{int.s}).
- Ganancia solar neta (Q_{sol}).
- Calor cedido o almacenado en la masa térmica del edificio (Q_{edif}).
- ➤ Aporte necesario de calefacción (Q_H).
- > Aporte necesario de refrigeración (Q_C).

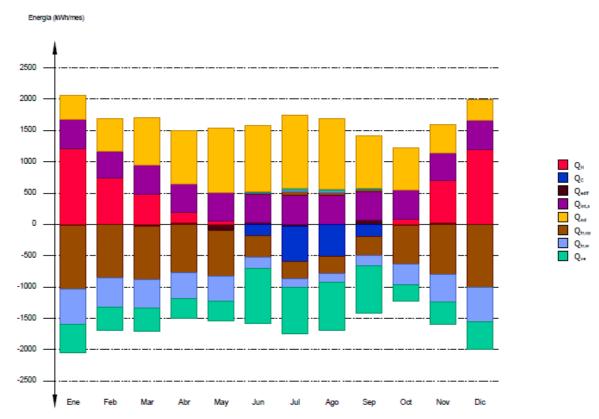


Figura 5.3 – Gráfica del balance energético mensual de la vivienda.

En la siguiente gráfica se muestra la demanda energética de calefacción y de refrigeración. Esta es la demanda energética que debe ser cubierta por los sistemas de climatización.

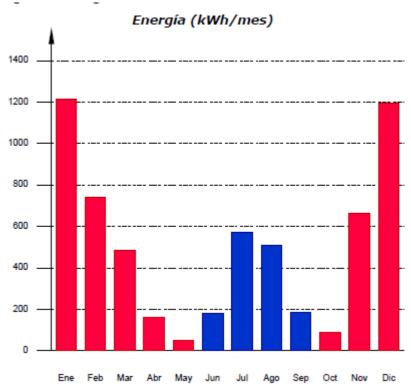


Figura 5.4 – Gráfica de la demanda energética mensual de calefacción y de refrigeración.

5.3.4 Transmisión de calor a través de los elementos constructivos.

Conocer los elementos constructivos en los que se producen mayores pérdidas energéticas, ayuda a determinar hacia qué elementos deben ir orientadas las mejoras energéticas. Por ello, se estudia detalladamente la cantidad de energía que se pierde hacia el exterior de la vivienda según el elemento constructivo.

El calor se transmite hacia el exterior de la vivienda a través de:

- Los elementos constructivos pesados de la envolvente térmica.
- Los elementos constructivos ligeros de la envolvente térmica.
- Los puentes térmicos incluidos en la envolvente térmica.

En la siguiente tabla se define la cantidad de calor transmitida hacia el exterior en función de los elementos anteriormente citados de la envolvente térmica.

	Transmisión de calor hacia el exterior		
Elemento de la envolvente térmica	(kWh/año)	(kWh/m²año)	
Elementos constructivos pesados	-5662.8	-43.1	
Elementos constructivos ligeros	-4158.5	-31.9	
Puentes térmicos	-2084.1	-16	
Total	-11905.4	-91	

Tabla 5.1 – Transmisión de calor a través de los distintos elementos de la envolvente térmica.

En la siguiente gráfica se refleja los porcentajes de calor transmitido hacia el exterior en función de cada elemento de la envolvente térmica:

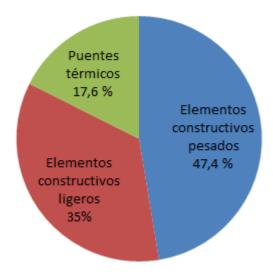


Figura 5.5 – Gráfica de transmisión de calor a través de los elementos de la envolvente.

6 Demanda energética de agua caliente sanitaria.

Es necesario conocer la demanda energética necesaria para la producción de agua caliente sanitaria, así como la correspondiente demanda térmica. En los siguientes apartados se desarrolla el procedimiento seguido para determinar de dichos parámetros

6.1 Demanda de ACS de la vivienda.

El cálculo de la demanda de agua caliente sanitaria (ACS) de la vivienda se realiza de acuerdo con lo establecido en la Sección HE 4 del DB HE del CTE.

Según la tabla 4.1 de la Sección HE 4 del DB HE del CTE, para una temperatura de distribución de ACS de 60°C y para vivienda residencial, se obtiene una demanda igual a 28 l/día por persona.

Teniendo en cuenta que la vivienda cuenta con tres dormitorios, le corresponde un total de 4 personas.

Por tanto, la demanda total en la vivienda de ACS es igual a 112 l/día.

En la siguiente tabla se resume el cálculo de la demanda de ACS:

Tabla 6.1 – Cálculo de la demanda de agua caliente sanitaria de la vivienda.

Uso	Demanda (I/día·persona)	Número dormitorios	Personas	Demanda total ACS (I/día)
Residencial privado	28	3	4	112

6.2 Demanda energética de ACS.

Para la calcular la energía que será necesaria aportar para calentar el caudal de ACS calculado anteriormente, es necesario conocer la temperatura del agua de la red. La temperatura del agua de la red varía en función de la localización de la vivienda y, por tanto, de la temperatura exterior.

En la siguiente tabla se muestran los valores de la temperatura del agua de la red según los meses para la localidad de Zamora:

Tabla 6.2 - Temperatura mensual del agua de la red en Zamora.

Mes	Temperatura (°C)
Enero	6
Febrero	8
Marzo	9
Abril	10
Mayo	13
Junio	16
Julio	18
Agosto	18
Septiembre	16
Octubre	12
Noviembre	9
Diciembre	7
Media anual	11.8

La demanda de energía para ACS se calcula mediante la siguiente expresión:

$$Q = m \cdot C_p \cdot \Delta T$$

Siendo:

M = masa de agua a calentar (kg).

C_p = calor específico del agua (1 kcal/kg°C).

 ΔT = salto térmico, es decir, la diferencia entre la temperatura de distribución (60°C) y la temperatura del agua de la red.

En la siguiente tabla se recogen los valores de la demanda energética de ACS mensual.

Tabla 6.3 – Demanda energética mensual de ACS.

Mes	Demanda energética (Wh/día)
Enero	7015.68
Febrero	6755.84
Marzo	6625.92
Abril	6496
Mayo	6106.24
Junio	5716.48
Julio	5456.64
Agosto	5456.64
Septiembre	5716.48
Octubre	6236.16
Noviembre	6625.92
Diciembre	6885.76

Como se puede observar en la gráfica anterior, la demanda energética es mayor en invierno, debido a que la temperatura del agua de la red es menor.

A partir de las demandas energéticas medias mensuales, se obtiene una demanda energética total para producción de ACS igual a 2252.8 kWh/año.

El cálculo de la carga térmica de consumo de ACS se lleva a cabo teniendo en cuenta las condiciones más desfavorables para garantizar el suministro de ACS. Por tanto, la potencia térmica se dimensiona para el mes de enero, al que le corresponde una demanda energética de ACS de 7015.68 Wh.

Para calcular la potencia térmica necesaria para cubrir la demanda de ACS es necesario determinar el tiempo que tarda en calentarse la masa de agua. En este caso se considera que el tiempo de calentamiento del volumen de ACS es igual a 2 horas.

Es decir, la potencia necesaria de la instalación utilizada para cubrir la demandade ACS debe ser igual o mayor de 3.51 kW.

6.3 Contribución solar mínima de agua caliente sanitaria.

El cálculo de la contribución solar mínima de agua caliente sanitaria (ACS) se realiza según lo establecido en la Sección HE 4 del DB HE del CTE.

El porcentaje mínimo producción de ACS que debe ser cubierto por energía solar térmica se estable en función de 2 parámetros:

- La zona climática correspondiente a la ubicación de la vivienda.
- La demanda total de ACS de la vivienda (I/d).

Por tanto, y de acuerdo con lo establecido en la tabla 2.1 de la Sección HE 4 del DB HE del CTE, se obtiene que la siguiente contribución solar mínima de ACS.

Tabla 6.4 – Cálculo de la contribución solar mínima de agua caliente sanitaria.

Zona climática	Demanda total de ACS (I/d)	Contribución solar mínima de ACS
IV	112	50 %

En conclusión, se debe cubrir un mínimo de 56 l/d de la demanda total de ACS mediante energía solar térmica.

7 Demanda térmica.

La demanda térmica necesaria para cubrir la demanda energética del edificio se debe calcular con el fin de determinar de forma precisa la potencia térmica de la instalación térmica de climatización.

La demanda térmica del edificio se debe a una serie de pérdidas y de ganancias de calor. El calor perdido o ganado puede ser de dos tipos:

- > Calor sensible: afecta a la temperatura seca del ambiente interior.
- > Calor latente: afecta al contenido de humedad en el aire del ambiente interior.

El balance de las pérdidas y ganancias de calor se realiza mediante el estudio de las cargas térmicas.

Las cargas térmicas se clasifican en función de si afectan a la demanda térmica de calefacción o de refrigeración. En el estudio de cargas térmicas sólo se tienen en cuenta aquellas que generan pérdidas de calor.

Las cargas térmicas de calefacción se deben a:

- Cargas por transmisión a través de la envolvente térmica (pueden producirse a través de los cerramientos opacos o de los cerramientos transparentes).
- Cargas por ventilación.

Las cargas térmicas de refrigeración se deben a:

- Cargas por transmisión a través de la envolvente térmica (pueden producirse a través de los cerramientos opacos o de los cerramientos transparentes).
- Cargas por ocupación.
- > Cargas por iluminación.
- Cargas por ventilación.
- Cargas por equipos.

7.1 Demanda térmica de calefacción.

La vivienda se diseña en base a unas condiciones de ambiente interior y exterior determinadas. Las condiciones del ambiente interior están limitadas por el RITE para verano y para invierno. Las condiciones del ambiente exterior dependen del emplazamiento del edificio.

En la siguiente tabla se definen las condiciones de ambiente interior y exterior de la vivienda en invierno:

	Condiciones ambiente en invierno			
	Interior Exterior			
Temperatura (°C)	21	-3.9		
Humedad relativa (%)	50	90		

Tabla 7.1 – Condiciones de ambiente interior y exterior en invierno.

Mediante el uso del software CYPECAD MEP se obtienen las cargas térmicas debidas a la transmisión de calor a través de la envolvente térmica y las debidas a la ventilación. A

partir de estas cargas se obtiene la demanda térmica máxima simultánea, que corresponde a la potencia que ha de tener la instalación térmica de calefacción.

En la siguiente tabla se muestran los resultados obtenidos:

Tabla 7.2 – Demanda térmica máxima simultánea de refrigeración por recintos.

Recinto	Demanda térmica máxima simultánea (W)
Salón	2229.36
Dormitorio 1	747.52
Baño 1	462.14
Cocina	644.39
Distribuidor 1	46.4
Recibidor	607.89
Zona de lavado	515.39
Dormitorio 2	763.32
Dormitorio 3	728.60
Baño 2	663.50
Distribuidor 2	192.55
Total vivienda	7601.1

Por tanto, la instalación térmica de calefacción deberá tener una potencia térmica de, al menos, 7.6 kW.

7.2 Demanda térmica de refrigeración.

Las condiciones de ambiente internas y externas son diferentes en verano. Por tanto, en la siguiente tabla se definen los valores de las condiciones de ambiente interior y exterior de la vivienda en verano.

Tabla 7.3 – Condiciones de ambiente interior y exterior en verano.

	Condiciones ambiente en verano					
	Interior Exterior					
Temperatura seca (°C)	24	29.6				
Humedad relativa (%)	50	-				
Temperatura húmeda (°C)	-	19.2				

Mediante el uso del software CYPECAD MEP se obtienen las cargas térmicas debidas a la transmisión de calor a través de la envolvente térmica, las debidas a la ocupación, a la iluminación, a los equipos y las debidas a la ventilación.

Una vez determinadas estas cargas térmicas, se obtiene la demanda térmica máxima simultánea. Esta demanda es la que determina la potencia térmica mínima de la instalación de refrigeración.

En la siguiente tabla se muestran los resultados obtenidos:

Tabla 7.4 – Demanda térmica máxima simultánea de refrigeración por recintos.

Recinto	Demanda térmica máxima simultánea (W)
Salón	1283.74
Dormitorio 1	1338.65
Baño 1	529.58
Cocina	742.47
Distribuidor 1	6.97
Recibidor	100.37
Zona de lavado	538.82
Dormitorio 2	1068.36
Dormitorio 3	1063.42
Baño 2	651.04
Distribuidor 2	58.76
Total vivienda	7382.2

Por tanto, la instalación térmica de refrigeración deberá tener una potencia térmica de, al menos, 7.4 kW.

8 Equipos instalados.

A continuación se describen los sistemas utilizados para cubrir las demandas de climatización y de producción de agua caliente sanitaria de la vivienda.

8.1 Caldera de condensación de gas natural.

La demanda energética de calefacción de la vivienda y la fracción de la demanda de ACS no cubierta por energía solar térmica, están cubiertas mediante el uso de una caladera de condensación de gas natural.

La caldera proyectada es de la casa Ferroli, modelo BLUEHELIX PRO 25. En la siguiente tabla se definen las características principales de la caldera.

Caldera mixta de condensación BLUEHELIX PRO 25 Ferroli				
Potencia nominal (kW) 25				
Potencia térmica útil (kW)	24.5			
Rendimiento (%)	98			
Rendimiento a carga parcial (%)	108.8			
Presión máxima-mínima de trabajo	3 bar – 0.8 bar			
Producción ACS (I/min)	15.5			

Tabla 8.1 – Características principales de la caldera a condensación de gas natural.

Dado que el combustible de la caldera es gas natural, es importante conocer sus características principales. Éstas se muestran en la siguiente tabla:

Denominación	Gas natural
Densidad relativa respecto al aire	0.6
Presión máxima de suministro (kg/cm²)	4
Presión mínima de suministro (kg/cm²)	1
PCI (kWh/m³)	8.18
PCS (kWh/m³)	9.03

Tabla 8.2 – Características principales del gas natural.

También se definen las potencias de las unidades terminales de la instalación de calefacción. En la siguiente tabla se analiza la potencia térmica de los radiadores para cubrir la demanda térmica de calefacción de cada recinto.

Los radiadores proyectados son de la casa Ferroli, modelo EUROPA 700 C. Cada radiador tiene una potencia térmica de 174.3 W.

Recinto	Número de radiadores	Potencia total radiadores (W)
Salón	9	1568.7
Dormitorio 1	5	871.5
Baño 1	3	522.9
Cocina	4	697.2
Recibidor	6	1045.8
Zona de lavado	3	522.9
Dormitorio 2	5	871.5
Dormitorio 3	5	871.5
Baño 2	4	697.2
Total vivienda	44	7669.2

Tabla 8.3 – Potencia térmica de los radiadores por recintos.

8.2 Bomba de calor reversible.

La demanda de refrigeración de la vivienda está cubierta mediante un sistema de climatización unizona por bombas de calor.

La bomba de calor proyectada es de la casa MITSUBISHI, modelo MSZ-HJ25VA.

Se instalan 4 bombas de calor para cubrir la demanda térmica de refrigeración de la vivienda. Se instalarán en el salón y en los tres dormitorios. Así, en estos recintos la demanda energética de refrigeración se cubre de forma directa, y en el resto de recintos por convección del aire.

En la siguiente tabla se describen las principales características de la bomba de calor reversible:

Bomba de calor reversible MSZ-HJ25VA, MITSUBISHI					
Unidades 4					
Tipo de energía	Electricidad				
Potencia nominal (kW)	2.5				
Consumo nominal (kW)	0.73				
EER	3.42				

Tabla 8.4 – Características principales de la bomba de calor reversible.

8.3 Instalación solar térmica.

La instalación solar térmica cubre un 50 % de la demanda de producción de ACS.

Los captadores termosolares son de la casa Saunier Duval, modelo Helioset.

Las características principales de los captadores solares térmicos se definen a continuación:

Número de captadores: 2

> Superficie útil por captador: 2.35 m².

> Demanda de ACS cubierta: 50 %

Factor óptico: 0.75.

➤ Pérdidas térmicas: 3.327 W/m²K.

9 Consumo energético.

El cálculo del consumo energético de la vivienda se realiza utilizando la Herramienta Unificada Lider Calener.

Con la ayuda de este programa se obtiene el valor del consumo de energía primaria no renovable.

Además, los parámetros de la vivienda relativos a su consumo energético se calculan de acuerdo con lo establecido en la Sección HE 0 del DB HE del CTE.

9.1 Consumo energético final.

Tras modelizar la vivienda en la Herramienta Unificada Lider Calener, se obtienen los siguientes valores de consumo de energía final de la vivienda.

La energía final es la energía transformada, trasportada y apta para su uso directo por las instalaciones definidas.

En la siguiente tabla se definen los valores del consumo de energía final de la vivienda por instalaciones.

Instalación	Consumo energía final (kWh/m²año)	Consumo energía final (kWh/año)
Calefacción	36	5030.9
Refrigeración	5.2	720.1
ACS	10.1	1410.9
Global	51.3	7161.9

Tabla 9.1 – Consumos de energía final en la vivienda.

9.2 Consumo de energía primaria no renovable.

A continuación se determina el valor límite de consumo de energía primaria no renovable, de acuerdo con lo establecido en el CTE y el valor obtenido de consumo de energía primaria no renovable en la vivienda.

9.2.1 Cuantificación de la exigencia.

En la Sección HE 0 del DB HE del CTE se establece el valor límite del consumo energético de energía primaria no renovable para los servicios de calefacción, refrigeración y ACS.

9.2.1.1 Limitación del consumo energético de energía primaria no renovable.

El consumo energético de energía primaria no renovable de la vivienda está limitado por la siguiente expresión:

$$C_{ep, lim} = C_{ep, base} + F_{ep, sup} / S$$

Siendo:

- C_{ep, lim}: el valor límite del consumo energético de energía primaria no renovable para los servicios de calefacción, refrigeración y ACS. Se determina en función de la superficie útil de los espacios habitables. Se expresa en kWh/m²año.
- C_{ep, base}: el valor base del consumo energético de energía primaria no renovable. Se determina en función de la zona climática de invierno correspondiente a la ubicación de la vivienda. Se expresa en kWh/m²año.
- F_{ep, sup}: el factor corrector por superficie del consumo energético de energía primaria no renovable. Se determina en función de la zona climática de invierno correspondiente a la ubicación de la vivienda.
- S: la superficie útil de los espacios habitables de la vivienda, expresada en m².

Aplicando la ecuación anterior, se obtiene que el valor límite del consumo energético de energía primaria no renovable de la vivienda es igual a 78.45 kWh/m²año.

9.2.2 Consumo energético de energía primaria no renovable de la vivienda.

Mediante el cálculo con la Herramienta Unificada Lider Calener, se obtiene un valor de consumo energético de energía primaria no renovable igual a 64.95 kWh/m²año.

Por tanto, el valor calculado del consumo energético de energía primaria no renovable es inferior al valor límite, determinado en el apartado anterior:

$$64.95 \text{ kWh/m}^2 \text{año} < 78.45 \text{ kWh/m}^2 \text{año}$$

En la siguiente gráfica se muestra la comparación entre el valor límite y el calculado del consumo energético de energía primaria no renovable.

Consumo de energía primaria no renovable (kWh/m²año)



Figura 9.1 – Comparación entre el valor límite y el calculado del consumo energético de energía primaria no renovable.

10 Calificación energética de la vivienda.

La calificación energética de la vivienda se obtiene mediante la Herramienta Unificada Lider Calener.

La calificación energética se determina en función de dos parámetros:

- ➤ La cantidad de emisiones globales, expresada en kgCO₂/m²año.
- El consumo de energía primaria no renovable, expresada en kWh/m²año.

A continuación se muestra la certificación de la calificación energética de la vivienda:

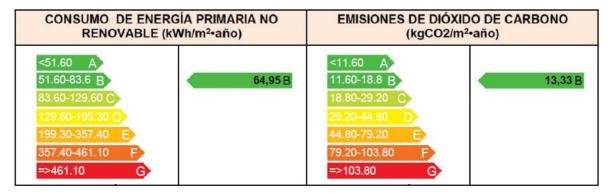


Figura 10.1 – Certificación energética de la vivienda.

10.1 Calificación energética de la vivienda en emisiones.

La calificación se expresa en términos de dióxido de carbono emitido a la atmósfera como consecuencia del consumo energético de la vivienda.

En la siguiente imagen se muestra la calificación de la vivienda en emisiones:

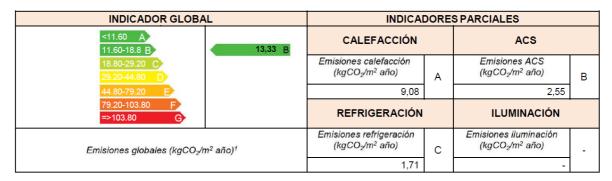


Figura 10.2 – Calificación energética de la vivienda en emisiones.

A partir de esta gráfica se concluye que el 15.18 % de las emisiones de CO_2 se deben al consumo eléctrico de refrigeración y el 84.82 % restante, se debe al uso energético de combustibles fósiles.

10.2 Calificación energética de la vivienda en consumo de energía primaria no renovable.

La calificación se expresa en términos de energía primaria no renovable que no ha sufrido ningún proceso de conversión o transformación.

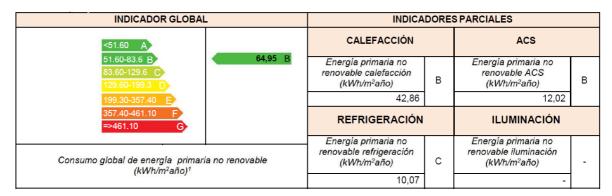


Figura 10.3– Calificación energética de la vivienda en consumo de energía primaria no renovable.

A partir de esta gráfica se concluye que del total del consumo energético de energía primaria no renovable, un 62.53 % se debe al sistema utilizado para satisfacer la demanda de calefacción, un 19.19 % se debe al sistema de apoyo para producción de ACS y un 18.28 % se debe al sistema utilizado para satisfacer la demanda de refrigeración.

11 Mejoras orientadas a reducir la demanda energética de la vivienda.

El objetivo de estas mejoras es reducir la demanda energética de la vivienda a valores mínimos.

Esto se consigue mediante:

- La implementación de sistemas solares pasivos, aprovechando al máximo la energía solar para aumentar las ganancias y reducir las pérdidas de calor.
- La implementación de sistemas activos de elevados rendimientos que aprovechen la energía calorífica.

Estas mejoras pueden estar basadas en el principio activo o en el principio pasivo.

Las mejoras basadas en el principio pasivo son aquellas que, por sus características constructivas, son capaces de aprovechar los recursos naturales del entorno, de tal forma que la demanda energética se reduce drásticamente. Este tipo de mejoras no se apoyan en sistemas electromecánicos, simplemente alcanzan un mayor aprovechamiento de la energía solar por sus características estructurales.

Las mejoras basadas en el principio activo son aquellas que, por su alta eficiencia y por su capacidad de aprovechamiento energético, suponen una reducción importante en la demanda energética de la vivienda. Sin embargo, este tipo de mejoras se apoyan en el uso de elementos electromecánicos.

En los siguientes apartados se describen las propuestas estudiadas para lograr este objetivo.

11.1 Mejoras pasivas.

A continuación se estudian diferentes mejoras pasivas o bioclimáticas. El objetivo de estas mejoras es aprovechar de forma eficiente la energía solar mediante modificaciones estructurales, sin recurrir al uso de sistemas electromecánicos.

11.1.1 Mejoras en la envolvente térmica.

Las mejoras más habituales en la envolvente térmica, basadas en mejorar los componentes de los cerramientos opacos, utilizar vidrios de elevada eficiencia energética y protecciones solares, ayudan a reducir de forma considerable la demanda energética de climatización de la vivienda.

Por este motivo, se estudiarán como una mejora conjunta y los posteriores análisis de mejoras se realizarán en base a las soluciones alcanzadas en este apartado.

11.1.1.1 Cerramientos opacos.

Mejorar los cerramientos opacos significa hacer uso de buenos aislantes térmicos. Es decir, de materiales caracterizados por una conductividad térmica muy reducida.

Además de buenos aislamientos, éstos deben tener un espesor importante, a pesar de que esto contradiga a la arquitectura tradicional en España. En los países punteros en eficiencia energética utilizan aislamientos con unos espesores que duplican o triplican los espesores típicos utilizados en nuestro país.

En conclusión, el objetivo de la implantación de este tipo de mejoras está orientado a mantener el calor en el interior de la vivienda modificando parámetros en su edificación.

Para alcanzar este objetivo, el aislamiento debe ser continuo en toda la envolvente. Si se pierde la continuidad del aislamiento, aparecerán puentes térmicos, lo que dará lugar a una merma significativa en el ahorro de la demanda energética de climatización.

A continuación se detallan los cambios estudiados para mejorar la envolvente térmica. Para ello, se definen los nuevos elementos constructivos de cada cerramiento.

Además, se comparan las transmitancias térmicas de los nuevos cerramientos con las iniciales y la correspondiente reducción de la demanda energética.

1. Suelo en contacto con el terreno:

Para mejorar la transmitancia térmica del suelo en contacto con el terreno se ha optado por utilizar más espesor de aislamiento, sin modificar el tipo de aislamiento.

Tabla 11.1 - Mejora de los componentes del suelo en contacto con el terreno.

Material	е	λ	μ	ρ

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg⋅K)
1-Madera frondosa de peso medio 565 <d<750< th=""><th>2</th><th>0.180</th><th>50</th><th>660</th><th>1300</th></d<750<>	2	0.180	50	660	1300
2-Poliestireno [PS]	1	0.160	100 00	1050	1300
3-Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>8</th><th>0.550</th><th>10</th><th>1250</th><th>1000</th></d<1250<>	8	0.550	10	1250	1000
4-Forjado unidireccional 10+5 cm (Bovedilla de hormigón)	15	1.32	120	2000	1000
5-XPS expandido con CO ₂	18	0.034	100	37.5	1000
ESPESOR TOTAL	44				

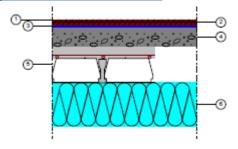


Figura 11.1 - Detalle constructivo de los componentes del suelo en contacto con el terreno tras la mejora.

2. Fachada:

Para disminuir la transmitancia térmica de la fachada se propone sustituir el aislamiento por uno de menor conductividad térmica y con mayor espesor.

Tabla 11.2 – Mejora de los componentes de la fachada.

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg·K)
1-Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>2</th><th>0.550</th><th>10</th><th>1250</th><th>1000</th></d<1250<>	2	0.550	10	1250	1000
2-Tabicón de LH doble Gran Formato	12	0.212	10	630	1000
3-Cámara de aire sin ventilar	3	Resistenc	ia térmi	ca (m²·K/V	V) = 0.18
4-PUR plancha con HFC o pentano	15	0.025	1·10 ⁶	45	1000
5-Tabicón de LH doble Gran Formato	8	0.212	10	630	1000
6-Enlucido de yeso 1000 <d<1300< th=""><th>1.5</th><th>0.570</th><th>6</th><th>1150</th><th>1000</th></d<1300<>	1.5	0.570	6	1150	1000
ESPESOR TOTAL	41.5				-

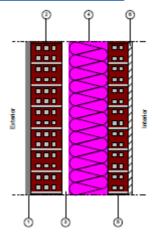


Figura 11.2 – Detalle constructivo de los componentes de la fachada tras la mejora.

3. Cubierta tipo 1:

Para disminuir la transmitancia térmica de esta cubierta se ha sustituido el zinc por tejas cerámicas, ya que presentan una menor conductividad térmica y una menor absortividad. También se sustituye el material aislante por uno de menor conductividad térmica y se aumenta su espesor.

Tabla 11.3	s – iviejora	ae ios	compor	nentes	de la	cubierta	tipo	1.

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg·K)
1-Teja de arcilla cocida	0.5	1	30	2000	800
2-Tableros de fibras incluyendo MDF 350 <d<550< th=""><th>1.5</th><th>0.140</th><th>12</th><th>450</th><th>1700</th></d<550<>	1.5	0.140	12	450	1700
3- XPS Expandido con HFC	16	0.025	100	37.5	1000
4-Losa alveolar con capa de compresión	20	1.404	80	1810	1000
5-Enlucido de yeso	1.5	0.570	6	1150	1000
ESPESOR TOTAL	39.5				

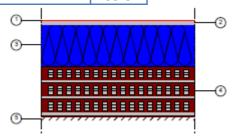


Figura 11.3 – Detalle constructivo de los componentes de la cubierta tipo 1 tras la mejora.

4. Cubierta tipo 2:

La transmitancia térmica de esta cubierta se reduce sustituyendo la pizarra por teja cerámica, por las mismas razones que en la cubierta tipo 1. Además, se sustituye el aislamiento por uno de menor conductividad térmica y con un espesor mayor.

Material	e (cm)	λ (W/m·K)	μ	ρ (kg/m³)	c _p (J/kg·K)
1-Teja de arcilla cocida	2	1	30	2000	800
2-Tableros de fibras incluyendo MDF 350 <d<550< th=""><th>1.2</th><th>0.140</th><th>12</th><th>450</th><th>1700</th></d<550<>	1.2	0.140	12	450	1700
3- XPS Expandido con HFC	18	0.025	100	37.5	1000
2-Cloruro de polivinilo [PVC]	0.3	0.170	5·10 ⁵	1390	900
5-Forjado unidireccional 15+5 cm (Bovedilla de hormigón)	20	1.32	120	2000	1000
6- Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>2</th><th>0.550</th><th>10</th><th>1250</th><th>1000</th></d<1250<>	2	0.550	10	1250	1000
ESPESOR TOTAL	43.5			,	

Tabla 11.4 – Mejora de los componentes de la cubierta tipo 2.

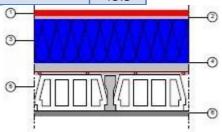


Figura 11.4 – Detalle constructivo de los componentes de la cubierta tipo 2 tras la mejora.

Una vez definidos los nuevos componentes de los cerramientos opacos, se comparan las transmitancias térmicas de dichos cerramientos antes y después de las soluciones adoptadas.

Tabla 11.5 – Comparación de las transmitancias térmicas de los cerramientos opacos antes y después de mejorar los aislamientos.

Tipo cerramiento	Transmitancia térmica inicial (W/m²K)	Transmitancia térmica tras la mejora (W/m²K)
Suelo en contacto con el terreno	0.18	0.12
Fachada	0.23	0.14
Cubierta tipo 1	0.36	0.15
Cubierta tipo 2	0.25	0.11

11.1.1.2 Huecos.

Tras disminuir la transmitancia térmica de los cerramientos opacos, se consigue disminuir las pérdidas energéticas, pero también supone una reducción del calor ganado a través de los mismos. Por lo que estas ganancias deben buscarse a través de los acristalamientos.

El objetivo de mejorar los huecos es aprovechar toda la energía solar posible mediante calentamiento solar directo, reduciendo así la demanda energética de calefacción.

Sin embargo, durante las épocas cálidas este aporte de calor a través de los vidrios es ineficiente desde un punto de vista térmico, ya que supone una mayor demanda energética de refrigeración. Por lo que es necesario estudiar posibles soluciones constructivas para evitar este aporte excesivo de calor.

De esta forma, las mejoras de los acristalamientos deberán estudiarse en función de las condiciones climatológicas. Se deben utilizar huecos que permitan una gran ganancia de calor en las épocas frías y, en las épocas cálidas, se deben buscar sombreamientos eficientes para reducir este aporte de calor.

Mejoras orientadas a reducir la demanda de calefacción:

La transmitancia térmica de los huecos está compuesta por la transmitancia térmica del vidrio y del marco. Disminuir la transmitancia global de los huecos supone reducir las pérdidas energéticas a través de los mismos, pero también supone una reducción de la ganancia de calor.

Por lo que será necesario combinar una serie de soluciones para alcanzar el comportamiento térmico óptimo de los acristalamientos. Estas soluciones se basan utilizar varias capas de vidrio, introducir gases entre las capas o implementar ventanas con vacío y utilizar recubrimientos de baja emisividad.

Con este objetivo, se han sustituido los vidrios y los marcos iniciales por unos con mejores prestaciones térmicas.

Se opta por el uso de carpinterías de la casa Román Clavero, modelo IV-68 HA TERMOSCUDO. Estas carpinterías están constituidas por:

- Marcos con perfiles de madera y de aluminio, entre los que se inserta un añadido de Poliestireno XPS para reducir la transmitancia térmica de forma significativa.
- Doble vidrio bajo emisivo con un factor solar de 0.5.

En la siguiente tabla se comparan las características térmicas principales de los huecos antiguos y nuevos.

Tabla 11.6 – Comparación de las características térmicas entre los huecos iniciales y los nuevos.

Características térmicas	Transmitancia térmica del vidrio, U _g (W/m ² K)	Transmitancia térmica del marco, U _f (W/m ² K)	Transmitancia térmica global, U _w (W/m²K)	Factor solar
Ventanas iniciales	1.6	2.7	1.71	0.62
Ventanas nuevas	0.5	0.82	0.7	0.5
Puerta exterior inicial	-	2.7	2.7	-
Puerta exterior nueva	-	0.82	0.82	-

Además, se estudia la posibilidad de introducir más huecos en la fachada Sur de la vivienda, ya que a que es la fachada que recibe una mayor cantidad de energía solar en invierno.

Estos huecos serán dos ventanas de tipo corredera, constituidas por el vidrio y marco analizados anteriormente, es decir, caracterizados por una transmitancia térmica de 0.7 W/m²K y por un factor solar de 0.5.

Las nuevas ventanas tendrán una superficie de 0.9x2.5 m², siendo la superficie del marco un 10 % de la superficie total de la ventana.

La incorporación de estos huecos permitirá, además de reducir la demanda energética de calefacción, la posibilidad de añadir una forma de acceso para construir una galería en la fachada Sur.

En la siguiente imagen se pueden observar los huecos introducidos:

Figura 11.5 – Huecos añadidos en la fachada Sur.

Mejoras orientadas a reducir la demanda de refrigeración:

En épocas cálidas, un aporte excesivo de calor a través de los huecos supone un aumento de la demanda de refrigeración y una minoración del confort térmico en el interior de la vivienda.

Por ello, deben estudiarse soluciones bioclimáticas para evitar el uso de sistemas activos para solventar dichos problemas.

Las mejoras en la edificación más eficientes para evitar el exceso de calor por radiación se basan en la utilización de protecciones exteriores en los huecos. Además, algunas de las protecciones exteriores también protegen contra los deslumbramientos debidos a excesos de luz natural.

Para realizar un estudio sobre las protecciones idóneas a colocar, primero se debe analizar en qué orientaciones el calentamiento a través de los huecos será más severo. Las orientaciones más críticas, de forma general, son la SE, la S y la NO, ya que son las que reciben radiación solar durante más horas a lo largo del día.

Las protecciones más eficientes son las móviles, ya que se ajustan a la radiación incidente en cada momento. Además, las protecciones móviles y de accionamiento automático dan lugar a un mayor ahorro energético. El inconveniente que presentan estas protecciones es que suelen ser menos económicas que las fijas y suelen requerir un mantenimiento mayor. Con este objetivo, se propone la instalación de persianas móviles automáticas.

Mediante la instalación de persianas automáticas exteriores se reduce la demanda de refrigeración hasta 1.4 kWh/m²año, lo que equivale a un 87.3 % de reducción. Las persianas utilizadas para el cálculo son de la casa Somfy.

11.1.1.3 Balance energético.

Mediante el análisis anterior sobre las características térmicas de los cerramientos opacos, de los vidrios y de las protecciones solares, se obtiene una demanda energética de climatización considerablemente inferior a la calculada inicialmente. Alcanzando una reducción importante en la demanda energética de la vivienda.

Estos resultados se calculan mediante el uso del software CYPECAD MEP.

En la siguiente tabla se resumen los valores de las demandas energéticas de calefacción y de refrigeración, para la situación inicial y tras la aplicación de las mejoras en la envolvente térmica.

Tabla 11.7 – Valores de la demanda energética de la vivienda antes y después de las mejoras principales en la envolvente térmica.

	Demanda energética de calefacción (kWh/m²año)	Demanda energética de refrigeración (kWh/m²año)		
Inicial	33.19	11.03		
Mejora envolvente térmica	13.51	1.08		

De esta forma, se ha reducido en 19.68 kWh/m²año la demanda energética de calefacción, es decir, se alcanza una reducción del 59.29%.

Por otra parte, la demanda energética de refrigeración se ha reducido en 9.95 kWh/m²año, que equivale a una reducción del 90.21 %.

Para analizar los resultados de una forma más visual, a continuación se representan las demandas obtenidas y las reducciones correspondientes en una gráfica.

Demanda energética (kWh/m²año)

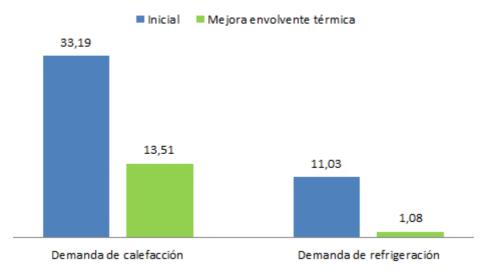


Figura 11.6 – Gráfica de las reducciones alcanzadas en la demanda energética tras la implementación de las mejoras en la envolvente térmica.

En consecuencia con los resultados obtenidos y, puesto que muchas mejoras se complementan con las calculadas en este apartado, se decide que éstas se van a implementar en la vivienda. Por tanto, los análisis de futuras mejoras, se realizarán en base a los valores de las demandas energéticas alcanzadas mediante la aplicación de estas mejoras.

11.1.1.4 Coste de ejecución.

A continuación se describe el coste que conlleva llevar a cabo estas mejoras. El cálculo del coste se realiza con el software Arquímedes.

El sobrecoste debido a cambios en los cerramientos opacos se debe a la sustitución del aislamiento y a la sustitución de los componentes de las cubiertas. Sólo se tendrán en cuenta los gastos asociados a cambios en los elementos constituyentes de los cerramientos, ya que los elementos no modificados no implican un sobrecoste sobre la vivienda inicial.

El coste debido a los cambios en los huecos se debe a la sustitución de todas las carpinterías y vidrios y a la construcción de dos huecos nuevos.

Los costes que se indican incluyen el coste del material y el coste asociado a la mano de obra para la ejecución de la mejora propuesta.

Página 59

En la siguiente tabla se analizan los costes de ejecución asociados a cada cambio estudiado en la envolvente térmica de la vivienda.

Tabla 11.8 – Coste de ejecución de las mejoras propuestas en la envolvente térmica.

Cerramientos opacos	Mejora propuesta	Coste (€)
Fachadas	Sustitución del aislamiento	5393.27
Suelo en contacto con el terreno	Incremento del espesor del asilamiento	3874.35
Cubierta tipo 1	Sustitución del revestimiento de la cubierta	199.9
	Sustitución del aislamiento	247.55
Cubierta tipo 2	Sustitución del revestimiento de la cubierta	1839.26
	Sustitución del aislamiento	2565.77
Coste total cerr	amientos opacos	14120.1
Huecos	luecos Mejora propuesta	
Marcos	Sustitución por marcos de mayor eficiencia energética	1667.1
Vidrios	Sustitución por vidrios de mayor eficiencia energética	5535.66
Protecciones solares	Implementación de persianas automáticas	1769.62
Coste total huecos		8972.38
Coste total envolvente térmica		23092.48

11.1.2 Muro trombe.

Un muro trombe es un elemento constructivo integrado en la vivienda constituido por un cerramiento vertical opaco en su cara interior de elevada masa (muro de inercia) y un cerramiento acristalado en su cara exterior, separados por una cámara de aire. El objetivo principal del muro trombe es captar la energía solar de forma pasiva.

El muro trombe debe orientarse hacia donde la ganancia solar en invierno sea mayor, es decir, debe estar orientado hacia el Sur.

11.1.2.1 Funcionamiento.

El aporte de calor a través del muro trombe se basa en el efecto invernadero:

La radiación solar de longitud de onda corta atraviesa el vidrio y calienta el muro. El muro vuelve a emitir esta energía, pero con una longitud de onda larga (emite en infrarrojo), para la cual el vidrio es opaco. Por tanto, el aire almacenado en la cámara de aire se calienta alcanzando elevadas temperaturas.

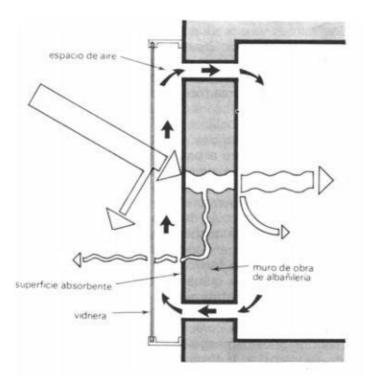


Figura 11.7 – Esquema del funcionamiento de un muro trombe.

Para incrementar la transmisión de calor hacia el interior de la vivienda, se incorporan unas aberturas practicables en la parte superior e inferior del muro de inercia. Estas aberturas disponen de ventiladores para aumentar la cantidad de caudal de aire intercambiando, incrementando así la eficiencia del sistema. Además, también se añaden unas aberturas en la parte superior e inferior del acristalamiento para liberar excesos de calor en verano.

En función de la temperatura exterior, el sistema funciona de la siguiente manera:

- En verano durante el día, las aberturas del muro acumulador permanecen cerradas y las de la superficie acristalada abiertas. De esta forma, el aire más frío entra por la abertura inferior, se calienta en la cámara de aire y sale hacia el exterior a través de la abertura superior.
- En verano durante la noche, las aberturas del muro acumulador permanecen abiertas y las de la superficie acristalada cerradas. Así, el aire caliente acumulado en el interior de la vivienda sale hacia la cámara de aire por la abertura superior, se enfría ligeramente y entra en la vivienda a través de la superficie inferior.
- ➤ En invierno durante el día, las aberturas del muro acumulador permanecen abiertas y las de la superficie acristalada cerradas. Así, el aire caliente acumulado en la cámara de aire circula hacia el interior de la vivienda por la abertura superior y el aire, a menor temperatura, almacenado en el interior de la vivienda sale hacia la cámara de aire por la abertura inferior.
- ➤ En invierno durante la noche, todas las aberturas permanecen cerradas. Así, únicamente se cede el aire almacenado durante el día en el muro acumulador o de inercia hacia el interior de la vivienda.

En la siguiente imagen se muestra la circulación del aire entre el muro trombe y la vivienda en función de la temperatura exterior.

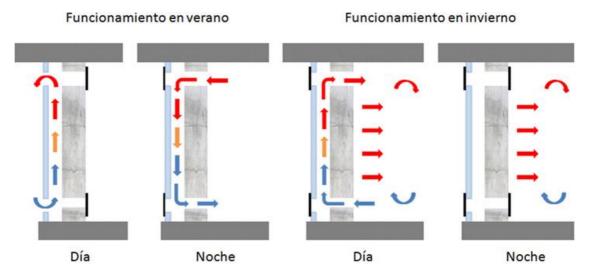


Figura 11.8 – Circulación del aire entre el muro trombe y la vivienda en verano y en invierno.

11.1.2.2 Ventajas e inconvenientes.

A continuación se analizan las ventajas y los inconvenientes del uso de un muro trombe como sistema de captación solar pasivo.

Ventajas	Inconvenientes
Ejecución sencilla	Necesidad de un muro ciego, limitando el aporte de luz natural en la vivienda y el calentamiento por radiación directa
Bajo coste	El efecto muro trombe se limita a una profundidad de la estancia y a media altura del muro trombe.
Mantenimiento reducido	Limpieza de las caras de vidrio y muro que delimitan la cámara de aire es compleja.

Tabla 11.9 – Ventajas e inconvenientes del muro trombe.

11.1.2.3 Características de los materiales a utilizar.

El muro debe estar constituido por materiales de alta densidad y de elevada inercia térmica, como fábricas de ladrillo, adobe, agua o mampostería de piedra. Debe ser de color oscuro para aumentar su absortividad y por tanto, su capacidad de acumulación de calor. El espesor óptimo del muro de inercia depende de la conductividad térmica del material que lo constituye, de forma que, cuanto mayor sea la conductividad térmica, se necesitará un mayor espesor.

El vidrio debe ser doble bajo emisivo, ya que al presentar una menor transmitancia térmica, retiene hacia el interior una cantidad de energía mayor, aumentando la eficiencia del sistema. Para evitar sobrecalentamientos en verano, deberá contar con protecciones solares.

La cámara de aire debe presentar un espesor comprendido entre 3 y 15 cm. Espesores inferiores dan lugar a mayores pérdidas de calor y además, la circulación de aire por las aberturas se ve drásticamente limitada. Espesores superiores a 15 cm dan lugar a un aumento considerable en la circulación del aire por convección, disminuyendo el almacenamiento de calor.

11.1.2.4 Descripción de la solución estudiada.

Los muros trombe se pueden utilizar con ventanas en la pared acumuladora o no. La ventaja de mantener las ventanas en el muro es que no se pierde iluminación natural en la vivienda. Además, la existencia de ventanas en el muro acumulador permite calentar la casa de forma directa por las mañanas, momento en el que el muro trombe se encuentra a una temperatura menor y no dispone de calor acumulado. Sin embargo, la eficiencia del sistema disminuye considerablemente, con respecto a un muro trombe sin ventanas en el muro acumulador, ya que la superficie acumuladora se reduce.

En el presente estudio se estudian las ganancias energéticas mediante un muro trombe en el que no existen ventanas, mediante la Herramienta Unificada Lider Calener

En primer lugar, se describen los materiales que conforman el muro trombe, desde el exterior hacia el interior:

Ha de tenerse en cuenta que en la Sección 2 del DB HE del CTE, se admite que las soluciones constructivas cuyo comportamiento no se describe adecuadamente mediante la transmitancia térmica, pueden superar los límites establecidos para la zona climática considerada. Por tanto, los materiales que componen el muro trombe se definen mediante unos parámetros diferentes a los de cerramientos habituales.

Material	Espesor (cm)	Factor solar	Absortividad	Transmitancia térmica (W/m²K)
Doble vidrio bajo emisivo	4	0.72	-	1.3
Cámara de aire	8	Resistencia térmica (m²·K/W) = 0.18		
Piedra	30	-	0.75	2.28

Tabla 11.10 – Componentes del muro trombe.

A continuación se muestra la sección transversal de los componentes del muro trombe.

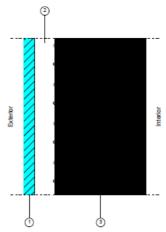


Figura 11.9 – Detalle constructivo de los componentes del muro trombe.

La superficie acristalada del muro trombe es fija, es decir, en verano no se podrá impedir la acumulación de calor por infecto invernadero en el muro trombe. Esto dará lugar a unos sobrecalentamientos inaceptables. Por ello, se propone la construcción de un voladizo en la parte superior del muro trombe con el objetivo de disminuir el incremento de la demanda energética de refrigeración derivado de la implementación del muro trombe.

El voladizo estará compuesto por los siguientes materiales:

- Mortero de cemento (2 cm).
- > Fábrica de ladrillo (8 cm).
- Mortero de cemento (2 cm).

El voladizo tendrá una superficie total de 20.54 m². Para esta superficie de voladizo, se calcula que en las horas de mayor radiación en verano, un 30 % del muro trombe no estará sombreado por el voladizo.

11.1.2.5 Balance energético.

Como se ha explicado anteriormente, el objetivo principal de la implementación de un muro trombe es captar energía solar para reducir la demanda energética de calefacción.

Sin embargo, en verano, la existencia de una superficie acristalada que ocupa toda la fachada Sur da lugar a un incremento considerable en la demanda energética de refrigeración.

Mediante el uso de la Herramienta Unificada Lider Calener se calcula la demanda energética de la vivienda tras la incorporación del muro trombe.

Demanda energética de calefacción:

La demanda energética de calefacción de la vivienda tras la incorporación del muro trombe es igual a 4 kWh/m²año.

Demanda energética de refrigeración:

Durante los meses cálidos no es posible cambiar la posición de los acristalamientos del muro trombe, de forma que el aire seguirá calentándose en la cámara de aire, dando lugar a sobrecalentamientos excesivos.

La implementación del voladizo no cubre al 100 % la superficie acristalada, por lo que se seguirán produciendo sobrecalentamientos, aunque en menor medida que sin la existencia del voladizo.

Esto dará lugar a un aumento en la demanda de refrigeración de la vivienda y, por tanto, será necesario cubrir esta demanda mediante otros sistemas.

El valor calculado de la demanda energética de refrigeración tras la implementación del muro trombe es igual a 14.3 kWh/m²año.

Demanda energética de la vivienda:

Una vez calculadas las demandas energéticas de calefacción y de refrigeración, se analiza las modificaciones dadas en ambas demandas.

En la siguiente tabla se resumen los valores de las demandas energéticas de calefacción y de refrigeración, para la situación inicial y tras la incorporación del muro trombe.

Es importante tener en cuenta que esta comparación se realiza en base a la demanda energética alcanzada con los cambios propuestos en el aislamiento y en los acristalamientos, definidos en el apartado 9.1.1, ya que estos cambios se incorporarán independientemente del estudio energético restante y se trata de mejoras complementarias.

Tabla 11.11 – Valores de la demanda energética de la vivienda antes y después de la incorporación del muro trombe.

	Demanda energética de calefacción (kWh/m²año)	Demanda energética de refrigeración (kWh/m²año)
Mejora envolvente térmica	13.51	1.08
Muro trombe	4	14.6

Así, se ha reducido en 9.51 kWh/m²año la demanda energética de calefacción, es decir, se alcanza una reducción del 70.39%.

Por otra parte, la demanda energética de refrigeración ha aumentado en 13.52 kWh/m²año, que equivale a un incremento del 92.6 %.

De este análisis se concluye que un muro trombe es muy eficiente en climas fríos. Sin embargo, en climas medios o cálidos es muy poco eficiente, ya que la demanda energética de refrigeración aumenta considerablemente.

Para analizar los resultados de una forma más visual, se representan las demandas obtenidas y las reducciones e incrementos correspondientes en una gráfica.

Demanda energética (kWh/m²año)

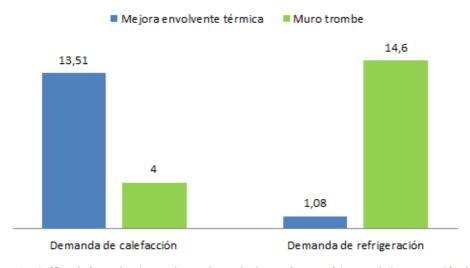


Figura 11.10 – Gráfica de las reducciones alcanzadas en la demanda energética tras la incorporación del muro trombe.

11.1.2.6 Coste de ejecución.

A continuación se analiza el coste que conlleva la incorporación del muro trombe en la vivienda. El coste se deberá a la construcción del muro acumulador, la superficie acristalada y el voladizo.

Los costes que se indican incluyen el coste del material y el coste asociado a la mano de obra para la ejecución de la mejora propuesta.

En la siguiente tabla se analizan los costes estudiados a la construcción del muro trombe.

Cerramientos y componentes	Coste (€)
Muro acumulador	3741.72
Superficie acristalada	7283.39
Voladizo	852.01
Total muro trombo	8135 40

Tabla 11.12 – Coste de ejecución del muro trombe.

11.1.3 Galería acristalada.

Una galería acristalada es un elemento constructivo total o parcialmente acristalado, integrado en la vivienda y cuya función es captar energía solar de forma pasiva.

La galería debe estar orientada de tal forma que capte la mayor cantidad de radiación solar en invierno. Es decir, debe estar orientada al Sur, Sureste o Suroeste, pero nunca debe orientarse hacia el Norte, ya que no captaría radiación directa, sólo difusa.

11.1.3.1 Funcionamiento.

El aporte de calor a través de las galerías se basa en el efecto invernadero:

El vidrio es permeable a longitudes de radiación de onda corta. Por ello, en torno a un 85 % de la radiación incidente atraviesa el vidrio, un 5 % se refleja y un 10 % es absorbida por el vidrio. La radiación que atraviesa el vidrio calienta los cuerpos del entorno, que vuelven a emitir esta energía, pero con una longitud de onda larga. El vidrio es opaco a longitudes de onda larga, de forma que esta energía queda atrapada dentro de la galería, calentando el aire almacenado en su interior.

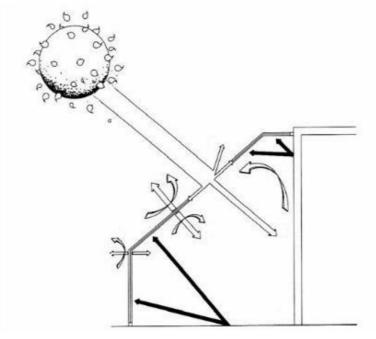


Figura 11.11 – Esquema del proceso de efecto invernadero en una galería.

Parte del calor almacenado en la galería es cedido al interior de la vivienda por conducción. Sin embargo, la mayoría del calor queda atrapado en el interior de la galería y para un aprovechamiento óptimo es necesario disponer de un mecanismo que provoque la circulación del aire.

Este mecanismo se basa en añadir unas aberturas practicables en la parte superior e inferior del muro que separa la galería de la vivienda y que, dependiendo de la época del año y de la temperatura del aire, generan la circulación del mismo en un sentido o en otro.

Según la temperatura exterior el aire circula de la siguiente manera:

- En invierno durante el día, el aire más caliente y por tanto, menos denso, circula desde la galería hacia el interior de la vivienda a través de las aberturas superiores. El aire más frío y más denso almacenado en el interior de la vivienda, circula hacia la galería a través de las aberturas inferiores, donde se calienta.
- ➤ En invierno durante la noche, el aire almacenado en la galería está a una temperatura inferior que el almacenado en el interior de la vivienda, por lo que las aberturas se cierran para no disminuir la temperatura en el interior de la vivienda.

En el siguiente esquema se representa la circulación del aire almacenado en la galería en invierno.

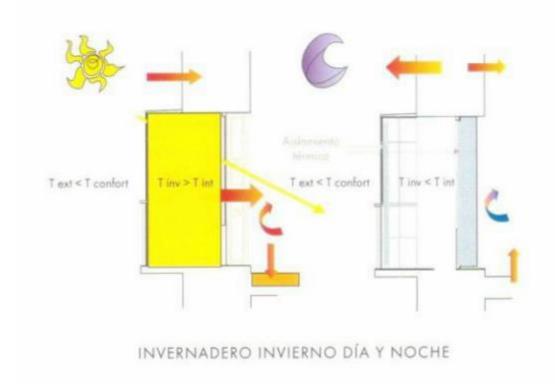


Figura 11.12 – Circulación del aire entre la galería y la vivienda en invierno.

- ➤ En verano durante el día, las ventanas correderas de la galería estarán completamente abiertas, por lo que no se almacenará aire en su interior y por tanto, se comporta como el resto de los muros de la vivienda.
- ➤ En verano durante la noche, el aire almacenado en la vivienda está a una temperatura superior que el aire exterior. Por lo que se abren las aberturas del

muro, el aire caliente sale hacia el exterior por la abertura superior y el aire frío entra en la vivienda por las aberturas inferiores.

En el siguiente esquema se representa la circulación del aire almacenado en la galería en verano.

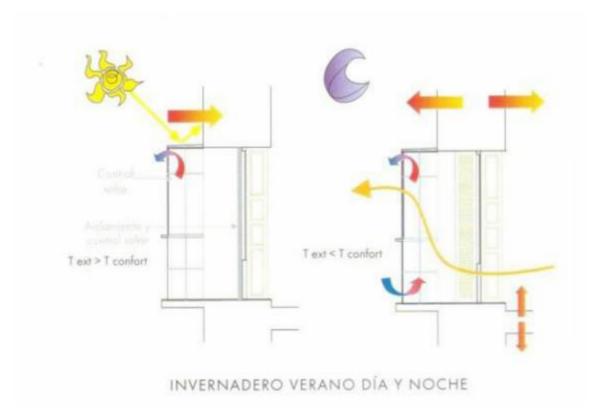


Figura 11.13 – Circulación del aire entre la galería y la vivienda en verano.

En estas aberturas se pueden integrar unos ventiladores comandados por un termostato, con el objetivo de aumentar el caudal de aire intercambiado y, por tanto, la eficiencia del sistema. El termostato se diseña para que funcione con dos temperaturas, una para verano y otra para invierno, de forma que, cuando se alcance la temperatura la temperatura límite en verano o la temperatura límite en invierno, el termostato provoca la apertura de las aberturas y el movimiento de los ventiladores para que se produzca el intercambio de aire.

Es necesario dotar a la galería de protecciones solares para evitar que se produzcan sobrecalentamientos en verano. Las protecciones consistirán en unas persianas metálicas enrollables de forma manual.

11.1.3.2 Descripción de la solución estudiada.

A continuación se describen los cerramientos de la galería.

Todos los cerramientos verticales de la galería están formados por acristalamientos, excepto el que comunica la galería con la vivienda. Este muro es el de la fachada Sur de la vivienda, definido en el apartado 9.1.1.1.

Los acristalamientos de la galería están constituidos por:

- ➤ Vidrios dobles bajo emisivos, caracterizados por un factor solar de 0.7 y una transmitancia térmica igual a 1.2 W/m²K.
- ➤ Marcos de madera, caracterizados por una transmitancia térmica de 2.7 W/m²K.

Así, la galería cuenta con un total de 12 acristalamientos: 10 ventanas tipo corredera en la fachada Sur, una practicable en la fachada Este y una practicable en la fachada Oeste.

En la siguiente tabla se describen las dimensiones de dichos acristalamientos:

Tabla 11.13 – Distribución y dimensiones de los acristalamientos de la galería.

Huecos	Orientación	Apertura	Alto (m)	Largo (m)	Superficie (m²)
10	Sur	Deslizante	2.5	1.2	3
1	Este	Practicable	2.5	2.4	6
1	Oeste	Practicable	2.5	1.95	4.875

El forjado sanitario o suelo en contacto con el terreno de la galería es el mismo que el utilizado en la planta baja de la vivienda, definido en el apartado 9.1.1.1.

La cubierta de la galería es igual que la cubierta tipo 1, definida en el apartado 9.1.1.1.

Se propone el uso de una cubierta y un suelo con un grado tan elevado de aislamiento con el objetivo de no perder el calor ganado por efecto invernadero en la galería.

Una vez definidos los cerramientos constituyentes de la galería, se describen las dimensiones de la misma en la siguiente tabla:

Tabla 11.14 - Dimensiones de la galería.

Superficie construida (m²)	Superficie útil (m²)	Volúmen útil (m³)
29.5	24.6	61.74

La galería se ubica en la planta baja de la vivienda, en la fachada orientada hacia el Sur. En las siguientes imágenes se observa la ubicación de la galería respecto a la vivienda.

Figura 11.14 – Alzado Sur de la galería.

Figura 11.15 – Alzado Este de la galería.

Figura 11.16 – Alzado Oeste de la galería.

11.1.3.3 Ventajas.

Además de captar energía solar de forma pasiva, dando lugar a una reducción en la demanda energética de calefacción en invierno, la galería presenta otra serie de ventajas a tener en cuenta:

- > Posibilidad de aprovechamiento como zona habitable durante largos periodos de tiempo.
- Es un elemento de cierto valor arquitectónico.
- Su ciclo de vida es largo, equivalente al de la vivienda.
- No requiere un mantenimiento elevado.
- La cubierta de la galería produce sombreamientos en la fachada Sur de la vivienda, dando lugar a una reducción en la demanda energética de refrigeración en verano.
- Posibilidad de utilizar la azotea de la galería para instalar paneles termosolares y/o paneles fotovoltaicos. Esta cubierta es la más indicada de las de la vivienda para instalar estos sistemas activos de captación solar por dos motivos: es la única orientada al Sur y tiene una pendiente muy reducida, casi plana, facilitando el mantenimiento de los paneles en caso de instalarlos.

11.1.3.4 Balance energético.

Como se ha explicado anteriormente, el objetivo principal de la galería es captar energía solar para reducir la demanda energética de calefacción.

Sin embargo, en verano, la existencia de una superficie acristalada de tales dimensiones daría lugar a un aumento inadmisible en la demanda energética de refrigeración. Por ello, durante las épocas cálidas, los acristalamientos de la galería se mantendrán constantemente abiertos y se protegerán con persianas para evitar sobrecalentamientos.

Mediante el uso del software CYPECAD MEP se calcula la demanda energética de la vivienda tras la incorporación de la galería.

Demanda energética de calefacción:

La demanda energética de calefacción tras la incorporación de la galería de la vivienda es igual a 8.99 kWh/m²año.

La reducción de la demanda energética de calefacción depende de la energía almacenada en la galería por ganancia de calor solar en los meses fríos. En la siguiente tabla se recoge la evolución mensual de la energía almacenada en la galería por ganancia de calor solar.

Mes	Energía almacenada (kWh)	
Enero	1168.7	
Febrero	1451.7	
Marzo	1745.5	
Abril	1610.2	
Octubre	1830.8	
Noviembre	1358.3	
Diciembre	1080.7	
Anual	10245.9	

Tabla 11.15 – Energía almacenada en la galería por ganancia de calor solar.

Del total de la energía almacenada no se aprovecha el 100 %, ya que parte se pierde a través de los cerramientos opacos y de los acristalamientos.

Demanda energética de refrigeración:

Durante los meses cálidos, los acristalamientos permanecerán constante y completamente abiertos, por lo que no se almacenará aire en su interior, como ya se ha explicado anteriormente.

Además, estas ventanas estarán protegidas por unas persianas enrollables, que cubrirán el 100 % del hueco durante el verano. Por lo que funcionarán como sombreamientos sobre la fachada Sur de la vivienda.

La cubierta de la galería también genera sombreamientos sobre la fachada Sur de la vivienda en verano.

Teniendo en cuenta que la galería en verano permanece abierta y que los cerramientos de la misma funcionan como sombreamientos sobre la vivienda, se reduce la demanda energética de refrigeración de la vivienda.

El valor calculado de la demanda energética de refrigeración es igual a 1.42 kWh/m²año.

Reducción total de la demanda energética de la vivienda:

Una vez calculadas las demandas energéticas de calefacción y de refrigeración, se analiza las reducciones alcanzadas en ambas demandas.

En la siguiente tabla se resumen los valores de las demandas energéticas de calefacción y de refrigeración, para la situación inicial y tras la incorporación de la galería.

Es importante tener en cuenta que esta comparación se realiza en base a la demanda energética alcanzada con los cambios propuestos en el aislamiento y en los huecos, definidos en el apartado 9.1.1, ya que estos cambios se incorporarán independientemente del resto de mejoras y se trata de mejoras complementarias.

Tabla 11.16 – Valores de la demanda energética de la vivienda antes y después de la incorporación de la galería.

	Demanda energética de calefacción (kWh/m²año)	Demanda energética de refrigeración (kWh/m²año)
Mejora envolvente térmica	13.51	1.08
Incorporación galería	8.99	1.04

De esta forma, se ha reducido en 4.52 kWh/m²año la demanda energética de calefacción, es decir, se alcanza una reducción del 33.46 %.

Por otra parte, la demanda energética de refrigeración se ha reducido en 0.04 kWh/m²año, que equivale a una reducción del 3.7 %.

Para analizar los resultados de una forma más visual, a continuación se representan las demandas obtenidas y las reducciones correspondientes en una gráfica.

Demanda energética (kWh/m²año) Mejora envolvente térmica Galería acristalada 13,51 8,99 1,08 1,04

Figura 11.17 – Gráfica de las reducciones alcanzadas en la demanda energética tras la incorporación de la galería.

Demanda de refrigeración

11.1.3.5 Coste de ejecución.

Demanda de calefacción

A continuación se analiza el coste que conlleva la incorporación de la galería en la vivienda. El coste se deberá a la construcción del suelo, de la cubierta y de tres

cerramientos acristalados. También se analizan los costes derivados de la implementación de las protecciones solares.

Los costes que se indican incluyen el coste del material y el coste asociado a la mano de obra para la ejecución de la mejora propuesta.

En la siguiente tabla se analizan los costes estudiados a la construcción de la galería.

Coste (€) Cerramientos y componentes Cerramientos **Marcos** 819.37 acristalados **Vidrios** 4092.86 Suelo 2038.57 Cubierta 2071.18 Persianas enrollables 1277.11 Total galería 10929.09

Tabla 11.17 – Coste de ejecución de la galería.

11.1.4 Zonas tampón o de amortiguamiento térmico.

Las zonas tampón son los espacios no climatizados ubicados entre la vivienda y el ambiente exterior, dando lugar a un mayor aislamiento de la vivienda y, por tanto, a una reducción de la demanda energética.

Estas zonas son aquellas que no requieren climatización, como garajes, bodegas o cuartos de instalaciones térmicas

Estos espacios deben orientarse hacia donde se reciba una menor cantidad de radiación solar directa, con el fin de no disminuir la superficie de captación solar directa y de aumentar la temperatura en las orientaciones más frías. Por ello, suelen ubicarse en la fachada Norte de las viviendas, ya que es la que se encuentra a una menor temperatura por recibir una menor cantidad de energía solar.

11.1.4.1 Funcionamiento

La demanda energética de una vivienda es directamente proporcional al salto térmico entre la temperatura de confort en el interior de la vivienda y la temperatura exterior. Así, en zonas más templadas, el salto térmico es menor, siendo menor la demanda energética.

Una zona tampón se encuentra a una temperatura intermedia entre la temperatura exterior y la temperatura del interior de la vivienda. Entonces, su existencia dará lugar a una disminución del salto térmico y, por tanto, de la demanda energética de la vivienda. Es decir, funciona como un espacio de amortiguación térmica.

11.1.4.2 Descripción de la solución estudiada.

Con el objetivo de reducir el salto térmico y la demanda energética de la vivienda, se estudia la posibilidad de disponer de un garaje.

Al tratarse de un local no climatizado, no pertenece a la envolvente térmica del edificio y, por tanto, sus cerramientos no deben cumplir con los mínimos térmicos exigidos en la Sección HE 1 del DB HE del CTE.

En primer lugar, se definen los cerramientos del garaje.

1. Suelo en contacto con el terreno: solera

Tabla 11.18 – Componentes del suelo en contacto con el terreno del garaje.

Material	Espesor (cm)	Transmitancia térmica, U (W/m²K)
1-Hormigón armado	20	0.76
ESPESOR TOTAL	20	

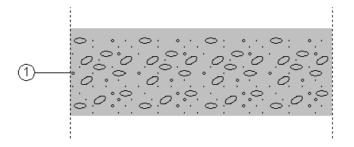


Figura 11.18 – Detalle constructivo de los componentes del suelo en contacto con el terreno del garaje.

2. Fachada

Tabla 11.19 – Componentes de la fachada del garaje.

Material	Espesor (cm)	Transmitancia térmica, U (W/m²K)
1- Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>2</th><th></th></d<1250<>	2	
2-Tabicón LH doble	8	2.34
3- Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 <d<1250< th=""><th>2</th><th></th></d<1250<>	2	
ESPESOR TOTAL	10	

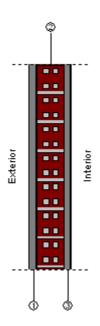


Figura 11.19 – Detalle constructivo de los componentes de la fachada del garaje.

3. Cubierta

Tabla 11.20 – Componentes de la cubierta del garaje.

Material	Espesor (cm)	Transmitancia térmica, U (W/m²K)
1- Teja cerámica	1.5	
2-Tableros de fibras	2	
3- Capa alveolar con capa de compresión	20	2.34
4-Enlucido de yeso	1.5	
ESPESOR TOTAL	25	

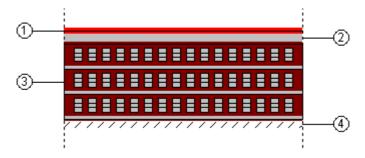


Figura 11.20 – Detalle constructivo de los componentes del garaje.

Una vez definidos los cerramientos constituyentes del garaje, se describen las dimensiones del mismo en la siguiente tabla:

Tabla 11.21 – Dimensiones del garaje.

Superficie construida (m²)	Superficie útil (m²)	Volúmen útil (m³)
47.8	41.6	109.78

El garaje dispone de una puerta enrollable automática metálica de $400x250~\text{cm}^2$. Esta puerta está caracterizada por una transmitancia térmica de $4~\text{W/m}^2\text{K}$.

En las siguientes figuras se muestra la ubicación del garaje respecto a la vivienda.

Figura 11.21 – Alzado Oeste del garaje.

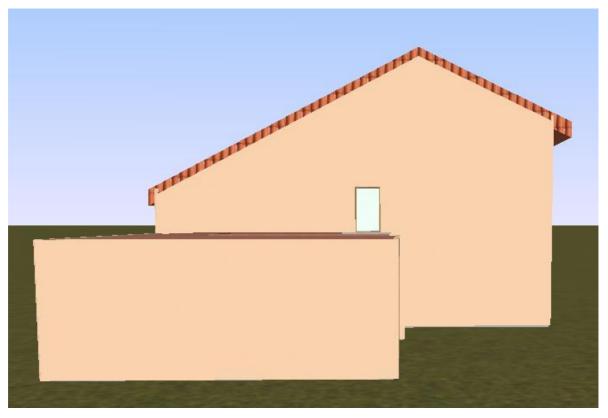


Figura 11.22 – Alzado Norte del garaje.

Figura 11.23 - Alzado Este del garaje.

11.1.4.3 Ventajas.

Además de la repercusión energética del garaje como zona tampón, presenta otra serie de ventajas a tener en cuenta:

- Posibilidad de uso para almacenamiento de automóviles, siendo éste el objetivo principal de la construcción de un garaje.
- Posibilidad de instalación de punto de carga de coches eléctricos en un futuro.
- Posibilidad de uso para almacenamiento tipo trastero.
- Coste de construcción se considera cero desde un punto de vista energético, ya que su construcción se realiza principalmente para su uso como almacenamiento de vehículos.
- Mantenimiento muy reducido.

11.1.4.4 Balance energético

Como se ha explicado anteriormente, el objetivo principal de las zonas tampón es aislar más la vivienda del ambiente exterior para reducir la demanda energética de calefacción y de refrigeración.

Mediante el uso del software CYPECAD MEP se calcula la demanda energética de la vivienda tras la incorporación del garaje.

Demanda energética de calefacción:

Tras la incorporación del garaje, la demanda energética de calefacción de la vivienda es igual a 12.9 kWh/m²año.

Demanda energética de refrigeración:

El valor calculado de la demanda energética de refrigeración, tras la incorporación del garaje en la vivienda, es igual a 1.07 kWh/m²año.

Reducción total de la demanda energética de la vivienda:

Una vez calculadas las demandas energéticas de calefacción y de refrigeración, se analiza las reducciones alcanzadas en total.

En la siguiente tabla se resumen los valores de las demandas energéticas de calefacción y de refrigeración, para la situación inicial y tras la incorporación del garaje.

Es importante tener en cuenta que esta comparación se realiza en base a la demanda energética alcanzada con los cambios propuestos en el aislamiento y en los acristalamientos, definidos en el apartado 9.1.1, ya que estos cambios se incorporarán independientemente del estudio energético restante y se trata de mejoras complementarias.

Tabla 11.22 – Valores de la demanda energética de la vivienda antes y después de la incorporación del garaje.

	Demanda energética de calefacción (kWh/m²año)	Demanda energética de refrigeración (kWh/m²año)
Inicial	13.51	1.08
Incorporación garaje	12.12	1.07

De esta forma, la demanda energética de calefacción se reduce en 1.39 kWh/m²año, que equivale a una reducción del 10.28 %.

Por otra parte, la demanda energética de refrigeración se ha reducido en 0.01 kWh/m²año, que equivale a una reducción del 0.92 %.

Para analizar los resultados de una forma más visual, a continuación se representan las demandas obtenidas y las reducciones correspondientes en una gráfica.

Demanda energética (kWh/m²año)

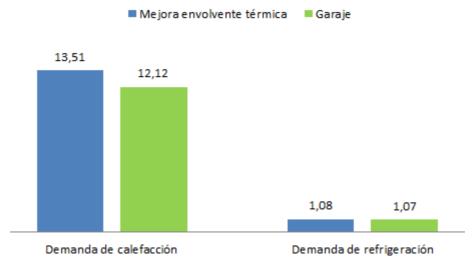


Figura 11.24 – Gráfica de las reducciones alcanzadas en la demanda energética tras la incorporación del garaje.

11.1.4.5 Coste de ejecución.

Desde un punto de vista de eficiencia energética, la construcción del garaje supone un coste cero. Esto se debe a que el motivo principal del uso del garaje y, por tanto, de su construcción, se debe al almacenamiento de vehículos, no de ahorro de energía.

Por tanto, se supone que el garaje tiene un coste cero, como mejora en la eficiencia energética de la vivienda.

11.1.5 Comparación entre las mejoras pasivas.

Una vez conocidos el balance energético y el coste de ejecución asociados a cada mejora constructiva, se procede al análisis comparativo de las mismas.

El objetivo de este análisis es determinar cuáles son las mejoras más eficientes desde un punto de vista energético y económico. También se determina si los cambios estudiados son excluyentes o complementarios, y, en caso de ser complementarios se analizará de nuevo la demanda energética de la vivienda implementando conjuntamente las mejoras elegidas.

Debe tenerse en cuenta que todas las mejoras propuestas se estudian incorporando la mejora en el aislamiento y en los huecos.

En la siguiente tabla se realiza una comparación energético-económica de las mejoras pasivas propuestas.

Mejora propuesta	Demanda energética de calefacción	Demanda energética de refrigeración	Coste de ejecución
	(kWh/m²año)	(kWh/m²año)	(€)
1. Mejora en el aislamiento térmico y en los huecos.	13.51	1.08	23042.98
2. Construcción muro trombe.	4	14.6	8135.40
3. Construcción galería.	8.99	1.04	10929.09
4. Construcción garaje.	12.12	1.07	0

Tabla 11.23 – Comparación energético-económica entre las mejoras pasivas propuestas.

Como se ha explicado anteriormente, la demanda energética derivada de la construcción del muro trombe, de la galería y del garaje se calculan partiendo de los cambios estudiados en el aislamiento y en los huecos.

A continuación se comparan las tres medidas propuestas, que se complementan con la mejora de la envolvente térmica, con el objetivo de decir cuál es la solución más eficiente como sistema de captación solar pasivo.

En primer lugar, es necesario saber si las mejoras son excluyentes o complementarias. Las posibles combinaciones de las mejoras son las siguientes:

- Muro trombe y garaje.
- Galería y garaje.

En la siguiente gráfica se compara la demanda energética de la vivienda en función de las mejoras estudiadas.

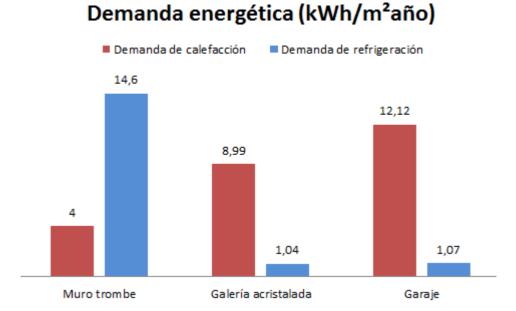


Figura 11.25 – Gráfica comparativa entre la demanda energética obtenida con las diferentes mejoras propuestas.

En base a los resultados obtenidos se pueden concluir una serie de ventajas y de inconvenientes derivados de la implementación de las mejoras propuestas. Además, se tienen en cuenta otros factores no energéticos ni económicos para el análisis.

Tabla 11.24 – Ventajas e inconvenientes de las mejoras pasivas propuestas.

Mejora	Ventajas	Inconvenientes
Muro trombe	Mayor reducción de la demanda energética de calefacción.	Incremento considerable de la demanda energética de refrigeración.
iviuro trombe	Menor coste de ejecución.	Necesidad de un muro ciego en orientaciones desde SE a SO.
	Reducción de la demanda energética de calefacción y de refrigeración.	Mayor coste de ejecución.
Galería	Posibilidad de aprovechamiento como zona habitable.	
	Posee valor arquitectónico.	
	Posibilidad de instalación de sistemas solares activos en la cubierta.	
Garaje	Coste de ejecución cero (uso para almacenamiento de vehículos).	
Garaje	Reducción de la demanda de calefacción y de refrigeración.	

Atendiendo a la demanda energética de la vivienda, al coste de ejecución y a las ventajas e inconvenientes de cada mejora, se concluye que la solución más eficiente tanto energética como económicamente, se basa en combinar las siguientes mejoras:

- Mejora en la envolvente térmica.
- Construcción de la galería.
- Construcción del garaje.

11.1.6 Descripción de la solución adoptada.

Una vez determinada la combinación de mejoras óptima como solución para alcanzar los criterios exigidos a un edificio de consumo casi nulo, se describe la solución final.

Esta descripción abarca la definición constructiva de la vivienda como sistema de captación solar pasivo, la demanda energética de la vivienda y el consumo energético de la misma.

11.1.6.1 Descripción constructiva de la vivienda.

La vivienda estará constituida por los cerramientos opacos y por los huecos definidos en el apartado 9.1.1. Además, contará con una galería, definida en el apartado 9.1.3 y con un garaje que funciona como zona de amortiguamiento térmico, definido en el apartado 9.1.4.

En las siguientes imágenes se muestra el diseño de la vivienda tras la implementación conjunta de las mejoras escogidas.

Figura 11.26 – Alzado Oeste vivienda con las mejoras implementadas.

Figura 11.27 - Alzado Norte vivienda con las mejoras implementadas.

Figura 11.28 – Alzado Este vivienda con las mejoras implementadas.

Figura 11.29 – Alzado Sur vivienda con las mejoras implementadas.

11.1.6.2 Demanda energética de la vivienda.

A continuación de definen los valores de la demanda energética de calefacción y de refrigeración de la vivienda obtenidos mediante la implementación conjunta de las mejoras propuestas. Estos valores se calculan mediante el software CYPECAD MEP.

Demanda energética de calefacción:

El valor calculado de la demanda energética de calefacción es igual a 7.89 kWh/m²año.

De esta forma, se ha alcanzado una reducción en la demanda energética de calefacción de 25.3 kWh/m²año sobre la demanda inicial de la vivienda, sin la implementación de mejoras. Este valor equivale a una reducción total del 76.22 %.

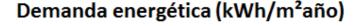
Demanda energética de refrigeración:

El valor calculado de la demanda energética de refrigeración es igual a 1.04 kWh/m²año.

De esta forma, se ha alcanzado una reducción en la demanda energética de refrigeración de 9.99 kWh/m²año sobre la demanda inicial de la vivienda, sin la implementación de mejoras. Este valor equivale a una reducción total del 90.57 %.

Reducción total de la demanda energética de la vivienda:

La demanda energética de la vivienda, tanto de calefacción como de refrigeración, se ha reducido de forma considerable únicamente implementando medidas basadas en el principio pasivo.


Esto significa que mediante un diseño óptimo de la vivienda, aprovechando la energía solar de forma pasiva, sin utilizar elementos mecánicos, una vivienda puede ser muy eficiente desde un punto de vista energético.

En la siguiente tabla se resumen los valores de las demandas energéticas de calefacción y de refrigeración, para la situación inicial y tras la implementación conjunta de las mejoras.

Tabla 11.25 - Valores de la demanda energética de la vivienda antes y después de la implementación conjunta de las mejoras pasivas.

	Demanda energética de calefacción (kWh/m²año)	Demanda energética de refrigeración (kWh/m²año)
Inicial	33.19	11.03
Combinación de mejoras pasivas	7.89	1.04

En la siguiente gráfica se representan las reducciones alcanzadas en la demanda energética de calefacción y de refrigeración, comparando la vivienda inicial y la vivienda implementando de forma conjunta las mejoras.

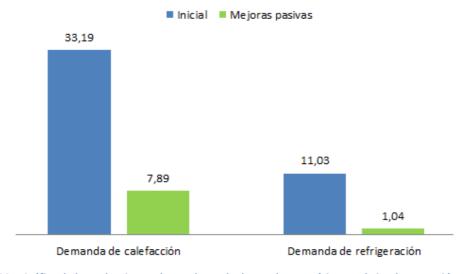


Figura 11.30 – Gráfica de las reducciones alcanzadas en la demanda energética tras la implementación conjunta de las mejoras pasivas.

11.2 Mejoras activas.

Las mejoras activas orientadas a reducir la demanda energética, son aquellas instalaciones que utilizan elementos electromecánicos, cuyo objetivo principal es aprovechar el calor de forma eficiente.

11.2.1 Ventilación mecánica con recuperación de calor.

La energía que entra y sale del edificio debe estar controlada para limitar la influencia de las condiciones exteriores sobre las condiciones interiores de la vivienda, con el objetivo de mantener en todo momento unas condiciones óptimas de confort térmico.

El control de la energía se realiza incorporando un aislamiento bueno y continuo y sustituyendo los huecos convencionales por ventanas y puertas de elevadas prestaciones térmicas. Una vez solucionados estos parámetros mediante un diseño correcto de la vivienda, se debe controlar el caudal de aire de ventilación, implementando sistemas de recuperación de calor.

Un recuperador de calor es un dispositivo que permite recuperar parte de la energía calorífica del aire del interior de la vivienda que se extrae de la misma, e intercambiarla con el aire de admisión. Este dispositivo se acopla a la instalación de ventilación mecánica controlada de doble flujo.

El recuperador de calor está constituido por un intercambiador aire/aire, por dos ventiladores de eficiencia elevada y por dispositivos de filtrado de los dos flujos (admisión y extracción).

En la siguiente imagen se muestra el esquema del funcionamiento de una instalación de ventilación con recuperación de calor:

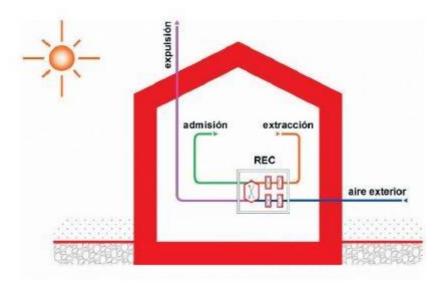


Figura 11.31 – Esquema del funcionamiento de un sistema de ventilación mecánica controlada con recuperación de calor.

Los intercambiadores de calor pueden ser de tres tipos: de flujo cruzado a contracorriente, de flujo paralelo a contracorriente y de flujo rotativo. Los más eficientes son los de flujo paralelo, de hecho, pueden presentar una eficiencia superior al 90 %.

Por este motivo, se estudiará la implementación de un recuperador de calor con intercambiador de flujo paralelo a contracorriente. Estos intercambiadores son de forma hexagonal, lo que permite aumentar la superficie de intercambio.

En el intercambiador de calor se produce el intercambio de energía entre los dos flujos (de admisión y de extracción), pero no de materia, ya que existe un circuito para cada flujo.

En la siguiente imagen se muestra el esquema de funcionamiento de un intercambiador aire/aire de flujo paralelo a contracorriente:

Figura 11.32 – Esquema de funcionamiento de un intercambiador de flujo paralelo a contracorriente.

La eficiencia de los recuperadores de calor depende de los siguientes parámetros:

- ➤ El caudal de aire intercambiado, cuanto mayor sea el caudal de aire intercambiado, menor será el rendimiento del recuperador de calor.
- El salto térmico entre el exterior y el interior, cuanto mayor sea el gradiente térmico, mayor será el rendimiento del recuperador de calor.

Se propone la instalación de un recuperador de calor de intercambiador aire/aire de flujo paralelo a contracorriente de la casa Soler & Palau, serie FLEXEO. Este equipo dispone de un intercambiador de calor estático, 2 motoventiladores (uno de extracción y otro de admisión), equipos de filtrado y control remoto.

Figura 11.33 – Recuperador de calor serie FLEXEO, casa Soler & Palau.

La eficiencia del recuperador de calor se determina en función del caudal de ventilación de la vivienda. Siendo el caudal de ventilación de la vivienda igual a 190.8 m³/h, se determina el rendimiento correspondiente a este caudal en la curva de rendimiento del recuperador de calor, facilitado por el fabricante.

En la siguiente imagen se muestra la curva del recuperador de calor, indicando la eficiencia del mismo en función del caudal de ventilación de la vivienda.

Figura 11.34 – Curva de rendimiento del recuperador de calor.

Gráficamente se obtiene un rendimiento del 90.4 % para el recuperador de calor.

Instalando el recuperador de calor en la vivienda, se obtienen unos valores nuevos de demanda energética y de potencia térmica a instalar mediante el uso del software CYPECAD MEP.

11.2.1.1 Demanda energética.

Al incorporar un recuperador de calor en la instalación de ventilación, la demanda energética de climatización de la vivienda se reduce.

Esto se debe a que la demanda energética de climatización es directamente proporcional al salto térmico entre la temperatura del aire del exterior y la del aire del interior. Al introducir el recuperador de calor, este salto térmico disminuye de forma considerable, ya que el aire de admisión se calienta en el intercambiador de calor al entrar en la vivienda.

A continuación se analizan los valores obtenidos para la demanda energética de calefacción y de refrigeración mediante el uso del software CYPECAD MEP al modelizar la vivienda incluyendo el recuperador de calor.

- Demanda energética de calefacción: 1.2 kWh/m²año.
- Demanda energética de refrigeración: 0.83 kWh/m²año.

En la siguiente tabla se comparan los valores obtenidos entre la demanda energética de la vivienda inicial y la de la vivienda implementando las mejoras pasivas y el recuperador de calor.

Tabla 11.27 - Valores de la demanda energética de la vivienda antes y después de la implementación de las mejoras pasivas y el recuperador de calor.

	Demanda energética de calefacción (kWh/m²año)	Demanda energética de refrigeración (kWh/m²año)
Inicial	33.19	11.03
Mejoras pasivas con recuperador de calor	1.2	0.83

De esta forma, se ha reducido en un total de 31.99 kWh/m²año la demanda energética de calefacción, que equivale a una reducción del 96.38 %.

Por otro lado, se ha alcanzado una disminución de 10.2 kWh/m²año en la demanda de energética de refrigeración, que equivale a una reducción del 92.48 %.

Con el objetivo de comprender los resultados más fácilmente, se representan los resultados obtenidos en la siguiente gráfica:

Demanda energética (kWh/m²año)

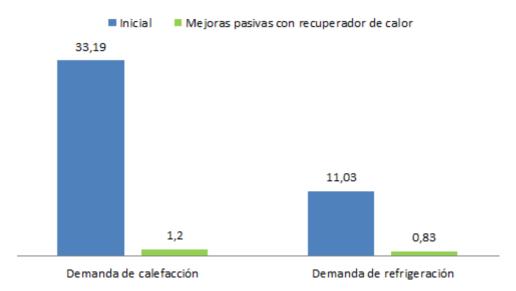


Figura 11.35 - Gráfica de las reducciones alcanzadas en la demanda energética tras la implementación de las mejoras pasivas y del recuperador de calor.

11.2.1.2 Demanda térmica.

La reducción de la demanda energética de la vivienda, da lugar a una reducción de la potencia térmica que deben suministrar las diferentes instalaciones térmicas de climatización.

La potencia térmica que deben suministrar los equipos de ACS no varía, ya que esta demanda es independiente de la demanda energética de climatización del edificio.

Mediante la modelización de la vivienda en el software CYPECAD MEP se obtienen los siguientes valores de potencia térmica a instalar:

Calefacción: 2.2306 kW (15 W/m²)

Refrigeración: 3.2034 k W (23.7 W/m²)

Producción de ACS: 3.131 kW

En la siguiente tabla se compara la demanda térmica de la vivienda con la implementación de las mejoras pasivas y el recuperador de calor con la demanda térmica inicial de la vivienda.

Tabla 11.28 – Demanda térmica de climatización y de ACS de la vivienda antes y después de la implementación de las mejoras pasivas y el recuperador de calor.

	Demanda térmica (kW)		
	Calefacción	Refrigeración	ACS
Vivienda inicial	7.6	7.4	3.51
Vivienda con mejoras pasivas y recuperador de calor	2.2	3.2	3.51

En la siguiente gráfica se representan la demanda térmica de la vivienda inicial y la demanda térmica de la vivienda tras incorporar las mejoras pasivas y el recuperador de calor:

Demanda térmica (kW)

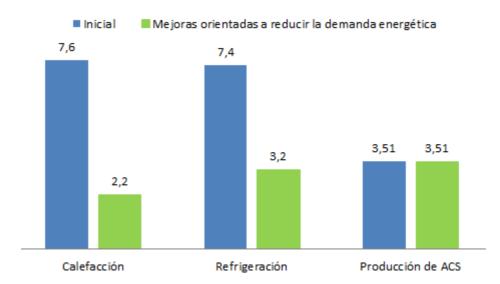


Figura 11.36 – Gráfica comparativa de la potencia térmica de la vivienda antes y después de la implementación de las mejoras pasivas con recuperador de calor.

12 Mejoras destinadas a cubrir la demanda energética mediante energía procedente de fuentes renovables.

Una vez minimizadas las demandas energética y térmica de la vivienda, el objetivo del estudio es cubrir la demanda energética obtenida mediante instalaciones que utilicen energía "limpia". Es decir, se estudia la aplicación de diferentes sistemas basados en energía procedente de fuentes renovables.

El objetivo de estas mejoras será, por tanto, reducir al máximo el consumo de energía primaria no renovable y las emisiones de CO₂ a la atmósfera.

Para ello se proponen diferentes sistemas que cubran la demanda energética, sustituyendo el gas natural utilizado en la caldera y utilizando una bomba calor de alta eficiencia.

12.1 Caldera de biomasa densificada.

La primera medida que se propone es la sustitución de la caldera de gas natural por una caldera de biomasa densificada (pellets).

La nueva caldera de biomasa densificada se instalará para cubrir la demanda térmica de calefacción y la de ACS.

12.1.1 Descripción de la solución estudiada.

Se propone la instalación de una caldera de biomasa debido a las ventajas que presenta:

- ➤ El balance de CO₂ emitido es neutro, debido a que el CO₂ emitido en la combustión de la biomasa es igual al CO₂ capturado por las plantas originarias de la biomasa durante el proceso de fotosíntesis.
- La biomasa se considera una energía renovable, por tanto, el uso de biomasa como combustible implica un consumo de energía primaria no renovable nulo (sin tener en cuenta la energía consumida en el transporte, procesos de secado y de densificación).
- El precio de la biomasa es estable, no depende de mercados internacionales como la gran mayoría de los combustibles fósiles.
- El contenido de cenizas en los pellets es muy reducido, en torno a un 0.5 %.

Sin embargo, el uso de calderas de biomasa también presenta una serie de inconvenientes:

- ➤ El poder calorífico de los biocombustibles es, en general, inferior al de los combustibles fósiles tradicionales. Esto se traduce en que se necesitará una cantidad mayor de biocombustible para cubrir una misma demanda energética.
- ➤ El rendimiento de las calderas de biomasa es, en general, inferior al de las calderas de combustibles fósiles convencionales, lo que atenta contra el principio de utilizar instalaciones térmicas de elevada eficiencia.

12.1.1.1 Pellets.

Los pellets son un tipo de biocombustible que proceden de restos forestales y de restos de la industria maderera. Se utilizan en forma de cilindro granulado para aumentar el rendimiento como combustible.

En la siguiente tabla se describen las principales características de los pellets de madera estándar:

Tabla 12.1 – Características principales de los pellets de madera estándar.

Características térmicas de los pellets		
Poder Calorífico Inferior, PCI (kcal/kg)	4100	
Humedad en base húmeda (%)	< 12	
Densidad (kg/m³)	1000 - 1400	
Longitud (mm)	< 50	
Diámetro (mm)	4 - 10	

12.1.1.2 Caldera de pellets.

La caldera deberá tener una potencia térmica de, al menos, 5.71 kW. Esta potencia equivale a la suma de la demanda térmica de calefacción y la de producción de ACS.

Se propone la instalación de una caldera de pellets de la casa Domusa, modelo BioClass 9.

Equipamiento de la caldera:

- Sinfín de alimentación.
- > Sistema antirretorno de llama.
- Sistema de autolimpieza de quemador.
- Quemador.
- Bomba de circulación.
- Válvula de retorno anticondensados.
- Válvula de seguridad.
- > Sistema de autolimpieza pasos de humo.
- Motor ventilador.
- > Programador horario.

En la siguiente tabla se recogen las características principales de la caldera:

Tabla 12.2 - Características principales de la caldera pellets.

Características de la caldera de pellets		
Potencia nominal (kW)	9.4	
Rendimiento a potencia nominal (%)	92.4	
Capacidad almacenamiento pellets (kg)	200 kg	
Volumen cámara de agua (I)	46	
Combustible	Pellets de madera	

Además, se instala un depósito para acumulación de ACS de 120, dispone de una resistencia eléctrica. El depósito es de la casa Salvador Escoda, modelo vertical IVRS.

12.2 Bomba de calor de alta eficiencia.

Una bomba de calor es un equipo de climatización basado en la refrigeración reversible. El funcionamiento se basa en intercambiar calor entre un foco frío y un foco caliente a través de un fluido que cambia de estado al ceder o absorber calor.

En modo refrigeración, el fluido refrigerante absorbe calor del foco frío (interior de la vivienda) y lo cede al foco caliente (exterior de la vivienda). Para ello se aporta un trabajo mediante el consumo de energía eléctrica.

Se estudia la instalación de una bomba de calor aerotérmica, es decir, el aprovechamiento de la energía calorífica almacenada en el aire ambiente.

12.2.1 Descripción de la solución estudiada.

La bomba de calor deberá tener una potencia térmica de, al menos, 3.2 kW, para cubrir completamente la demanda energética de refrigeración de la vivienda.

Con este objetivo, se propone la instalación de una bomba de calor reversible de la casa DAIKIN, modelo URURU SARARA TXZ35N.

En la siguiente tabla se definen las características principales de la bomba de calor:

Bomba de calor URURU SARARA, DAIKIN

Capacidad refrigeración (W) 3500

Consumo (W) 660

EER 5.3

Tabla 12.3 – Características principales de la bomba de calor.

En la siguiente imagen se muestra el etiquetado energético de la bomba de calor propuesta, facilitado por el fabricante:

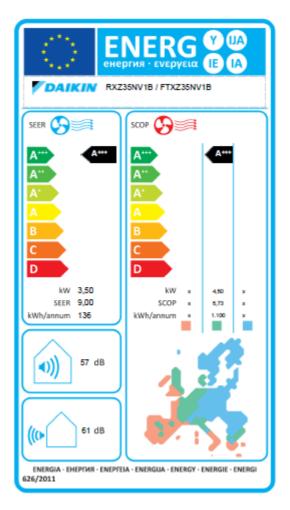


Figura 12.1 – Etiquetado energético de bomba de calor URURU-SARARA TXZ35N.

13 Calificación energética de la vivienda con las mejoras propuestas.

Se obtiene la calificación energética de la vivienda implementando de forma conjunta las mejoras escogidas mediante la modelización de la vivienda en la Herramienta Unificada Lider Calener.

La calificación energética se expresa en función de dos parámetros: el consumo de energía primaria no renovable y las emisiones de CO₂.

En la siguiente imagen se muestra la certificación de calificación energética obtenida para la vivienda con la implementación de las mejoras:

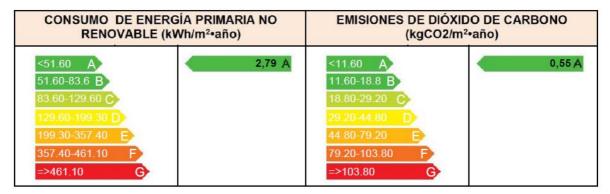


Figura 13.1 – Calificación energética de la vivienda con mejoras.

13.1 Calificación energética de la vivienda con mejoras en emisiones.

La calificación se expresa en términos de dióxido de carbono emitido a la atmósfera como consecuencia del consumo energético de la vivienda.

En la siguiente imagen se muestra la calificación de la vivienda en emisiones:

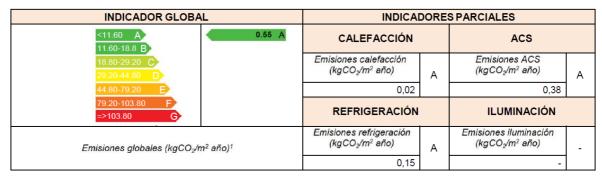


Figura 13.2 – Calificación energética de la vivienda con mejoras en emisiones.

13.2 Calificación de la vivienda con mejoras en consumo de energía primaria no renovable.

La calificación se expresa en términos de energía primaria no renovable que no ha sufrido ningún proceso de conversión o transformación.

En la siguiente imagen se muestra la calificación de la vivienda en consumo de energía primaria no renovable:

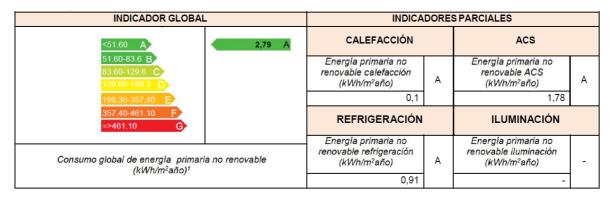


Figura 13.3 – Calificación energética de la vivienda con mejoras en consumo de energía primaria no renovable.

14 Estudio económico.

Una vez conocido el ahorro energético resultante de la implementación de las mejoras, se debe determinar el ahorro económico.

Para ello se deberá determinar el presupuesto de la vivienda inicial, tanto el estructural como el debido a las instalaciones. También se calcula la inversión económica asociada a la implementación de las mejoras propuestas.

Los presupuestos completos se definen en el Anexo III.

Una vez conocidos los valores de los presupuestos y de la inversión, se calculará el ahorro económico y el periodo de amortización de las mejoras.

El periodo de amortización se calcula por una parte, comparando la inversión derivada de la implementación de las mejoras destinadas a reducir la demanda energética de climatización con la inversión debida a la construcción inicial de la vivienda. Por otro lado, se compara la inversión de las instalaciones térmicas propuestas con las instalaciones térmicas diseñadas inicialmente para cubrir la demanda energética de la vivienda.

Para realizar este estudio se toman unos precios base relativos al coste de la energía eléctrica y de los diferentes combustibles utilizados.

Los precios base de las diferentes energías se han obtenido a partir de las tarifas generales para hogares de Iberdrola y del Instituto para la Diversificación y Ahorro de Energía (IDAE).

En la siguiente tabla se definen los precios base de energía final utilizados para el desarrollo del estudio económico.

Precios base energía						
Energía eléctrica (€/kWh)	0.130980					
Gas natural (€/kWh)	0.066					
Pelets de madera estándar (€/t)	183.62					

Tabla 14.1 – Precios base de energía final.

Para determinar el periodo de amortización de las mejoras, es necesario tener en cuenta la demanda energética de la vivienda antes y después de la implementación de las mismas. Por ello, en la siguiente tabla se resumen los valores relativos a la demanda energética anual de la vivienda:

Demanda energética total vivienda sin mejoras (kWh/año)

Calefacción

4484.4

162.2

Refrigeración

1490.1

112.15

ACS

2252.8

Tabla 14.2 – Demanda energética total de la vivienda con y sin mejoras.

14.1 Elementos estructurales.

En primer lugar se determina el coste debido a los elementos que constituyen la edificación inicial. Este coste incluye el coste de los cerramientos opacos de la envolvente térmica y el de los huecos.

Posteriormente se determina el coste debido a los elementos que constituyen la edificación con mejoras. Este coste incluye el coste de los cerramientos opacos de la envolvente térmica mejorados, el de los huecos propuestos, el de la galería y el del recuperador de calor.

El presupuesto de cada partida incluye los costes debidos a los materiales y a la mano de obra.

No se tendrán en cuenta los costes de parámetros que no varíen al introducir las mejoras, ya que no supondrán una inversión, como las particiones interiores o el forjado entre pisos.

14.1.1 Edificación inicial.

A continuación se detalla el coste de ejecución de los cerramientos que constituyen la envolvente térmica de la vivienda. Es decir, se describe el presupuesto de los cerramientos opacos de la vivienda y de los huecos proyectados inicialmente, sin implementar las mejoras propuestas.

Costes estructurales de la vivienda sin mejoras.							
Tipo de elemento Coste (€)							
Cerramientos opacos	33441.61						
Cerramientos transparentes	1868.40						
Total	35310.01						

Tabla 14.3 – Presupuesto de los elementos estructurales de la edificación inicial.

14.1.2 Edificación con mejoras.

A continuación se detalla el coste de ejecución de los nuevos cerramientos opacos de la envolvente térmica, de los huecos propuestos, de la galería acristalada y del recuperador de calor.

El coste de la instalación del recuperador de calor se tiene en cuenta en este apartado aunque no se trate de un elemento estructural, porque su objetivo es reducir la demanda energética de la vivienda, no es una instalación térmica y el coste debido al consumo de energía final es despreciable, ya que sólo consume 100 W eléctricos.

El presupuesto incluye el coste de los materiales y de la mano de obra.

Costes estructurales de la vivienda con mejoras.							
Tipo de elemento Coste (€)							
Cerramientos opacos	33717.37						
Huecos	5964.34						
Galería acristalada	10929.09						
Recuperador de calor	1001.44 €						
Total	50610.8						

Tabla 14.4 – Presupuesto de las mejoras orientadas a reducir la demanda energética de la vivienda.

14.2 Periodo de amortización de los elementos estructurales.

Una vez definidas la inversión de la vivienda inicial y la inversión de la vivienda implementando las mejoras estructurales y el recuperador de calor, puede determinarse el periodo de amortización del conjunto de las soluciones propuestas en la edificación de la vivienda.

El periodo de amortización de los elementos estructurales se calcula a partir de la demanda energética de la vivienda antes y después de implementar los cambios estructurales descritos y del coste por consumo de energía final.

Para que la comparación económica sea representativa, el coste debido al consumo de energía final se calcula teniendo en cuenta el mismo tipo de energía final en los dos tipos de edificaciones. Así, se supondrá que la demanda térmica de climatización está cubierta por el uso de gas natural y que la demanda térmica de refrigeración está cubierta por energía eléctrica.

Además, para realizar este cálculo no se tienen en cuenta los rendimientos de las instalaciones térmicas, ya que sólo interesa conocer el ahorro económico debido a la reducción de la demanda energética.

En la siguiente tabla se determina el periodo de amortización de los elementos estructurales.

Tabla 14.5 – Periodo de amortización de las mejoras orientadas a reducir la demanda energética de la vivienda.

Inve	rsión (€)	Coste anual por consumo energético (€/año)			
Vivienda inicial	Vivienda con mejoras	Vivienda inicial	Vivienda con mejoras		
33310.01	50610.8	491.145 25.395			
Sobrein	versión (€)	Ahorro económico (€/año)			
173	300.79	465.75			
Periodo de amortización (años)					
37.146 (37 años y 2 meses)					

14.3 Instalaciones térmicas.

A continuación se determina el coste debido a las instalaciones térmicas. Este coste incluye la inversión correspondiente a las instalaciones de los equipos térmicos y el coste por consumo de energía final.

Una vez determinados estos costes, se calcula el periodo de amortización de las instalaciones térmicas propuestas en el presente estudio.

14.3.1 Instalaciones térmicas de la vivienda inicial.

Los sistemas definidos en la vivienda inicial para cubrir la demanda energética de la misma son: una caldera de biomasa, instalación solar térmica y cuatro bombas de calor reversibles.

A continuación se calculan los costes asociados a cada uno de ellos.

14.3.1.1 Caldera a condensación de gas natural.

A continuación se detallan los costes debidos a la instalación de la caldera de gas natural.

Por un lado, se determinan los costes debidos a la propia instalación de la caldera. Estos costes incluyen el precio de los equipos que conforman la instalación y la mano de obra necesaria para realizar dicha instalación.

Además, se determinan los costes debidos al consumo de energía final. El consumo de energía final depende de la demanda energética de la vivienda, del rendimiento de la caldera, así como del combustible utilizado.

EL coste asociado al consumo energético (CE), se calcula dividiendo la demanda energética (DE) a cubrir por la caldera de gas natural (demanda energética de calefacción más el 50 % de la demanda energética de ACS), entre el rendimiento de la caldera.

$$\text{CE} = \frac{DE}{\eta} = \frac{4484.4 \frac{kWh}{a\~no} + 1126.4 \frac{kWh}{a\~no}}{1.088} = 5156.985 \text{ kWh/a\~no}$$

Una vez obtenido el consumo de energía final, se calcula el precio asociado al mismo, en función del coste del combustible, en este caso gas natural.

Coste anual = CE*coste gas natural = 5156.985
$$\frac{kWh}{a\tilde{n}o}$$
 * 0.066 $\frac{€}{kWh}$ = 340.36 €/año.

Tabla 14.6 – Presupuesto de la instalación de la caldera de gas natural.

Presupuesto caldera gas natural						
Instalación caldera 2440.77 €						
Consumo energético	340.36 €/año					

14.3.1.2 Instalación solar térmica.

En este caso sólo se determinan los costes debidos a la instalación de los equipos, que incluyen el coste de los materiales y de la mano de obra necesaria para llevar a cabo la instalación.

Tabla 14.7 – Presupuesto de la instalación solar térmica.

Presupuesto instala	ción solar térmica
Instalación	3287.298€

14.3.1.3 Bomba de calor reversible.

Por un lado se determinan los costes debidos a la propia instalación del equipo. Estos costes incluyen el precio de los equipos que conforman la instalación y la mano de obra necesaria para realizar dicha instalación.

Además, se determinan los costes debidos al consumo de energía final. El consumo de energía final depende de la demanda energética de refrigeración de la vivienda, de la potencia frigorífica de la bomba de calor, así como del precio de la electricidad.

EL coste asociado al consumo energético (CE), se calcula dividiendo la demanda energética (DE) a cubrir por la bomba de calor, entre la potencia frigorífica de la bomba de calor.

CE =
$$\frac{DE}{\eta} = \frac{1490.1 \frac{kWh}{año}}{3.42} = 435.7 \text{kWh/año}$$

Una vez obtenido el consumo de energía final, se calcula el precio asociado al mismo, en función del coste de la energía utilizada, en este caso energía eléctrica.

Coste anual = CE*coste energía eléctrica= 435.7
$$\frac{kWh}{a\tilde{n}o}$$
 * 0. 130980 $\frac{€}{kWh}$ = 57.07 €/año

Tabla 14.8 – Presupuesto de la instalación de la bomba de calor reversible.

Presupuesto bomba de calor						
Instalación bomba de calor (4 unidades)	1778.36 €					
Consumo energético	57.07 €/año					

14.3.2 Instalaciones térmicas propuestas.

Las instalaciones térmicas estudiadas para aumentar la eficiencia energética de la vivienda son: una caldera de biomasa densificada y una bomba de calor de alta eficiencia.

A continuación se calculan los costes asociados a cada una de ellas.

14.3.2.1 Caldera de biomasa.

Por un lado, se determinan los costes debidos a la propia instalación de la caldera. Estos costes incluyen el precio de los equipos que conforman la instalación y la mano de obra necesaria para realizar dicha instalación.

Además, se determinan los costes debidos al consumo de energía final. El consumo de energía final depende de la demanda energética de la vivienda, del rendimiento de la caldera, así como del combustible utilizado.

EL coste asociado al consumo energético (CE), se calcula dividiendo la demanda energética (DE) a cubrir por la caldera de biomasa (demanda energética de calefacción y demanda energética de ACS), entre el rendimiento de la caldera.

$$CE = \frac{DE}{\eta} = \frac{162.2 \frac{kWh}{a\~no} + 2252.8 \frac{kWh}{a\~no}}{0.924} = 2613.63 \text{ kWh/a\~no}$$

Una vez obtenido el consumo de energía final, se calcula el precio asociado al mismo, en función del coste del combustible, en este caso biomasa densificada (pellets).

Coste anual = 2613.63
$$\frac{kWh}{a\tilde{n}o} * \frac{1 \ kg}{4.756 \ kWh} * \frac{1 \ t}{1000 \ kg} * 183.62 \frac{€}{t} = 100.9 €/a\tilde{n}o.$$

Presupuesto caldera biomasa

Instalación caldera 3600 €

Consumo energético 100.9 €/año

Tabla 14.9 – Presupuesto de la instalación de la caldera de biomasa.

14.3.2.2 Bomba de calor reversible de alta eficiencia.

A continuación se detallan los costes debidos a la instalación de la bomba de calor reversible de la casa DAIKIN.

Por un lado se determinan los costes debidos a la propia instalación del equipo. Estos costes incluyen el precio de los equipos que conforman la instalación y la mano de obra necesaria para realizar dicha instalación.

Además, se determinan los costes debidos al consumo de energía final. El consumo de energía final depende de la demanda energética de refrigeración de la vivienda, de la potencia frigorífica de la bomba de calor, así como del precio de la electricidad.

EL coste asociado al consumo energético (CE), se calcula dividiendo la demanda energética (DE) a cubrir por la bomba de calor, entre la potencia frigorífica de la bomba de calor.

$$CE = \frac{DE}{\eta} = \frac{112.15 \frac{kWh}{año}}{5.3} = 21.16 \text{ kWh/año}$$

Una vez obtenido el consumo de energía final, se calcula el precio asociado al mismo, en función del coste de la energía utilizada, en este caso energía eléctrica.

Coste anual = CE*coste energía eléctrica= 21.16
$$\frac{kWh}{a\tilde{n}o}$$
 * 0. 130980 $\frac{€}{kWh}$ = 2.77 €/año.

Presupuesto bomba de calor

Instalación bomba de calor 2138 €

2.77 €/año

Tabla 14.10 – Presupuesto de la instalación de la bomba de calor reversible de alta eficiencia.

14.4 Periodo de amortización de las instalaciones térmicas.

Consumo energético

Una vez definidas la inversión debida a las instalaciones térmicas proyectadas en la vivienda inicial y la inversión debida a las instalaciones térmicas propuestas para mejorar la eficiencia térmica del edificio, además del coste por consumo de energía final de cada instalación térmica, puede determinarse el periodo de amortización de las instalaciones propuestas.

El periodo de amortización de las instalaciones térmicas se calcula a partir de la sobreinversión debida a la instalación de los equipos térmicos propuestos, del consumo energético de la vivienda y del coste por consumo de energía final.

El periodo de amortización de las instalaciones térmicas de calefacción y ACS no se calcula, ya que la inversión correspondiente a las mejoras propuestas es inferior a la de las instalaciones iniciales y el coste anual por consumo energético también es inferior. Por lo que la caldera de biomasa es más rentable desde el momento de la instalación.

En la siguiente tabla se determina el periodo de amortización de la instalación térmica de refrigeración.

Tabla 14.11 – Periodo de amortización de la instalación térmica de refrigeración propuesta.

Instalación térmica de refrigeración							
Inversió	n (€)	Coste anual por coi (€/ai	_				
Inicial	Propuesta	Inicial	Propuesta				
1778.36	2138	57.07 2.77					
Sobreinvers	sión (€)	Ahorro econó	mico (€/año)				
359.6	4	54.	3				
Periodo de amortización (años)							
6.62 (6 años y 8 meses)							

15 Resumen de las mejoras propuestas y de los resultados obtenidos.

16 Conclusiones.

Tras finalizar el estudio sobre la implementación de sistemas energéticos para alcanzar los criterios exigidos a edificios de consumo energético casi nulo en una vivienda, se pueden extraer las siguientes conclusiones:

Mediante la incorporación de mejoras en la edificación que aprovechen la energía solar de forma pasiva, es decir, implementando criterios basados en la arquitectura bioclimática, es posible reducir la demanda energética de la vivienda a valores casi nulos. Así, se puede obtener una vivienda cuya demanda energética quede cubierta por instalaciones térmicas que presentan un consumo de energía final mínimo.

Con el objetivo de cubrir la mínima demanda energética alcanzada mediante la implementación de las mejoras propuestas, se estudian instalaciones térmicas de alta eficiencia y alimentadas mediante energía procedente de fuentes renovables. De esta forma, se logra reducir drásticamente el consumo de energía primaria no renovable y las emisiones de CO₂, contribuyendo a frenar el calentamiento global y la dependencia energética de los combustibles fósiles.

Las mejoras que se propongan para aumentar la eficiencia energética de los edificios deben ser económicamente viables, además de energéticamente eficientes. Es importante determinar el periodo de amortización de las mejoras estudiadas, ya que si es superior al periodo de vida útil del elemento que constituye la mejora, no será viable su implementación.

Una vez que se consigue reducir la demanda energética de climatización a valores mínimos, no es viable utilizar sistemas como instalaciones solares térmicas o instalaciones fotovoltaicas para cubrir las necesidades térmicas de la vivienda, ya que suponen una inversión demasiado elevada en comparación con el gasto anual en consumo de energía final, dando lugar a un periodo de amortización excesivo.

Uno de los parámetros de mayor influencia en los estudios energéticos en la edificación es el clima. Ya que, dependiendo de las condiciones del entorno, será necesario potenciar unas medidas u otras. Así, mejoras energéticas que resulten muy eficientes en climas fríos, serán contraproducentes en climas cálidos. Por lo que, todo estudio de eficiencia energética debe desarrollarse en función de las condiciones climáticas correspondientes al emplazamiento del edificio de estudio.

El método utilizado para determinar la calificación energética de los edificios es insuficiente, ya que únicamente considera dos criterios: el consumo de energía primaria no renovable y las emisiones de CO₂. Por lo que, si las instalaciones térmicas de un edificio utilizan energía renovable, aunque la demanda energética del edificio sea exageradamente elevada por no ser estructuralmente eficiente desde un punto de vista térmico, le corresponderá una calificación energética tipo A.

17 Bibliografía.

E. Mazria. Energía solar pasiva.1983.

J. Neila. Arquitectura bioclimática en un entorno sostenible: buenas prácticas edificatorias.2000.

Guía de Rehabilitación Energética de Edificios de Viviendas. Fundación de la energía de la comunidad de Madrid.

Guía de renovación de aire eficiente en el sector residencial. Fundación de la energía de la comunidad de Madrid.

Guía del Estándar Passivhaus: Edificios de consumo energético casi nulo. Fundación de la energía de la comunidad de Madrid.

Guía sobre Materiales Aislantes y Eficiencia Energética. Fundación de la energía de la comunidad de Madrid.

Guía Técnica: "Ahorro y recuperación de energía en instalaciones de climatización". Instituto para la Diversificación y Ahorro de Energía (IDAE).

Guía Técnica para la Rehabilitación de la Envolvente Térmica de los Edificios: Soluciones de Aislamiento con Vidrios y Cerramientos. Instituto para la Diversificación y Ahorro de Energía (IDAE).

Manual práctico de soluciones constructivas bioclimáticas para la arquitectura contemporánea. Junta de Castilla y León.

Agencia Estatal de Meteorología (AEMET). www.aemet.es

Asociación Española de valorización energética de la biomasa. www.avebiom.org

Beyond Sustainable. www.beyondsustainable.net

BIOURB-Diversidad bioconstructiva. www.biourb.net

Calor y frío. www.caloryfrio.com

Certificados Energéticos. www.certificadosenergeticos.com

Click Renovables. www.clickrenovables.com

Código Téncino de la Edificación. www.codigotecnico.org

Efinovatic. www.efinovatic.es

El periódico de la energía. www.elperiodicodelaenergia.com

Energía y Minería en Castilla y León. www.energia.jcyl.es

ENERGIEHAUS EDIFICIOS PASIVOS. www.energiehaus.es

Escuela de Organización Industrial. www.eoi.es

IBERDROLA. www.iberdrola.es

IDAE, Instituto para la Diversificación y Ahorro de la Energía. www.idae.es

Ingemecánica. www.ingemecanica.com

Instalaciones y eficiencia energética. www.instalacionesyeficienciaenergetica.com

Ovacen. www.ovacen.com

Passipedia: The Passive House Resource. www.passipedia.org

Plataforma Edificación Passivhaus. www.plataforma-pep.org

Plataforma para un nuevo modelo energético. www.nuevomodeloenergetico.org

Probico Arquitectura Studio. www.probicosl.com

Promateriales de construcción y arquitectura actual. www.promateriales.com

Reglamento de Instalaciones Térmicas de los Edificios. Ministerio de Industria Energía y Turismo. www.minetur.gob.es

S.LOW.ENERGY: Plataforma para sostenibilidad de la energía en España. www.tecno.sostenibilidad.org

Schneider Electric. www.schneiderelectric.es

ANEXO I: CÁLCULOS

1. Demanda energética de climatización inicial de la vivienda	110
2. Demanda térmica inicial de la vivienda	111
3. Demanda energética de climatización de la vivienda con mejoras en la envolven térmica.	
4. Demanda energética de climatización de la vivienda con mejoras en la envolven térmica y con muro trombe.	
5. Demanda energética de climatización de la vivienda con mejoras en la envolven térmica y con galería acristalada	
6. Demanda energética de climatización de la vivienda con mejoras en la envolven térmica y con zona tampón.	
7. Demanda energética de climatización e la vivienda con las mejoras pasivas implementadas de forma conjunta.	116
8. Demanda energética de climatización de la vivienda con las mejoras pasivas implementadas de forma conjunta y con el recuperador de calor	117
9. Demanda térmica de la vivienda con las mejoras orientadas a reducir su demande energética de climatización	
10. Certificación energética inicial de la vivienda.	120
11. Certificación energética de la vivienda con las mejoras propuestas	128

1. Demanda energética de climatización inicial de la vivienda.

1.- RESULTADOS DEL CÁLCULO DE DEMANDA ENERGÉTICA.

1.1.- Demanda energética anual por superficie útil.

 $D_{cal,edificio} = 33.19 \text{ kWh/(m}^2 \cdot \tilde{ano}) \le D_{cal,lim} = D_{cal,base} + F_{cal,sup}/S = 41.8 \text{ kWh/(m}^2 \cdot \tilde{ano})$

donde:

 $D_{cal,edificio}$: Valor calculado de la demanda energética de calefacción, kWh/($m^2 \cdot a\tilde{n}o$).

D_{cal,lim}: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, kWh/(m²·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

S: Superficie útil de los espacios habitables del edificio, 135.12 m².

$D_{ref,edificio} = 11.03 \text{ kWh/(m}^2 \cdot \text{año}) \le D_{ref,lim} = 15.0 \text{ kWh/(m}^2 \cdot \text{año})$

donde:

 $D_{ref,edificio}$: Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$). $D_{ref,lim}$: Valor límite de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$).

1.2.- Resumen del cálculo de la demanda energética.

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

Zonas habitables	S _u (m²)	D_{cal}		$D_{cal,base}$		$D_{cal,lim}$	D,	ref	$D_{ref,lim}$	
		(kWh /año)	(kWh/ (m²·a))	(kWh /(m²·año))	F _{cal,sup}	(kWh /(m²·año))	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²∙año))	
Vivienda unifamiliar	135.12	4484.4	33.2	27	2000	41.8	1490.1	11.0	15.0	
	135.12	4484.4	33.2	27	2000	41.8	1490.1	11.0	15.0	

donde:

 S_u : Superficie útil de la zona habitable, m^2 .

 D_{cal} : Valor calculado de la demanda energética de calefacción, kWh/(m^2 ·año).

 $D_{cal,base}$: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/($m^2 \cdot a\tilde{n}o$).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

 $D_{cal,lim}$: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, $kWh/(m^2 \cdot a \tilde{n}o)$.

 D_{ref} : Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a\tilde{n}o$).

2. Demanda térmica inicial de la vivienda.

1.- RESUMEN DE LOS RESULTADOS DE CÁLCULO DE LOS RECINTOS Refrigeración

	Conjunto: Viv												
		Subtotales Carga interna				Ventilación			Potencia térmica				
Recinto	Planta	Estructur al (W)	Sensible interior (W)	Total interior (W)	Sensibl e (W)	Total (W)	Cauda I (m³/h)	Sensibl e (W)	Carga total (W)	Por superficie (W/m²)	Sensibl e (W)	Máxima simultánea (W)	Máxim a (W)
Salón	Planta baja	3628.68	255.89	325.67	4389.5 6	4466.3 2	64.80	-66.58	-3.44	139.87	4322.9 8	1102.53	4462.8 9
Dormitorio1	Planta baja	958.52	135.42	170.31	1236.1 6	1274.5 4	36.00	67.04	89.85	86.17	1303.1 9	1338.65	1364.3 8
Baño1	Planta baja	0.00	425.01	634.35	480.27	710.54	54.00	-5.86	35.97	217.61	474.41	529.58	746.51
Cocina	Planta baja	2.90	496.67	929.30	564.51	1040.4 1	60.80	-6.60	40.50	140.93	557.91	742.47	1080.9 1
Pasillo1	Planta baja	0.00	10.67	10.67	12.06	12.06	0.00	0.00	0.00	3.74	12.06	6.97	12.06
Hall	Planta baja	72.03	16.79	16.79	100.37	100.37	0.00	0.00	0.00	16.26	100.37	100.37	100.37
Zona de lavado	Planta baja	2.32	421.44	630.78	478.85	709.13	54.00	-5.86	35.97	236.75	472.99	538.82	745.10
Dormitorio2	Planta 1	714.68	122.42	157.31	945.92	984.30	36.00	67.04	89.85	84.94	1012.9 6	1068.36	1074.1 4
Dormitorio3	Planta 1	714.71	119.87	154.76	943.07	981.45	36.00	67.04	89.85	89.12	1010.1 1	1063.42	1071.2 9
Baño2	Planta 1	16.24	473.27	682.61	553.14	783.41	54.00	-5.86	35.97	112.86	547.28	651.04	819.38
Pasillo2	Planta 1	33.56	18.44	18.44	58.76	58.76	0.00	0.00	0.00	8.66	58.76	58.76	58.76
Salón	Planta 1	54.56	0.00	0.00	61.66	61.66	0.00	0.00	0.00	2.46	61.66	24.05	61.66
Total	Total							Carga	total simu	ıltánea		7225.0	

Calefacción

Conjunto: Viv									
			Ve	ntilación	Potencia				
Recinto	Planta	Carga interna sensible (W)	Cauda l (m³/h)	Carga total	Por superficie (W/m²)	Máxima simultánea (W)	Máxima (W)		
Salón	Planta baja	1038.65	64.80	540.08	49.48	1578.73	1578.7 3		
Dormitorio1	Planta baja	447.47	36.00	300.04	47.21	747.52	747.52		
Baño1	Planta baja	12.08	54.00	450.07	134.72	462.14	462.14		
Cocina	Planta baja	137.65	60.80	506.74	84.01	644.39	644.39		
Pasillo1	Planta baja	46.40	0.00	0.00	14.38	46.40	46.40		
Hall	Planta baja	607.89	0.00	0.00	98.47	607.89	607.89		
Zona de lavado	Planta baja	65.32	54.00	450.07	163.76	515.39	515.39		
Dormitorio2	Planta 1	463.28	36.00	300.04	60.36	763.32	763.32		
Dormitorio3	Planta 1	428.56	36.00	300.04	60.61	728.60	728.60		
Baño2	Planta 1	213.44	54.00	450.07	91.39	663.50	663.50		
Pasillo2	Planta 1	192.55	0.00	0.00	28.39	192.55	192.55		
Salón	Planta 1	420.38	0.00	0.00	16.80	420.38	420.38		
Total			395.6	Carga tota simultáne		7370.8			

3. Demanda energética de climatización de la vivienda con mejoras en la envolvente térmica.

1.- RESULTADOS DEL CÁLCULO DE DEMANDA ENERGÉTICA.

1.1.- Demanda energética anual por superficie útil.

 $D_{cal,edificio} = 13.51 \text{ kWh/}(\text{m}^2 \cdot \tilde{\text{ano}}) \leq D_{cal,lim} = D_{cal,base} + F_{cal,sup}/S = 41.8 \text{ kWh/}(\text{m}^2 \cdot \tilde{\text{ano}})$

donde

 $D_{cal,edificio}$: Valor calculado de la demanda energética de calefacción, kWh/($m^2 \cdot a\tilde{n}o$).

D_{cal,lim}: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, kWh/(m²·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

S: Superficie útil de los espacios habitables del edificio, 135.12 m².

 $D_{ref,edificio} = 1.08 \text{ kWh/(m}^2 \cdot \tilde{a}no) \le D_{ref,lim} = 15.0 \text{ kWh/(m}^2 \cdot \tilde{a}no)$

donde:

 $D_{ref,edificio}$: Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$). $D_{ref,lim}$: Valor límite de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$).

1.2.- Resumen del cálculo de la demanda energética.

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

	Su	D_{cal}		$D_{cal,base}$		$D_{cal,lim}$	D_{ref}		$D_{ref,lim}$	
Zonas habitables	(m²)	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²∙año))	F _{cal,sup}	(kWh /(m²·año))	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²·año))	
Vivienda unifamiliar	135.12	1824.1	13.5	27	2000	41.8	145.9	1.08	15.0	
	135.12	1824.1	13.5	27	2000	41.8	145.9	1.08	15.0	

donde:

 S_u : Superficie útil de la zona habitable, m^2 .

 D_{cal} : Valor calculado de la demanda energética de calefacción, $kWh/(m^2 \cdot a\tilde{n}o)$.

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

F_{cal,sup}: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

 $D_{cal,lim}$: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, $kWh/(m^2 \cdot a \tilde{n}o)$.

 D_{ref} : Valor calculado de la demanda energética de refrigeración, kWh/(m^2 ·año).

4. Demanda energética de climatización de la vivienda con mejoras en la envolvente térmica y con muro trombe.

1.- RESULTADOS DEL CÁLCULO DE DEMANDA ENERGÉTICA.

1.1.- Demanda energética anual por superficie útil.

 $D_{cal,edificio} = 4.0 \text{ kWh/}(\text{m}^2 \cdot \text{a}\tilde{\text{n}}_0) \le D_{cal,lim} = D_{cal,base} + F_{cal,sup}/S = 41.8 \text{ kWh/}(\text{m}^2 \cdot \text{a}\tilde{\text{n}}_0)$

donde:

 $D_{cal,edificio}$: Valor calculado de la demanda energética de calefacción, kWh/($m^2 \cdot a\tilde{n}o$).

D_{cal,lim}: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, kWh/(m²·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

F_{cal,sup}: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

S: Superficie útil de los espacios habitables del edificio, 135.11 m².

$D_{ref,edificio} = 14.6 \text{ kWh/(m}^2 \cdot \tilde{a}\tilde{n}o) \le D_{ref,lim} = 15.0 \text{ kWh/(m}^2 \cdot \tilde{a}\tilde{n}o)$

donde:

 $D_{ref,edificio}$: Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$). $D_{ref,lim}$: Valor límite de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$).

1.2.- Resumen del cálculo de la demanda energética.

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

	Su	D_{cal}		$D_{cal,base}$		$D_{cal,lim}$	D_{ref}		$D_{ref,lim}$
Zonas habitables	(m²)	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²·año))	F _{cal,sup}	(kWh /(m²·año))	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²·año))
Vivienda unifamiliar	135.11	540.5	4.0	27	2000	41.8	1972.8	14.6	15.0
	135.11	540.5	4.0	27	2000	41.8	1972.8	14.6	15.0

donde:

 S_u : Superficie útil de la zona habitable, m^2 .

 D_{cal} : Valor calculado de la demanda energética de calefacción, kWh/(m^2 ·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

 $D_{cal,lim}$: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, $kWh/(m^2 \cdot a \tilde{n}o)$.

D_{ref}: Valor calculado de la demanda energética de refrigeración, kWh/(m²⋅año).

5. Demanda energética de climatización de la vivienda con mejoras en la envolvente térmica y con galería acristalada.

1.- RESULTADOS DEL CÁLCULO DE DEMANDA ENERGÉTICA.

1.1.- Demanda energética anual por superficie útil.

 $D_{cal,edificio} = 8.99 \text{ kWh/}(\text{m}^2 \cdot \text{a}\tilde{\text{n}}_0) \le D_{cal,lim} = D_{cal,base} + F_{cal,sup}/S = 41.8 \text{ kWh/}(\text{m}^2 \cdot \text{a}\tilde{\text{n}}_0)$

donde:

D_{cal,edificio}: Valor calculado de la demanda energética de calefacción, kWh/(m²⋅año).

D_{cal,lim}: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, kWh/(m²·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

F_{cal,sup}: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

S: Superficie útil de los espacios habitables del edificio, 135.12 m².

$D_{ref,edificio} = 1.04 \text{ kWh/(m}^2 \cdot \text{año}) \le D_{ref,lim} = 15.0 \text{ kWh/(m}^2 \cdot \text{año})$

donde

 $D_{ref,edificio}$: Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$). $D_{ref,lim}$: Valor límite de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$).

1.2.- Resumen del cálculo de la demanda energética.

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

	S_u	D_{cal}		$D_{cal,base}$		$D_{cal,lim}$	D_{ref}		$D_{ref,lim}$
Zonas habitables	(m²)	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²∙año))	F _{cal,sup}	(kWh /(m²·año))	(kWh /año)	(kWh/ (m²·a))	(kŴh /(m²∙año))
Vivienda unifamiliar	135.12	1214.9	9.0	27	2000	41.8	140.5	1.04	15.0
	135.12	1214.9	9.0	27	2000	41.8	140.5	1.04	15.0

donde:

 S_u : Superficie útil de la zona habitable, m^2 .

 D_{cal} : Valor calculado de la demanda energética de calefacción, kWh/(m^2 ·año).

 $D_{cal,base}$: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m^2 -año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

 $D_{cal,lim}$: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, $kWh/(m^2 \cdot a \tilde{n}o)$.

 D_{ref} : Valor calculado de la demanda energética de refrigeración, kWh/(m^2 ·año).

6. Demanda energética de climatización de la vivienda con mejoras en la envolvente térmica y con zona tampón.

1.- RESULTADOS DEL CÁLCULO DE DEMANDA ENERGÉTICA.

1.1.- Demanda energética anual por superficie útil.

 $D_{cal,edificio} = 12.12 \text{ kWh/(m}^2 \cdot \tilde{ano}) \le D_{cal,lim} = D_{cal,base} + F_{cal,sup}/S = 41.8 \text{ kWh/(m}^2 \cdot \tilde{ano})$

donde:

D_{cal,edificio}: Valor calculado de la demanda energética de calefacción, kWh/(m²⋅año).

D_{cal,lim}: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, kWh/(m²·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

F_{cal,sup}: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

S: Superficie útil de los espacios habitables del edificio, 135.12 m².

$D_{ref,edificio} = 1.07 \text{ kWh/(m}^2 \cdot \text{año}) \le D_{ref,lim} = 15.0 \text{ kWh/(m}^2 \cdot \text{año})$

donde

 $D_{ref,edificio}$: Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$). $D_{ref,lim}$: Valor límite de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$).

1.2.- Resumen del cálculo de la demanda energética.

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

	Su	D _{cal}		$D_{cal,base}$		$D_{cal,lim}$	D_{ref}		$D_{ref,lim}$
Zonas habitables	(m²)	(kWh /año)	(kWh/ (m²·a))	(kŴh F cal,sup /(m²·año))		(kWh /(m²·año))	(kWh /año)	(kWh/ (m²·a))	(kŴh /(m²·año))
Vivienda unifamiliar	135.12	1638.4	12.1	27	2000	41.8	144.6	1.07	15.0
	135.12	1638.4	12.1	27	2000	41.8	144.6	1.07	15.0

donde:

 S_u : Superficie útil de la zona habitable, m^2 .

D_{cal}: Valor calculado de la demanda energética de calefacción, kWh/(m²·año).

 $D_{cal,base}$: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m^2 -año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

 $D_{cal,lim}$: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, $kWh/(m^2 \cdot a \tilde{n}o)$.

 D_{ref} : Valor calculado de la demanda energética de refrigeración, kWh/(m^2 ·año).

7. Demanda energética de climatización de la vivienda con las mejoras pasivas implementadas de forma conjunta.

1.- RESULTADOS DEL CÁLCULO DE DEMANDA ENERGÉTICA.

1.1.- Demanda energética anual por superficie útil.

 $D_{cal,edificio} = 7.89 \text{ kWh/}(\text{m}^2 \cdot \text{año}) \le D_{cal,lim} = D_{cal,base} + F_{cal,sup}/S = 41.8 \text{ kWh/}(\text{m}^2 \cdot \text{año})$

donde:

 $D_{cal,edificio}$: Valor calculado de la demanda energética de calefacción, kWh/($m^2 \cdot a\tilde{n}o$).

D_{cal,lim}: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, kWh/(m²·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

S: Superficie útil de los espacios habitables del edificio, 135.12 m².

 $D_{ref,edificio} = 1.04 \text{ kWh/(m}^2 \cdot \tilde{ano}) \le D_{ref,lim} = 15.0 \text{ kWh/(m}^2 \cdot \tilde{ano})$

donde:

 $D_{ref,edificio}$: Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$). $D_{ref,lim}$: Valor límite de la demanda energética de refrigeración, kWh/($m^2 \cdot a \tilde{n}o$).

1.2.- Resumen del cálculo de la demanda energética.

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

Zonas habitables	S _u (m²)	(kWh	(kWh/	D _{cal,base} (kWh /(m²·año))	$\mathbf{F}_{cal,sup}$	D _{cal,lim} (kWh /(m²∙año))	(kWh	ref (kWh/	D_{ref,lim} (kWh /(m²∙año))
		/año)	(m²·a))	. , ,,		,, ,,	/año)	(m²·a))	,, ,,
Vivienda unifamiliar	135.12	1065.4	7.9	27	2000	41.8	140.5	1.04	15.0
	135.12	1065.4	7.9	27	2000	41.8	140.5	1.04	15.0

donde:

 S_u : Superficie útil de la zona habitable, m^2 .

 D_{cal} : Valor calculado de la demanda energética de calefacción, $kWh/(m^2 \cdot a\tilde{n}o)$.

 $D_{cal,base}$: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m^2 -año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

 $D_{cal,lim}$: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, $kWh/(m^2 \cdot a \tilde{n}o)$.

D_{ref}: Valor calculado de la demanda energética de refrigeración, kWh/(m²∙año).

8. Demanda energética de climatización de la vivienda con las mejoras pasivas implementadas de forma conjunta y con el recuperador de calor.

1.- RESULTADOS DEL CÁLCULO DE DEMANDA ENERGÉTICA.

1.1.- Demanda energética anual por superficie útil.

 $D_{cal,edificio} = 1.20 \text{ kWh/}(\text{m}^2 \cdot \text{a}\tilde{\text{n}}\text{o}) \le D_{cal,lim} = D_{cal,base} + F_{cal,sup}/S = 41.8 \text{ kWh/}(\text{m}^2 \cdot \text{a}\tilde{\text{n}}\text{o})$

donde:

 $D_{cal,edificio}$: Valor calculado de la demanda energética de calefacción, kWh/(m^2 ·año).

D_{cal,lim}: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, kWh/(m²·año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

S: Superficie útil de los espacios habitables del edificio, 135.12 m².

$D_{ref,edificio} = 0.83 \text{ kWh/(m}^2 \cdot \text{año}) \le D_{ref,lim} = 15.0 \text{ kWh/(m}^2 \cdot \text{año})$

donde

 $D_{ref,edificio}$: Valor calculado de la demanda energética de refrigeración, kWh/($m^2 \cdot a\tilde{n}o$). $D_{ref,lim}$: Valor límite de la demanda energética de refrigeración, kWh/($m^2 \cdot a\tilde{n}o$).

1.2.- Resumen del cálculo de la demanda energética.

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

	Su	D_{cal}		$D_{cal,base}$	_	$D_{cal,lim}$	D_{ref}		$D_{ref,lim}$
Zonas habitables	(m²)	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²∙año))	F _{cal,sup}	(kWh /(m²·año))	(kWh /año)	(kWh/ (m²·a))	(kWh /(m²·año))
Vivienda unifamiliar	135.12	162.2	1.2	27	2000	41.8	112.2	0.8	15.0
	135.12	162.2	1.2	27	2000	41.8	112.2	0.8	15.0

donde:

 S_u : Superficie útil de la zona habitable, m^2 .

D_{cal}: Valor calculado de la demanda energética de calefacción, kWh/(m²∙año).

D_{cal,base}: Valor base de la demanda energética de calefacción, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 1), 27 kWh/(m²·año).

 $F_{cal,sup}$: Factor corrector por superficie de la demanda energética de calefacción, (tabla 2.1, CTE DB HE 1), 2000.

 $D_{cal,lim}$: Valor límite de la demanda energética de calefacción, considerada la superficie útil de los espacios habitables, $kWh/(m^2 \cdot a \tilde{n}o)$.

 D_{ref} : Valor calculado de la demanda energética de refrigeración, kWh/(m^2 ·año).

9. Demanda térmica de la vivienda con las mejoras orientadas a reducir su demanda energética de climatización.

1.- RESUMEN DE LOS RESULTADOS DE CÁLCULO DE LOS RECINTOS Refrigeración

Conjunto: Viv													
		1	Subtotales		Carga i			Ventilac	ión		Poteno	ncia térmica	
Recinto	Planta	Estructur al (W)	Sensible interior (W)	Total interior (W)	Sensibl e (W)	Total (W)	Cauda I (m³/h)	Sensibl e (W)	Carga total (W)	Por superficie (W/m²)	Sensibl e (W)	Máxima simultánea (W)	Máxim a (W)
Salón	Planta baja	8.20	483.26	692.60	555.35	785.6 2	64.80	-7.03	-2.21	24.55	548.32	783.41	783.41
Dormitorio1	Planta baja	54.37	219.40	254.29	309.36	347.7 4	36.00	5.61	7.47	22.43	314.98	320.79	355.21
Baño1	Planta baja	0.00	87.81	122.70	99.22	137.6 0	0.00	0.00	0.00	40.11	99.22	137.60	137.60
Cocina	Planta baja	0.00	445.68	878.31	503.61	979.5 1	0.00	0.00	0.00	127.71	503.61	979.51	979.51
Pasillo1	Planta baja	-1.02	16.51	16.51	17.51	17.51	0.00	0.00	0.00	5.43	17.51	11.59	17.51
Hall	Planta baja	31.60	28.11	28.11	67.48	67.48	0.00	0.00	0.00	10.93	67.48	25.44	67.48
Zona de lavado	Planta baja	0.00	86.91	121.80	98.20	136.5 8	0.00	0.00	0.00	43.40	98.20	136.58	136.58
Dormitorio2	Planta 1	42.51	188.95	223.84	261.56	299.9 4	36.00	5.61	7.47	24.31	267.17	304.69	307.41
Dormitorio3	Planta 1	6.38	196.44	266.22	229.18	305.9 4	36.00	-3.91	-1.23	25.35	225.28	303.21	304.71
Baño2	Planta 1	4.69	103.26	138.15	121.98	160.3 6	0.00	0.00	0.00	22.09	121.98	155.33	160.36
Pasillo2	Planta 1	2.99	34.72	34.72	42.61	42.61	0.00	0.00	0.00	6.28	42.61	27.05	42.61
Salón	Planta 1	22.70	0.00	0.00	25.66	25.66	0.00	0.00	0.00	1.03	25.66	11.63	25.66
Total							172.8	Carga	total simu	ıltánea		3196.8	

Calefacción

	Conjunto: Viv									
			Ve	ntilación		Potencia				
Recinto	Planta	Carga interna sensible (W)	Cauda l (m³/h)	Carga total (W)	Por superficie (W/m²)	Máxima simultánea (W)	Máxim a (W)			
Salón	Planta baja	393.79	64.80	51.85	13.97	445.64	445.64			
Dormitorio1	Planta baja	196.02	36.00	28.80	14.20	224.83	224.83			
Baño1	Planta baja	7.95	0.00	0.00	2.32	7.95	7.95			
Cocina	Planta baja	42.90	0.00	0.00	5.59	42.90	42.90			
Pasillo1	Planta baja	27.93	0.00	0.00	8.66	27.93	27.93			
Hall	Planta baja	360.79	0.00	0.00	58.57	360.79	360.79			
Zona de lavado	Planta baja	19.56	0.00	0.00	6.22	19.56	19.56			
Dormitorio2	Planta 1	214.94	36.00	28.80	19.27	243.74	243.74			
Dormitorio3	Planta 1	195.52	36.00	28.80	18.67	224.32	224.32			
Baño2	Planta 1	116.96	0.00	0.00	16.11	116.96	116.96			
Pasillo2	Planta 1	93.24	0.00	0.00	13.75	93.24	93.24			
Salón	Planta 1	215.74	0.00	0.00	8.62	215.74	215.74			
Total			172.8	Carga tota simultáne		2023.6				

2.- RESUMEN DE LOS RESULTADOS PARA CONJUNTOS DE RECINTOS

Refrigeración									
Conjunto	Potencia por superficie (W/m²)	Potencia total (W)							
Viv	23.7	3196.8							

Calefacción									
Conjunto	Potencia por superficie (W/m²)	Potencia total (W)							
Viv	15.0	2023.6							

10. Certificación energética inicial de la vivienda.

11. Certificación energética de la vivienda con las mejoras propuestas.

ANEXO II: PLANOS

Alzados vivienda	1
Plantas vivienda	1
Alzados vivienda con galería y garaje	1
Plantas vivienda con galería y garaje	

ANEXO III: PRESUPUESTO

1. Presupuesto de construcción de envolvente térmica inicial	138
2. Presupuesto de instalación de caldera de gas natural	144
3. Presupuesto de de instalación solar térmica	145
4. Presupuesto de de instalación de aire acondicionado	146
5. Presupuesto de construcción de envolvente térmica con mejoras propuestas	147
6. Presupuesto de construcción de galería acristalada	153
7. Presupuesto de construcción envolvente térmica inicial	154

1. Presupuesto de construcción envolvente térmica inicial.

1.1.- FACHADAS

1.1.1 M² m². Enfoscado maestreado y fratasado, de 20 mm de espesor en toda su superficie, con mortero de cemento y arena de río M15 según UNE-EN 998-2, sobre paramentos verticales, con maestras cada metro, i/preparación y humedecido de soporte, limpieza, medios auxiliares con empleo, en su caso, de andamiaje homologado, así como distribución de material en tajos y p.p. de costes indirectos.

			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total			180,1					180,100	
								180,100	180,100
					Total m ²	:	180,100	10,25	1.846,03
1.1.2	M²	mortero de c	emento C	EM II/A-P	32,5 R y are	ena de río	o M5 según UNI	cm, sentado con E-EN 998-2, para ción según CTE/	
			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total [18	80.1]							180,100	
								180,100	180,100
					Total m ²	:	180,100	20,98	3.778,50
1.1.3	M²	mortero de c	emento C	EM II/A-P	32,5 R y are	ena de río	o M5 según UNI	cm, sentado con E-EN 998-2, para ción según CTE/	
			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total [18	80.1]							180,100	
								180,100	180,100
					Total m ²	:	180,100	20,98	3.778,50
1.1.4	M²	i/formación d	le rincone de materia	es, aristas al en plant	y otros rem a, limpieza p	ates, gua	rdavivos de ch	ficies verticales, apa galvanizada, dios auxiliares y	
			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total [18	80.1]							180,100	
								180,100	180,100
					Total m ²	:	180,100	4,95	891,50
1.1.5	M²	m². Aislamie WALLMATE (e aire con	placa r	ígida de polie	4,95 stireno extruido	891,50

									TOTAL
80,100						180,1			TOTAL
80,100 180									
20 2.55		180,100	:	Total m²					
ĸtruido	poliestireno					miento de ΓE CW de 50		M²	1.1.6
Parcial Sub			Alto	Ancho	Largo	Uds.			
80,100						180,1			TOTAL
80,100 180									
20 2.55		180,100	:	Total m ²					
S: 15.40	1.1 FACHA	ubcapítulo	Total su						
									1.2 FS
remate	minada, de o pintado ieza y p.p.	barnizado	reles, i/ b	sobre ras	colocado	totalmente / esquinas	espesor,	M²	1.2.1
Parcial Sub			Alto	Ancho	Largo	Uds.			
71,390								9]	total [71.3
71,390 71									
71 1.47		71,390	:	Total m²					
sobre Imente	ta resistend n acabado t de costes ind	nto de alt	de cemen s, hasta co	on pasta endurecida	as aún no	s enfoscada	superficies	M²	1.2.2
sobre Imente	n acabado t	nto de alt	de cemen s, hasta co	on pasta endurecida ción del m	as aún no	s enfoscada	superficies	M²	1.2.2
sobre Imente ctos.	n acabado t	nto de alt	de cemen s, hasta co iterial en ta	on pasta endurecida ción del m	as aún no es, distribi	s enfoscada lios auxiliar	superficies		1.2.2 total [71.3
sobre Imente ctos. Parcial Sub	n acabado t	nto de alt	de cemen s, hasta co iterial en ta	on pasta endurecida ción del m	as aún no es, distribi	s enfoscada lios auxiliar	superficies		
sobre Imente ctos. Parcial Sub	n acabado t	nto de alt	de cemen s, hasta co terial en ta Alto	on pasta endurecida ción del m	as aún no es, distribi	s enfoscada lios auxiliar	superficies		
sobre Imente ctos. Parcial Sub 71,390 71,390 71 22 15 nsado, e 5 cm ado en ona de	n acabado t	71,390 uetas de h n y capa de árido de 2 B-500 S en arto, encofi	de cemen s, hasta co terial en ta Alto semivigu x25x17 cm áximo del on acero E zo de repa	on pasta endurecida ción del m Ancho Total m² a base de edilla de 60 tamaño marmadura cores y malla	Largo A, formado e e ejes, boo l/mm², con cunchos, i/ conecto	s enfoscada lios auxiliar Uds. do 17+5 cm 5 70 cm entr P/20/ IIa N on p.p. de 2	m². Forjad separadas de HA-25/ central, co negativos		
sobre Imente ctos. Parcial Sub 71,390 71,390 71 22 15 nsado, e 5 cm ado en ona de	n acabado t de costes ind normigón pr e compresió 20 mm, elal n refuerzo d	71,390 uetas de h n y capa de árido de 2 B-500 S en arto, encofi	de cemen s, hasta co terial en ta Alto semivigu x25x17 cm áximo del on acero E zo de repa	on pasta endurecida ción del m Ancho Total m² a base de edilla de 60 tamaño marmadura cores y malla	Largo A, formado e e ejes, boo l/mm², con cunchos, i/ conecto	do 17+5 cm 70 cm entr P/20/ IIa Non p.p. de 2 (3,36 kg/m²	m². Forjad separadas de HA-25/ central, co negativos	9]	total [71.3
sobre Imente ctos. Parcial Sub 71,390 71,390 71 22 15 nsado, e 5 cm ado en ona de ofrado,	n acabado t de costes ind normigón pr e compresió 20 mm, elal n refuerzo d	71,390 uetas de h n y capa de árido de 2 B-500 S en arto, encofi	de cemen s, hasta co terial en ta Alto Se semivigu x25x17 cm x25x17 cm cation acero E zo de repa total 650 l	n pasta endurecida ción del ma Ancho Total ma a base de edilla de o de tamaño a cres y malla e-08. (Carga	n, formado e e jes, bov //mm², con cunchos, i/ según EH	do 17+5 cm 70 cm entr P/20/ Ila N (3,36 kg/m² e terminado	m². Forjad separadas de HA-25/ central, co negativos	9] M ²	total [71.3
sobre Imente ctos. Parcial Sub 71,390 71,390 71,390 71 22 15 nsado, e 5 cm ado en cona de ofrado, Parcial Sub	n acabado t de costes ind normigón pr e compresió 20 mm, elal n refuerzo d	71,390 uetas de h n y capa de árido de 2 B-500 S en arto, encofi	de cemen s, hasta co terial en ta Alto Se semivigu x25x17 cm x25x17 cm cation acero E zo de repa total 650 l	n pasta endurecida ción del ma Ancho Total ma a base de edilla de o de tamaño a cres y malla e-08. (Carga	n, formado e e jes, bov //mm², con cunchos, i/ según EH	do 17+5 cm 70 cm entr P/20/ Ila N (3,36 kg/m² e terminado	m². Forjad separadas de HA-25/ central, co negativos	9] M ²	total [71.3

1.2.4 M² Suministro y colocación de aislamiento por el interior en cerramiento de doble hoja de fábrica para revestir formado por panel rígido de poliestireno extruido, de superficie lisa y mecanizado lateral machihembrado, de 60 mm de espesor, resistencia a compresión >= 300 kPa, resistencia térmica 1,8 m²K/W, conductividad térmica 0,034 W/(mK), fijado con pelladas de adhesivo cementoso. Incluso p/p de cortes, adhesivo de colocación y limpieza.

Incluye: Corte y preparación del aislamiento. Colocación del aislamiento.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
total [71.39]					71,390	
					71,390	71,390
			Total m ² :	71,390	18,09	1.291,45

1.2.5 M² Suministro y colocación de aislamiento por el interior en cerramiento de doble hoja de fábrica para revestir formado por panel rígido de poliestireno extruido, de superficie lisa y mecanizado lateral machihembrado, de 60 mm de espesor, resistencia a compresión >= 300 kPa, resistencia térmica 1,8 m²K/W, conductividad térmica 0,034 W/(mK), fijado con pelladas de adhesivo cementoso. Incluso p/p de cortes, adhesivo de colocación y limpieza.

Incluye: Corte y preparación del aislamiento. Colocación del aislamiento.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
total [71.39]					71,390	
					71,390	71,390
			Total m ² :	71,390	18,09	1.291,45
				Total subcan	ítulo 1 2 - FS:	6 847 75

1.3.- CUB1

1.3.1 M² m². Cubierta de cobre, sobre soporte base de hormigón o madera (no incluído), conformada por los siguientes elementos: chapa de zinctitanio natural de 0,8 mm de espesor (s/UNE 37-301) y 700 mm de ancho, perfilada (anchura final de la banda una vez perfilada 630mm), doblados los bordes longitudinales de chapas contiguas en ángulo recto con altura de 30 y 40 mm y engatillado posterior de bordes, i/fijación a la base soporte por medio de patillas de anclaje, conformado de limas, caballetes, quiebros,... etc., pequeño material de clavazón y medios auxiliares.

	Uds.	Largo Anch	ho Alto		Parcial	Subtotal
TOTAL	7,76				7,760	
					7,760	7,760
		Total	m²:	7,760	53,54	415,47

		espesor, totalme superior y esqui indirectos.	ente c	olocado	sobre rastrel	es, i/ ba	arnizado o pi		
		U	ds.	Largo	Ancho	Alto		Parcial	Subtotal
total [7.70	6]							7,760	
								7,760	7,760
					Total m ²	.:	7,760	20,71	160,71
1.3.3	M²	m². Aislamiento WALLMATE CW						stireno extruido	
		U	ds.	Largo	Ancho	Alto		Parcial	Subtotal
TOTAL		7	,76					7,760	
								7,760	7,760
					Total m ²	.:	7,760	11,62	90,17
1.3.4	M²	m². Aislamiento WALLMATE CW						stireno extruido	
		U	ds.	Largo	Ancho	Alto		Parcial	Subtotal
TOTAL		7	,76					7,760	
								7,760	7,760
					Total m ²	.:	7,760	11,62	90,17
					Total m ²		7,760 tal subcapítulo	·	90,17 756,52
1.4 CUI	3 2				Total m ²		·	·	-
1.4 CUI 1.4.1	B2 M²	m². Cubierta de p los siguientes ele mm, canto liso, o cobertura de piz clavados a la ta material de ancia 0.65 mm de espe auxiliar.	emento clavada arra de arima, aje, for	os: faldón sobre ca 30x20 c por hilad mación d	na dificultad inclinado co brios o parec m, calidad ec las paralelas e limas con a	de trazad nstituido illos estr onómica al alero	lo y ejecución, por entarimad ucturales (no , fijada con po , i/p.p. de pide pizarra, pla	conformada por o de tabla de 23 incluídos estos); intas o ganchos ezas especiales, ncha de zinc de	-
		los siguientes ele mm, canto liso, o cobertura de piz clavados a la ta material de ancia 0.65 mm de espe auxiliar.	emento clavada arra de arima, aje, for	os: faldón sobre ca 30x20 c por hilad mación d	na dificultad inclinado co brios o parec m, calidad ec las paralelas e limas con a	de trazad nstituido illos estr onómica al alero	lo y ejecución, por entarimad ucturales (no , fijada con po , i/p.p. de pide pizarra, pla	conformada por o de tabla de 23 incluídos estos); intas o ganchos ezas especiales, ncha de zinc de	-
		los siguientes elemm, canto liso, cobertura de piz clavados a la tamaterial de ancia 0.65 mm de espe auxiliar.	emento clavada carra de arima, aje, for esor en	os: faldón sobre ca 30x20 ci por hilad mación d limas, qu	na dificultad inclinado col brios o parec m, calidad ec las paralelas e limas con a uiebros, cumb	de trazad nstituido illos estr onómica al alero cabado oreras,	lo y ejecución, por entarimad ucturales (no , fijada con po , i/p.p. de pide pizarra, pla	conformada por lo de tabla de 23 incluídos estos); untas o ganchos ezas especiales, ncha de zinc de ler tipo de medio	756,52
1.4.1		los siguientes elemm, canto liso, cobertura de piz clavados a la tamaterial de ancia 0.65 mm de espe auxiliar.	emento clavada arra de arima, aje, for esor en	os: faldón sobre ca 30x20 ci por hilad mación d limas, qu	na dificultad inclinado col brios o parec m, calidad ec las paralelas e limas con a uiebros, cumb	de trazad nstituido illos estr onómica al alero cabado oreras,	lo y ejecución, por entarimad ucturales (no , fijada con po , i/p.p. de pide pizarra, pla	conformada por o de tabla de 23 incluídos estos); intas o ganchos ezas especiales, ncha de zinc de er tipo de medio	756,52
1.4.1		los siguientes elemm, canto liso, cobertura de piz clavados a la tamaterial de ancia 0.65 mm de espe auxiliar.	emento clavada arra de arima, aje, for esor en	os: faldón sobre ca 30x20 ci por hilad mación d limas, qu	na dificultad inclinado col brios o parec m, calidad ec las paralelas e limas con a uiebros, cumb	de trazad nstituido illos estr onómica al alero acabado oreras,	lo y ejecución, por entarimad ucturales (no , fijada con po , i/p.p. de pide pizarra, pla	conformada por lo de tabla de 23 incluídos estos); intas o ganchos ezas especiales, ncha de zinc de er tipo de medio Parcial	756,52 Subtotal
1.4.1		los siguientes elemm, canto liso, cobertura de piz clavados a la tamaterial de ancia 0.65 mm de espe auxiliar.	ementoclavada arra de arima, aje, fori esor en ids.	es: faldón sobre ca e 30x20 ci por hilad mación d limas, qu Largo	na dificultad of inclinado con brios o parecon, calidad ecolas paralelas e limas con a siebros, cumbo Ancho Total m²	de trazad nstituido illos estr onómica al alero cabado d reras, Alto	tal subcapítulo lo y ejecución, por entarimac ucturales (no , fijada con pu , i/p.p. de pide pizarra, pla etc., y cualqui 71,400 MDF laminad arnizado o pi	conformada por lo de tabla de 23 incluídos estos); intas o ganchos ezas especiales, ncha de zinc de er tipo de medio Parcial 71,400 71,400 42,10 a, de 10 mm de ntado y remate	756,52 Subtotal

total [71.4]						71,400	
						71,400	71,400
			Total m ²	: 71	,400	20,71	1.478,69
1.4.3 M²	Suministro y color de fábrica para i superficie lisa y resistencia a com térmica 0,034 W/(cortes, adhesivo d	revestir forma mecanizado presión >= 30 mK), fijado co	ado por panel lateral machi 00 kPa, resister on pelladas de	rígido de hembrado, icia térmica	poliestirend de 60 mm 1,8 m ² K/W,	extruido, de de espesor, conductividad	
	Incluye: Corte y pr	eparación del	aislamiento. C	olocación de	el aislamient	0.	
	Criterio de medició Proyecto.	ón de proyecte	o: Superficie m	edida según	documenta	ción gráfica de	
	Criterio de medici especificaciones d		Se medirá la	superficie r	ealmente eje	ecutada según	
	Uds	s. Largo	Ancho	Alto		Parcial	Subtotal
total [71.4]						71,400	
						71,400	71,400
			Total m ²	: 71	,400	18,09	1.291,63
1.4.4 M²	Suministro y color de fábrica para i superficie lisa y resistencia a com térmica 0,034 W/(cortes, adhesivo d	revestir forma mecanizado presión >= 30 mK), fijado co	ado por panel lateral machi 00 kPa, resister on pelladas de	rígido de hembrado, icia térmica	poliestirend de 60 mm 1,8 m ² K/W,	extruido, de de espesor, conductividad	
	Incluye: Corte y pr	eparación del	aislamiento. C	olocación de	el aislamient	0.	
	Criterio de medició Proyecto.	ón de proyecto	o: Superficie m	edida según	documenta	ción gráfica de	
	Criterio de medici especificaciones d		Se medirá la	superficie re	ealmente eje	ecutada según	
	Uds	s. Largo	Ancho	Alto		Parcial	Subtotal
total [71.4]						71,400	
						71,400	71,400
			Total m ²	: 71	,400	18,09	1.291,63
1.4.5 M²	m². Forjado 17+5 separadas 70 cm e de HA-25/P/20/ lla central, con p.p. d negativos (3,36 kg totalmente termina	entre ejes, bov N/mm², con le zunchos, i/ /m².), conecto	vedilla de 60x25 tamaño máxin armadura con a pres y mallazo o	ix17 cm y ca no del árido acero B-500 de reparto, o	ipa de comp o de 20 mm, o S en refuer encofrado y	resión de 5 cm elaborado en zo de zona de	
	Uds	s. Largo	Ancho	Alto		Parcial	Subtotal
total [71.4]						71,400	
						71,400	71,400

1.4.6 M² m². Enfoscado maestreado y fratasado, de 20 mm de espesor en toda su superficie, con mortero de cemento y arena de río M15 según UNE-EN 998-2, sobre paramentos verticales, con maestras cada metro, i/preparación y humedecido de soporte, limpieza, medios auxiliares con empleo, en su caso, de andamiaje homologado, así como distribución de material en tajos y p.p. de costes indirectos.

	Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total	71,4					71,400	
						71,400	71,400
			Total m ²	: 71,	400	10,25	731,85
				Total su	ıbcapítulo 1.4 (CUB2:	10.427,97
		Total	presupuesto	parcial nº 1	CERRAMIENT	ros :	33.441.61

2. Presupuesto de instalación de caldera de gas natural.

ICG232 Ud Caldera a gas, doméstica, de condensación, mural, para calefacción y A.C.S.

2.440,77€

Caldera mural de condensación a gas N, para calefacción y A.C.S. instantánea con microacumulación, cámara de combustión estanca y tiro forzado, potencia de 25 kW, caudal específico de A.C.S. según UNE-EN 625 de 14,3 l/min, dimensiones 710x400x330 mm, panel de mandos con display digital, con termostato de ambiente, comunicación digital vía bus a 2 hilos.

Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt38cmj013a	Ud	Caldera mural de condensación a gas N, para calefacción y A.C.S. instantánea con microacumulación, cámara de combustión estanca y tiro forzado, potencia de 25 kW, caudal específico de A.C.S. según UNE-EN 625 de 14,3 l/min, dimensiones 710x400x330 mm, panel de mandos con display digital, encendido electrónico y seguridad por ionización, sin llama piloto, equipamiento formado por: cuerpo de caldera, panel de control y mando, programador digital para programación semanal del circuito de calefacción y A.C.S., encastrado en el frontal de la caldera, vaso de expansión con purgador automático, kit estándar de evacuación de humos y plantilla de montaje.	1,000	2.169,38	2.169,38
mt38scj012a	Ud	Termostato de ambiente, comunicación digital vía bus a 2 hilos, con pantalla digital, alimentación a 24 V.	1,000	58,20	58,20
mt35aia010a	m	Tubo curvable de PVC, corrugado, de color negro, de 16 mm de diámetro nominal, para canalización empotrada en obra de fábrica (paredes y techos). Resistencia a la compresión 320 N, resistencia al impacto 1 julio, temperatura de trabajo -5°C hasta 60°C, con grado de protección IP 545 según UNE 20324, no propagador de la llama. Según UNE-EN 61386-1 y UNE-EN 61386-22.	8,000	0,26	2,08
mt35cun020a m		Cable unipolar ES07Z1-K (AS), no propagador de la llama, con conductor multifilar de cobre clase 5 (-K) de 1,5 mm² de sección, con aislamiento de compuesto termoplástico a base de poliolefina libre de halógenos con baja emisión de humos y gases corrosivos (Z1), siendo su tensión asignada de 450/750 V. Según UNE 211025.	16,000	0,41	6,56
	Ud	Material auxiliar para instalaciones de calefacción y A.C.S.	1,000	2,10	2,10
	h	Oficial 1ª calefactor.	2,760	15,83	43,69
	h	Ayudante calefactor.	2,760	14,93	41,21
	%	Medios auxiliares	2,000	2.323,22	46,46
	%	Costes indirectos	3,000	2.369,68	71,09
Coste de mante	nimi	ento decenal: 2.318,73€ en los primeros 10 años.		Total:	2.440,77

3. Presupuesto de instalación solar térmica.

ICB005 Ud Captador solar térmico para instalación individual, sobre cubierta plana.

2.694,69€

Captador solar térmico completo, partido, para instalación individual, sistema Helioset "SAUNIER DUVAL", formado por interacumulador de 150 litros, para sistema de drenaje automático, eficiencia energética clase B, captador solar térmico plano de un panel SRD 2.3 V, para colocación sobre cubierta plana, montaje vertical, superficie útil 2,35 m', con conexiones hidráulicas para sistema de drenaje automático y soporte para captador solar térmico de un panel, para colocación sobre cubierta plana, montaje vertical.

Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt38css022hc	Ud	Captador solar térmico plano de un panel SRD 2.3 V, para colocación sobre cubierta plana, montaje vertical, superficie útil 2,35 m², con conexiones hidráulicas para sistema de drenaje automático, "SAUNIER DUVAL", rendimiento óptico 0,8, coeficiente de pérdidas primario 3,327 W/m²k², coeficiente de pérdidas secundario 0,015 W/m²k², según UNE-EN 12975-2, superficie absorbente y conductos de cobre y cubierta protectora de vidrio de seguridad.	2,000	620,00	1.240,0
mt38css020a	Ud	Interacumulador de 150 litros, para sistema de drenaje automático, eficiencia energética clase B, "SAUNIER DUVAL", con bomba de circulación solar, centralita solar térmica programable, vaina de inmersión para la sonda de temperatura, grupo de seguridad, ánodo de protección de magnesio y !imitador de temperatura.	1,000	1.230,00	1.230,00
mt38css300	Ud	Bidón de 10 1 de solución agua-glicol para relleno de captador solar térmico, "SAUNIER DUVAL".	1,000	40,00	40,00
mt38css602	Ud	Sonda de temperatura para captador solar térmico con conexión a centralita de control para sistema de captación solar térmica, "SAUNIER DUVAL".	1,000	20,00	20,00
mt38css601	Ud	Sonda de temperatura para acumulador con conexión a centralita de control para sistema de captación solar térmica, "SAUNIER DUVAL".	1,000	20,00	20,00
38css030j	Ud	Soporte para captador solar térmico de un panel, para colocación sobre cubierta plana, montaje vertical , "SAUNIER DUVAL".	1,000	220,00	220,00
38css035a	Ud	Tuberia flexible de 10m de longitud, con aislamiento térmico, para sistema de drenaje automático, "SAUNIER DUVAL".	1,000	200,00	200,00
38css700a	Ud	Vaso de expansión cerrado, capacidad 18 1, "SAUNIER DUVAL", especial para aplicaciones de energía solar térmica.	1,000	70,00	70,00
38css700f	Ud	Vaso de expansión cerrado, capacidad 51, "SAUNIER DUVAL", especial para aplicaciones de energía solar térmica.	1,000	60,00	60,00
o009	h	Oficial 1"instalador de captadores solares.	2,760	15,83	43,69
o108	h	Ayudante instalador de captadores solares.	2,760	14,93	41,21
	%	Medios auxiliares	2,000	2.564,90	51,30
	%	Costes indirectos	3,000	2.616,20	78,49
)Ste de mante	nimi	ento decenal: 2.047,98€ en los primeros 10 años.		Total:	3287,298

4. Presupuesto de instalación de aire acondicionado.

ICN100 Ud Unidad interior de aire acondicionado, de pared, sistema aire-aire multi-split.

444,59€

Unidad interior de aire acondicionado, de pared, sistema aire-aire multi-split, para gas R-410A, bomba de calor, alimentación monofásica (230V/50Hz), potencia frigorífica nominal 2,5 kW, potencia calorífica nominal 3,4 kW.

Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt42mhi100ca	Ud	Unidad interior de aire acondicionado, de pared, sistema aire-aire multi-split, para gas R-410A, bomba de calor, alimentación monofásica (230V/50Hz), potencia frigorífica nominal 2,5 kW (temperatura de bulbo seco 27°C, temperatura de bulbo húmedo 19°C), potencia calorífica nominal 3,4 kW (temperatura de bulbo seco 20°C), de 294x798x229 mm, nivel sonoro (velocidad baja) 21 dBA, caudal de aire (velocidad alta) 474 m³/h, con filtro enzimático y filtro desodorizante, control inalámbrico, con programador semanal y posibilidad de integración en un sistema domótico o control Wi-Fi a través de un interface (no incluido en este precio).	1,000	394,88	394,88
mo005	h	Oficial 1ª instalador de climatización.	0,920	15,83	14,56
mo104	h	Ayudante instalador de climatización.	0,920	14,93	13,74
	%	Medios auxiliares	2,000	423,18	8,46
	%	Costes indirectos	3,000	431,64	12,95
Coste de mante	nimi	ento decenal: 124.49€ en los primeros 10 años.		Total:	444.59

5. Presupuesto de construcción de envolvente térmica con mejoras propuestas.

1.1.- FACHADAS

1.1.1 M² m². Enfoscado maestreado y fratasado, de 20 mm de espesor en toda su superficie, con mortero de cemento y arena de río M15 según UNE-EN 998-2, sobre paramentos verticales, con maestras cada metro, i/preparación y humedecido de soporte, limpieza, medios auxiliares con empleo, en su caso, de andamiaje homologado, así como distribución de material en tajos y p.p. de costes indirectos.

			impieza, medios auxiliares con empleo, en su caso, de andamiaje homologado, así como distribución de material en tajos y p.p. de costes indirectos.						
			Uds.	Largo	Ancho	Alto		Parcial	Subtota
total			180,1					180,100	
								180,100	180,100
					Total m ²	:	180,100	10,25	1.846,03
1.1.2	M³		sobre la	cara inter				da "in situ" por achada, con una	
			Uds.	Largo	Ancho	Alto		Parcial	Subtota
volumen	27.01	5]						27,015	
								27,015	27,015
					Total m ³	:	27,015	199,64	5.393,27
1.1.3	M²	mortero de	cemento (CEM II/A-P	32,5 R y are	ena de río	o M5 según UN	cm, sentado con IE-EN 998-2, para ación según CTE/	
			Uds.	Largo	Ancho	Alto		Parcial	Subtota
total [180	0.1]							180,100	
								180,100	180,100
					Total m ²	:	180,100	20,98	3.778,50
1.1.4	M²	mortero de	cemento (CEM II/A-P	32,5 R y are	ena de rí	o M5 según UN	cm, sentado con IE-EN 998-2, para ación según CTE/	
			Uds.	Largo	Ancho	Alto		Parcial	Subtota
total [180	0.1]							180,100	
								180,100	180,100
					Total m ²	:	180,100	20,98	3.778,50

1.1.5 M² m². Tendido de yeso grueso YG de 15 mm de espesor sobre superficies verticales, i/formación de rincones, aristas y otros remates, guardavivos de chapa galvanizada, distribución de material en planta, limpieza posterior de los tajos, medios auxiliares y p.p. de costes indirectos, s/NTE/RPG-8.

			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total [180	0.1]							180,100	
								180,100	180,100
					Total m ²	:	180,100	4,95	891,50
						Total su	bcapítulo 1.1 l	FACHADAS:	15.687,80
1.2 FS									
1.2.1	M²	espesor, tot	almente	colocado	sobre rastr	eles, i/ b	arnizado o pi	la, de 10 mm de ntado y remate y p.p. de costes	
			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total [71.	.39]							71,390	
								71,390	71,390
					Total m ²	:	71,390	20,71	1.478,49
1.2.2	M²	superficies e	nfoscada	s aún no	endurecidas,	hasta co	nseguir un aca	sistencia, sobre lbado totalmente stes indirectos.	
			Uds.	Largo	Ancho				
total [71.						Alto		Parcial	Subtotal
-	.39]					Alto		Parcial 71,390	Subtotal
•	.39]					Alto			Subtotal
•	.39]				Total m²		71,390	71,390	
1.2.3	.39] M ²	separadas 70 de HA-25/P/2 central, con) cm entre 20/ IIa N/ p.p. de zi ,36 kg/m².	e ejes, bov mm², con unchos, i/a), conecto	a base de vedilla de 60x tamaño má: armadura co pres y mallaz	: semivigu 25x17 cm kimo del n acero B o de repa	etas de hormi y capa de com árido de 20 m 3-500 S en refu rto, encofrado	71,390 	71,390
		separadas 70 de HA-25/P/2 central, con negativos (3) cm entre 20/ IIa N/ p.p. de zi ,36 kg/m².	e ejes, bov mm², con unchos, i/a), conecto	a base de vedilla de 60x tamaño má: armadura co pres y mallaz	: semivigu 25x17 cm kimo del n acero B o de repa	etas de hormi y capa de com árido de 20 m 3-500 S en refu rto, encofrado	71,390 71,390 2,22 gón pretensado, npresión de 5 cm m, elaborado en erzo de zona de	71,390
	M²	separadas 70 de HA-25/P/2 central, con negativos (3	0 cm entre 20/ Ila N/ p.p. de ze ,36 kg/m². erminado	e ejes, bov mm², con unchos, i/:), conecto según EHI	a base de redilla de 60x tamaño má: armadura co ores y mallaz E-08. (Carga	: 25x17 cm 25x17 cdel in acero B o de repa total 650 k	etas de hormi y capa de com árido de 20 m 3-500 S en refu rto, encofrado	71,390 71,390 2,22 gón pretensado, npresión de 5 cm m, elaborado en erzo de zona de y desencofrado,	71,390 158,49
1.2.3	M²	separadas 70 de HA-25/P/2 central, con negativos (3	0 cm entre 20/ Ila N/ p.p. de ze ,36 kg/m². erminado	e ejes, bov mm², con unchos, i/:), conecto según EHI	a base de redilla de 60x tamaño má: armadura co ores y mallaz E-08. (Carga	: 25x17 cm 25x17 cdel in acero B o de repa total 650 k	etas de hormi y capa de com árido de 20 m 3-500 S en refu rto, encofrado	71,390 71,390 2,22 gón pretensado, npresión de 5 cm m, elaborado en erzo de zona de y desencofrado, Parcial	71,390 158,49

1.2.4 Suministro y colocación de aislamiento por el interior en cerramiento de doble hoja de fábrica para revestir formado por panel rígido de poliestireno extruido, de superficie lisa y mecanizado lateral machihembrado, de 60 mm de espesor, resistencia a compresión >= 300 kPa, resistencia térmica 1,8 m²K/W, conductividad térmica 0,034 W/(mK), fijado con pelladas de adhesivo cementoso. Incluso p/p de cortes, adhesivo de colocación y limpieza.

Incluye: Corte y preparación del aislamiento. Colocación del aislamiento.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
total [71.39]					71,390	
					71,390	71,390
			Total m ²	: 71,390	18,09	1.291,45

1.2.5 Suministro y colocación de aislamiento por el interior en cerramiento de doble hoja de fábrica para revestir formado por panel rígido de poliestireno extruido, de superficie lisa y mecanizado lateral machihembrado, de 60 mm de espesor, resistencia a compresión >= 300 kPa, resistencia térmica 1,8 m²K/W, conductividad térmica 0,034 W/(mK), fijado con pelladas de adhesivo cementoso. Incluso p/p de cortes, adhesivo de colocación y limpieza.

Incluye: Corte y preparación del aislamiento. Colocación del aislamiento.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto.

	uas.	Largo	Ancho	Alto	Parciai	Subtotal
total [71.39]					71,390	
					71,390	71,390
			Total m ²	: 71,390	18,09	1.291,45

1.2.6 Suministro y colocación de aislamiento por el interior en cerramiento de doble hoja de fábrica para revestir formado por panel rígido de poliestireno extruido, de superficie lisa y mecanizado lateral machihembrado, de 60 mm de espesor, resistencia a compresión >= 300 kPa, resistencia térmica 1,8 m²K/W, conductividad térmica 0,034 W/(mK), fijado con pelladas de adhesivo cementoso. Incluso p/p de cortes, adhesivo de colocación y limpieza.

Incluye: Corte y preparación del aislamiento. Colocación del aislamiento.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total [71.39]						71,390	
						71,390	71,390
			Total m ²	:	71,390	18,09	1.291,45

Total subcapítulo 1.2.- FS: 8.139,20 1.3.- CUB1 m². Cobertura de teja plana Alicantina, color rojo, recibida con mortero de cemento y 1.3.1 arena de río M5 según UNE-EN 998-2, i/p.p. de piezas especiales y costes indirectos. Uds. Largo Ancho Alto Parcial Subtotal total [7.76] 7,760 7.760 7,760 Total m²: 7,760 25,76 199,90 m². Revestimiento de paramento con friso de madera MDF laminada, de 10 mm de 1.3.2 espesor, totalmente colocado sobre rastreles, i/ barnizado o pintado y remate superior y esquinas en cantonera del mismo material y limpieza y p.p. de costes indirectos. Uds. Largo Ancho Alto Parcial Subtotal total [7.76] 7,760 7,760 7,760 7,760 Total m²: 20,71 160,71 1.3.3 m³. Aislamiento mediante espuma rígida de poliuretano fabricada "in situ" por proyección sobre la cara interior o exterior del cerramiento de fachada, con una densidad de 35 kg/m3. Uds. Largo Ancho Alto Parcial Subtotal vol total [1.24] 1,240 1,240 1,240 Total m³: 247,55 1,240 199,64 1.3.4 m². Tendido de yeso grueso YG de 15 mm de espesor sobre superficies verticales, i/formación de rincones, aristas y otros remates, guardavivos de chapa galvanizada, distribución de material en planta, limpieza posterior de los tajos, medios auxiliares y p.p. de costes indirectos, s/NTE/RPG-8. Ancho Uds. Largo Alto Parcial Subtotal total [7.76] 7,760 7,760 7,760 Total m²: 7,760 38,41 4,95 Total subcapítulo 1.3.- CUB1: 646,57 1.4.- CUB2 m². Cobertura de teja plana Alicantina, color rojo, recibida con mortero de cemento y 1.4.1 arena de río M5 según UNE-EN 998-2, i/p.p. de piezas especiales y costes indirectos. Uds. Largo Ancho Alto Parcial Subtotal

total [71.	.40]						71,400 —	
							71,400	71,40
					Total m ² :	71,400	25,76	1.839,2
1.4.2	M²	espesor, tot	almente (colocado	sobre rastreles,	dera MDF laminad i/ barnizado o pi aterial y limpieza y	ntado y remate	
			Uds.	Largo	Ancho Al	to	Parcial	Subtota
total [71.	.4]						71,400	
							71,400	71,400
					Total m ² :	71,400	20,71	1.478,69
1.4.3	M³		sobre la d			oliuretano fabricad cerramiento de fa		
			Uds.	Largo	Ancho Al	to	Parcial	Subtota
vol total	[12.852	2]					12,852	
							10.050	12,852
							12,852	12,002
1 4 4	M2	m² Foriado	17.5 cm	formado	Total m³:	12,852	199,64	·
1.4.4	M²	separadas 70 de HA-25/P/2 central, con negativos (3,) cm entre 20/ IIa N/ p.p. de zu 36 kg/m².	ejes, bov mm², con inchos, i/a), conecto	a base de semivedilla de 60x25x17 tamaño máximo e armadura con ace	riguetas de hormio cm y capa de com del árido de 20 m ro B-500 S en refu eparto, encofrado	199,64 gón pretensado, presión de 5 cm m, elaborado en erzo de zona de	·
1.4.4	M²	separadas 70 de HA-25/P/2 central, con negativos (3,) cm entre 20/ IIa N/ p.p. de zu 36 kg/m².	ejes, bov mm², con inchos, i/a), conecto	a base de semiv redilla de 60x25x17 tamaño máximo armadura con ace ores y mallazo de i	riguetas de hormio cm y capa de com del árido de 20 m ro B-500 S en refu eparto, encofrado 50 kg/m².).	199,64 gón pretensado, presión de 5 cm m, elaborado en erzo de zona de	2.565,77
		separadas 70 de HA-25/P/2 central, con negativos (3,	0 cm entre 20/ Ila N/ p.p. de zu 36 kg/m². rminado s	e ejes, bov mm², con ınchos, i/a), conecto según EHI	a base de semiv redilla de 60x25x17 tamaño máximo armadura con ace ores y mallazo de i E-08. (Carga total 6	riguetas de hormio cm y capa de com del árido de 20 m ro B-500 S en refu eparto, encofrado 50 kg/m².).	199,64 gón pretensado, ipresión de 5 cm m, elaborado en erzo de zona de y desencofrado,	2.565,77
		separadas 70 de HA-25/P/2 central, con negativos (3,	0 cm entre 20/ Ila N/ p.p. de zu 36 kg/m². rminado s	e ejes, bov mm², con ınchos, i/a), conecto según EHI	a base de semiv redilla de 60x25x17 tamaño máximo armadura con ace ores y mallazo de i E-08. (Carga total 6	riguetas de hormio cm y capa de com del árido de 20 m ro B-500 S en refu eparto, encofrado 50 kg/m².).	199,64 gón pretensado, presión de 5 cm m, elaborado en erzo de zona de y desencofrado,	2.565,77
		separadas 70 de HA-25/P/2 central, con negativos (3,	0 cm entre 20/ Ila N/ p.p. de zu 36 kg/m². rminado s	e ejes, bov mm², con ınchos, i/a), conecto según EHI	a base de semiv redilla de 60x25x17 tamaño máximo armadura con ace ores y mallazo de i E-08. (Carga total 6	riguetas de hormio cm y capa de com del árido de 20 m ro B-500 S en refu eparto, encofrado 50 kg/m².).	199,64 gón pretensado, apresión de 5 cm m, elaborado en erzo de zona de y desencofrado, Parcial	2.565,77 Subtota 71,400 2.628,23
1.4.4 total [71.		m². Enfoscac con mortero verticales, co limpieza, me	ocm entre of Ila N/ p.p. de zu 36 kg/m². rminado s Uds. Uds.	eejes, bov mm², con inchos, i/a), conecto según EHI Largo	a base de semive dilla de 60x25x17 etalla de 60x25x17 etalla de 60x25x17 etalla de máximo de res y mallazo de roma de río M15 segúi a metro, i/prepara	riguetas de hormio cm y capa de com del árido de 20 m ro B-500 S en refu eparto, encofrado 50 kg/m².). To T1,400 Tde espesor en too de UNE-EN 998-2, so de andamiaje le com con con de andamiaje le com con	199,64 gón pretensado, presión de 5 cm m, elaborado en erzo de zona de y desencofrado, Parcial 71,400 71,400 36,81 da su superficie, obre paramentos do de soporte,	2.565,77 Subtota
total [71.	.4]	m². Enfoscac con mortero verticales, co limpieza, me	ocm entre of Ila N/ p.p. de zu 36 kg/m². rminado s Uds. Uds.	eejes, bov mm², con inchos, i/a), conecto según EHI Largo	a base de semivadilla de 60x25x17 tamaño máximo de maces y mallazo de mese y mallazo de río M15 segúna metro, i/prepara empleo, en su ca	riguetas de hormique de com y capa de com del árido de 20 m ro B-500 S en refueparto, encofrado 50 kg/m².). To T1,400 To de espesor en too de uNE-EN 998-2, so de ción y humedeciso, de andamiaje istes indirectos.	199,64 gón pretensado, presión de 5 cm m, elaborado en erzo de zona de y desencofrado, Parcial 71,400 71,400 36,81 da su superficie, obre paramentos do de soporte,	2.565,77 Subtota
total [71.	.4]	m². Enfoscac con mortero verticales, co limpieza, me	lo cm entre 20/ Ila N/ p.p. de zu 36 kg/m². rminado s Uds. Uds.	e ejes, bov mm², con unchos, i/a), conecto según EHI Largo targo eado y fra to y arena tras cada iares con naterial en	a base de semivadilla de 60x25x17 tamaño máximo de máximo de maces y mallazo de río M15 según metro, i/prepara empleo, en su can tajos y p.p. de con tajos y p.p. de con seguina maces y p.p. de con seguina maces y p.p. de con tajos y p.p. de con seguina maces y p.p. de con seguina y p.p. de con seguina y p.p. de con seguina y p.p. de con seguin	riguetas de hormique de com y capa de com del árido de 20 m ro B-500 S en refueparto, encofrado 50 kg/m².). To T1,400 To de espesor en too de uNE-EN 998-2, so de ción y humedeciso, de andamiaje istes indirectos.	gón pretensado, apresión de 5 cm m, elaborado en erzo de zona de y desencofrado, Parcial 71,400 71,400 36,81 da su superficie, obre paramentos do de soporte, homologado, así	2.565,77 Subtota 71,400 2.628,23
total [71.	.4]	m². Enfoscac con mortero verticales, co limpieza, me	lo maestr de cemer on maestr de cemer on maes dios auxil ución de r	e ejes, bov mm², con unchos, i/a), conecto según EHI Largo targo eado y fra to y arena tras cada iares con naterial en	a base de semivadilla de 60x25x17 tamaño máximo de máximo de maces y mallazo de río M15 según metro, i/prepara empleo, en su can tajos y p.p. de con tajos y p.p. de con seguina maces y p.p. de con seguina maces y p.p. de con tajos y p.p. de con seguina maces y p.p. de con seguina y p.p. de con seguina y p.p. de con seguina y p.p. de con seguin	riguetas de hormique de com y capa de com del árido de 20 m ro B-500 S en refueparto, encofrado 50 kg/m².). To T1,400 To de espesor en too de uNE-EN 998-2, so de ción y humedeciso, de andamiaje istes indirectos.	gón pretensado, presión de 5 cm m, elaborado en erzo de zona de y desencofrado, Parcial 71,400 71,400 36,81 da su superficie, obre paramentos do de soporte, homologado, así	2.565,77 Subtota 71,400 2.628,23
total [71.	.4]	m². Enfoscac con mortero verticales, co limpieza, me	lo maestr de cemer on maestr de cemer on maes dios auxil ución de r	e ejes, bov mm², con unchos, i/a), conecto según EHI Largo targo eado y fra to y arena tras cada iares con naterial en	a base de semivadilla de 60x25x17 tamaño máximo de máximo de maces y mallazo de río M15 según metro, i/prepara empleo, en su can tajos y p.p. de con tajos y p.p. de con seguina maces y p.p. de con seguina maces y p.p. de con tajos y p.p. de con seguina maces y p.p. de con seguina y p.p. de con seguina y p.p. de con seguina y p.p. de con seguin	riguetas de hormique de com y capa de com del árido de 20 m ro B-500 S en refueparto, encofrado 50 kg/m².). To T1,400 To de espesor en too de uNE-EN 998-2, so de ción y humedeciso, de andamiaje istes indirectos.	gón pretensado, presión de 5 cm m, elaborado en erzo de zona de y desencofrado, Parcial 71,400 36,81 da su superficie, obre paramentos do de soporte, homologado, así Parcial 71,400	2.565,77 Subtota 71,400 2.628,23 Subtota

33.717,37

Total presupuesto parcial nº 1 CERRAMIENTOS :

6. Presupuesto de construcción de galería acristalada.

1.1 M² m². Puerta o ventana en hojas corrrederas de aluminio (para una superficie mayor de 1,80 m²) modelo con rotura de puente térmico, AR fusion C71RPT de SAPAGROUP con un ancho de marco de 71 mm y con un ancho de hoja de 28 mm en su versión a testa, medida del frente de 117 mm, con sistema de cámara europea, con espesor de perfil de 1,5 mm, variante de cerco y hojas perimetrales con unión a inglete mediante escuadras aislantes, con acristalamiento para vidrios hasta 20 mm, anodizada (15 micras) o lacado (entre 60-100 micras) en color (RAL estándar: blanco, gris...), mainel para persiana (ancho total de cojunto de carpintería+persiana 14mm), herrajes de colgar, p.p. de cerradura Tesa o similar y costes indirectos. Homologada con Clase 2 en el ensayo de permeabilidad al aire según norma UNE-EN 1026:2000. La transmitancia máxima del marco es de 4 W/m² K, y cumple en las zonas A, B, y C, según el CTE/DB-HE 1.

			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
marco [3	.36]							3,360	
								3,360	3,360
					Total m ²	:	3,360	243,86	819,37
1.2	M²	mm y un v aire deshid perimetral, perimetrale	ridrio lamin ratado de 1 fijado so es y laterale on de junqu	ado de se 0, 12 ó 16 bre carp es y sellad iillos, seg	eguridad Stad mm con per intería con o en frío con únsegún UNE	dip 66.1 i fil separa acuñado silicona	ncoloro de 12 dor de alumini mediante ca neutra, incluso	ux incoloro de 10 mm, cámara de o y doble sellado alzos de apoyo o cortes de vidrio eguridad de uso	
			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
vidrio [43	3.863]							43,863	
								43,863	43,863
					Total m ²	:	43,863	93,31	4.092,86
1.3	M²							radhermetic, con ostes indirectos.	
			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
superficie [21.54]	e persi	ana						21,540	
								21,540	21,540
					Total m ²	:	21,540	59,29	1.277,11
			T . (.)			4 01105	DEIOIE AODI		0.400.04

Total presupuesto parcial nº 1 SUPERFICIE ACRISTALADA: 6.189,34

7. Presupuesto de construcción de muro trombe.

1.1.- FACHADA TROMBE

1.1.1 M³ m³. Mampostería concertada a una cara vista de piedra de musgo, en cualquier tipo de fábrica y espesor recibida con mortero de cemento M5 según UNE-EN 998-2, i/puesta de la piedra a pie de obra, rejuntado y limpieza de la misma.

					A I	A 11 -			• • • • •
			Uds.	Largo	Ancho	Alto		Parcial	Subtotal
TOTAL [[10.036]]						10,036	
								10,036	10,036
					Total m ³	:	10,036	372,83	3.741,72
1.1.2	M²	Planistar On cámara de a separador o acuñado me	ne incoloro iire deshid de alumini ediante cal utra, inclus	de 6 mm ratado de io y dobl Izos de a	n (78/43) y ui 10, 12 ó 16 i le sellado p poyo perime	na luna fl mm con U erimetral, etrales y l	oat Planilux in I=1,3 W/m²K y fijado sobre laterales y sel	rio bajo emisivo colora de 6 mm, g=0,38 con perfil carpintería con lado en frio con llos, según UNE	
			Uds.	Largo	Ancho	Alto		Parcial	Subtota
TOTAL [[33.453]	1						33,453	
								33,453	33,453
					Total m ²	:	33,453	105,87	3.541,67
								-	
			do maestr	eado v fra			o 1.1 FACHAL		7.283,39
1.2 VO 1.2.1	OLADIZ(m². Enfosca con mortero verticales, o limpieza, me	de cemen con maes edios auxil	ito y arena tras cada iares con	atasado, de 2 a de río M15 a metro, i/pa empleo, en	0 mm de según UN reparación su caso,	espesor en to IE-EN 998-2, so n y humedec de andamiaje	da su superficie, obre paramentos ido de soporte, homologado, así	7.283,39
		m². Enfosca con mortero verticales, o limpieza, me	de cemen con maes edios auxil	ito y arena tras cada iares con	atasado, de 2 a de río M15 a metro, i/pi	0 mm de según UN reparación su caso,	espesor en to IE-EN 998-2, so n y humedec de andamiaje	da su superficie, obre paramentos ido de soporte,	7.283,39 Subtotal
1.2.1		m². Enfosca con mortero verticales, o limpieza, me	de cemen con maes edios auxil oución de r	ito y arena tras cada iares con material er	atasado, de 2 a de río M15 a metro, i/pr empleo, en a tajos y p.p.	0 mm de según UN reparación su caso, de costes	espesor en to IE-EN 998-2, so n y humedec de andamiaje	da su superficie, obre paramentos ido de soporte, homologado, así	
1.2.1		m². Enfosca con mortero verticales, o limpieza, me	o de cemen con maes edios auxil oución de r Uds.	ito y arena tras cada iares con material er	atasado, de 2 a de río M15 a metro, i/pr empleo, en a tajos y p.p.	0 mm de según UN reparación su caso, de costes	espesor en to IE-EN 998-2, so n y humedec de andamiaje	da su superficie, obre paramentos ido de soporte, homologado, así Parcial	
1.2.1		m². Enfosca con mortero verticales, o limpieza, me	o de cemen con maes edios auxil oución de r Uds.	ito y arena tras cada iares con material er	atasado, de 2 a de río M15 a metro, i/pr empleo, en a tajos y p.p.	e0 mm de según UN reparación su caso, de costes Alto	espesor en to IE-EN 998-2, so n y humedec de andamiaje	da su superficie, obre paramentos ido de soporte, homologado, así Parcial	Subtotal
total		m². Enfosca con mortero verticales, d limpieza, me como distrib m². Fábrica mortero de de	de cemen con maes edios auxil bución de r Uds. 20,54	eto y arena tras cada iares con naterial er Largo	atasado, de 2 a de río M15 a metro, i/pr empleo, en a tajos y p.p. Ancho Total m² de ladrillo h 32,5 R y are	e0 mm de según UN reparación su caso, de costes Alto	espesor en to NE-EN 998-2, so y humedec de andamiaje s indirectos. 20,540 le de 25x12x9 M5 según UN	da su superficie, obre paramentos ido de soporte, homologado, así Parcial 20,540 20,540	Subtotal 20,540
total	M²	m². Enfosca con mortero verticales, d limpieza, me como distrib m². Fábrica mortero de o posteríor ter	de cemen con maes edios auxil bución de r Uds. 20,54	eto y arena tras cada iares con naterial er Largo	atasado, de 2 a de río M15 a metro, i/pr empleo, en a tajos y p.p. Ancho Total m² de ladrillo h 32,5 R y are	e0 mm de según UN reparación su caso, de costes Alto	espesor en to NE-EN 998-2, so y humedec de andamiaje s indirectos. 20,540 le de 25x12x9 M5 según UN	da su superficie, obre paramentos ido de soporte, homologado, así Parcial 20,540 20,540 10,25 cm, sentado con E-EN 998-2, para	Subtotal 20,540
total	M²	m². Enfosca con mortero verticales, d limpieza, me como distrib m². Fábrica mortero de o posteríor ter	de cemen con maes edios auxil bución de r Uds. 20,54 de 1 pie de cemento C	e espesor i/p.p. de r	atasado, de 2 a de río M15 a metro, i/pr empleo, en n tajos y p.p. Ancho Total m ² de ladrillo h 32,5 R y are oturas, repla	e0 mm de según UN reparación su caso, de costes Alto	espesor en to NE-EN 998-2, so y humedec de andamiaje s indirectos. 20,540 le de 25x12x9 M5 según UN	da su superficie, obre paramentos ido de soporte, homologado, así Parcial 20,540 20,540 10,25 cm, sentado con E-EN 998-2, para ación según CTE/	20,540 210,54
1.2 VO 1.2.1 total 1.2.2	M²	m². Enfosca con mortero verticales, d limpieza, me como distrib m². Fábrica mortero de o posteríor ter	de cemen con maes edios auxil bución de r Uds. 20,54 de 1 pie de cemento C	e espesor i/p.p. de r	atasado, de 2 a de río M15 a metro, i/pr empleo, en n tajos y p.p. Ancho Total m ² de ladrillo h 32,5 R y are oturas, repla	e0 mm de según UN reparación su caso, de costes Alto	espesor en to NE-EN 998-2, so y humedec de andamiaje s indirectos. 20,540 le de 25x12x9 M5 según UN	da su superficie, obre paramentos ido de soporte, homologado, así Parcial 20,540 20,540 10,25 cm, sentado con E-EN 998-2, para ación según CTE/	20,540 210,54

1.2.3 M² m². Enfoscado maestreado y fratasado, de 20 mm de espesor en toda su superficie, con mortero de cemento y arena de río M15 según UNE-EN 998-2, sobre paramentos verticales, con maestras cada metro, i/preparación y humedecido de soporte, limpieza, medios auxiliares con empleo, en su caso, de andamiaje homologado, así como distribución de material en tajos y p.p. de costes indirectos.

	Uds.	Largo	Ancho	Alto		Parcial	Subtotal
total	20,54					20,540	
						20,540	20,540
			Total m ²	:	20,540	10,25	210,54
				Total s	ubcapítulo 1.2	2 VOLADIZO:	852,01
		Tota	ıl presupues	to parci	al nº 1 MUR	O TROMBE :	8.135,40