Characterization of a recombinant transferrin-binding protein A (TbpA) fragment from Haemophilus parasuis serovar 5

Sonia Martínez¹, Rafael Frandoloso¹, Elias F. Rodríguez-Ferri¹, Bruno González-Zorn² & César B. Gutiérrez-Martín¹

¹Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain; and ²Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Microbiología e Inmunología, Universidad Complutense de Madrid, Madrid, Spain.

Abstract

Haemophilus parasuis, the etiological agent of Glässer’s disease in pigs, possesses iron acquisition pathways mediated by a surface receptor that specifically bind porcine transferrin. This receptor is composed of transferrin-binding protein A (TbpA) and TbpB. As it has been reported for other gram-negative organisms, H. parasuis TbpA could be useful as a candidate target for H. parasuis vaccination. In this study, a 600-bp TbpA fragment of the gene encoding TbpA from H. parasuis serovar 5, the Nagasaki strain, was amplified by PCR and cloned into a pBAD/Thio-TOPO expression vector, generating the pBAD-Thio-TbpA-V5-His (TbpA-TbpB) construction.

Introduction

Haemophilus parasuis is the causative agent of Glässer’s disease in pigs, whose main symptoms are fibrinous polyserositis, polyarthritis and meningitis; furthermore, some strains can also be found as a commensal of the upper respiratory tract in healthy pigs. Glässer’s disease has historically been considered a sporadic, stress-associated disease of young pigs; however, in recent years, in pigs of all ages, herds with high sanitary standards have suffered a significant increase in the morbidity and mortality rates due to this disease (Oliveira & Pijoan, 2004).

Outbreaks of Glässer’s disease have been controlled by means of bacterins. These vaccines usually confer protection against challenge with the homologous serovar, but variable results have been reported in cross-protection surveys (Rapp-Gabrielson et al., 1997). Antibodies against outer membrane proteins (Omps) of H. Parasuis, but not against lipooligosaccharide or capsule, have been developed in pigs, suggesting that Omps are more immunogenic than other bacterial components (Miniats et al., 1991). Recently, an Omp formulation has resulted in partial protection against challenge with H. parasuis (Martín de la Fuente et al., 2009). In addition, 15 novel immunogenic Omps have been identified, and four of them (PalA, Omp2, D15 and HPS) have been shown to have a strong potential to be vaccine candidates (Zhou et al., 2009). In a similar way, Zhang et al. (2009) have purified a recombinant H. parasuis OmpA showing good antigenicity.

Among Omps, transferrin-binding proteins (Tbps) in other gram-negative organisms have been considered important targets for the development of attenuated live vaccines because an impairment of iron uptake mechanisms is likely to reduce virulence. Although TbpB have already
been characterized in H. parasuis (del Rio et al., 2005), information regarding TbpA is scarce in this species, and tbpA gene has only been used for genotyping purposes by PCR-RFLP (de la Puente Redondo et al., 2003; Li et al., 2009). Here, we report the characterization of a recombinant TbpA (rTbpA) fragment from H. parasuis Nagasaki strain, amplified with the TbpAF and tbpA33 primers, nucleotide sequence selected and cloned (600 nucleotides), and protein yielded (200 amino acids).

Materials and methods

Bacterial strains and growth conditions

Haemophilus parasuis Nagasaki strain (reference strain of serovar 5) and Actinobacillus pleuropneumoniae WF83 (reference strain of serotype 7) were cultured onto a chocolate agar and incubated for 24 h at 37°C under 5% CO2. Escherichia coli LMG194 and TOP10 cells were grown in LBA (Luria–Bertani medium M) was added to 0.025% NAD+, 200 mM, 2005). Forward primer GJM-F (5′-ggttggcattggatgggttg-3′), designed reverse primer tbpA33 (5′-ggctttgctactcttgataaactttggtcctcaactaaaaatgagcagagttcttatgaagaaaaacacgatactattcagctctc-3′), and two primers were designed for amplification: GJM-F (5′-ttaggtgttagttactatcctgcttattggcagctatcagatttaaaaaatggtaatacgtggtatccaatgaataatgctaaagg-3′) and tbpA33 (5′-acttgatggtaaagaaacgaaagctcataaggatgcggaaagtcgttctaagcgtattcaaagagtggatctcgcagataataatcct-3′) (de la Puente Redondo et al., 2005), and the reaction was performed in a thermal cycler (Eppendorf Mastercycler Gradient, Germany) under the conditions reported previously (de la Puente Redondo et al., 2005). The PCR fragments were purified using Qiagen PCR purification or Gel extraction kits (Qiagen Inc.).

DNA sequencing, and selection and cloning of the protein fragment

DNA sequencing of the H. parasuis tbpA gene was carried out using an ABI Prism Apparatus (Perkin-Elmer, Spain) at Secugen S.L. (Madrid, Spain). The sequence obtained was analyzed using DNA Strider 1.4f3 (CEA, France) and BLAST computer program at the National Center for Biotechnology Information. The DNAMan program was used for predicting the secondary and tertiary structures of proteins, and for predicting transmembrane domains and hydrophobicity analyses. From 303 to 903 bp of the tbpA gene was the selected fragment (Fig. 1), and two primers were designed for amplification: GJM-F (5′-ggc ttg gca ttg gat-3′) and tbpA33 (5′-ggctttgctactcttgataaactttggtcctcaactaaaaatgagcagagttcttatgaagaaaaacacgatactattcagctctc-3′), designed in this study based on the nucleotide sequence from H. parasuis Nagasaki strain (GenBank accession nos.AY818058 and AY818059), and reverse primer tbpA33 (5′-AAC ACT AAG GTA CTC TAA 3′) (de la Puente Redondo et al., 2000) were used for PCR amplification (Fig. 1). The PCR mixture was the same as that described by del Rio et al. (2005), and the reaction was performed in a thermal cycler (Eppendorf Mastercycler Gradient, Germany) under the conditions reported previously (de la Puente Redondo et al., 2005). The PCR fragments were purified using Qiagen PCR purification or Gel extraction kits (Qiagen Inc.).

DNA isolation and PCR amplification

Extraction of bacterial genomic DNA, RNA and protein removals, and DNA purification were carried out as reported previously (del Rio et al., 2005). Forward primer TbpAF (5′-TGG TGG CTG TTA GGA AA 3′), designed

Fig. 1. Nucleotide sequence (1.9 kb fragment) of the Haemophilus parasuis Nagasaki strain, amplified with the TbpAF and tbpA33 primers, nucleotide sequence selected and cloned (600 nucleotides), and protein yielded (200 amino acids).
The amplified PCR product was cut from the agarose gel, purified and cloned using a pBAD/TOPO Thiofusion Expression kit (Invitrogen), using the topoisomerase activity of the vector. The method described by del Rio et al. (2005) was carried out. In order to confirm that clones contained the pBAD-Thio-TbpA-V5-His (TbpA-His) construction, a PCR with primers Trx Seq (5′ TTC CTC GAC GCT AAC CTG 3′) and GJM-R was used. Plasmidic DNA from positive clones was then extracted using the Plasmid Midi and QIAPrep Spin Minprep kits (Qiagen Inc.), and sequenced as described above.

Expression and purification of the fusion protein

Escherichia coli transformants containing the TbpA-His fusion protein were grown in LBA. Arabinose at concentrations from 0.02 to 0.2 µg mL⁻¹ was added to LBA so as to induce the recombinant fusion protein. Various time periods of incubation at 37 °C under agitation were tested to determine the optimal expression conditions of the TbpA-His fusion protein. Thereafter, the cultures were centrifuged, bacteria were resuspended in lysis buffer and sonicated (three cycles of 20 s, 40% duty cycle, Branson sonifier 450 Branson, VWR, Spain) before being centrifuged. The protein concentration was measured from the supernatants obtained using Bradford's method. These samples were then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Immunoblots were carried out as described previously (Pyle & Schill, 1985) in order to confirm the TbpA-His fusion protein in these gels. The membranes were blocked with 5% skim milk in Tris-buffered saline (TBS) for 2 h at 37 °C, and incubated for 1 h at 37 °C with HRPO-labeled murine anti-V5 monoclonal antibodies (mAbs) (Invitrogen) diluted 1:5000 in TBS. Bound antibodies were revealed using an enhanced chemiluminescent substrate (GE Healthcare, Spain) (Bronstein et al., 1992).

Nickel affinity chromatography (His-Select™ HC Nickel affinity gel, Invitrogen) was used for the purification of the TbpA-His fusion protein, which was eluted using a phosphate-buffered saline (PBS) buffer containing imidazole (from 75 to 250 mM). Crude extracts, unbound and eluted fractions were analyzed by SDS-PAGE to monitor the optimal conditions for expression and purification.

Production of polyclonal antibodies

Five groups of two 3-month New Zealand rabbits (Charles River, Spain) were immunized with different rTbpA antigens: (a) minced pieces of a Ponceau Red-stained nitrocellulose membrane containing a purified rTbpA fragment, (b) the same antigen as (a), but treating the nitrocellulose membrane with dimethyl sulfoxide, (c) small pieces of a minced Coomassie-blue-stained electrophoresis gel containing an rTbpA fragment band, (d) the purified protein extract, and (e) PBS. Fifty micrograms of each antigen was emulsified in Montanide IMS 2215 VG PR (Seppic Inc., France) at a 1:4 ratio and injected intramuscularly. Booster immunizations were administered 21, 42 and 63 days later in the same way, and rabbits were bled 7 days after the last injection. Sera were collected, inactivated at 56 °C for 30 min, adsorbed as reported earlier (del Rio et al., 2005) for reducing background staining and stored at −80 °C until use. The animals were handled and cared in accordance with European Animal Care guidelines.

Immunoblotting for testing the specificity of polyclonal antibodies

Bacterial extracts containing iron-binding proteins from *H. parasuis* (Nagasaki), *A. pleuropneumoniae* (WF83) and *S. aureus* were obtained under iron-starved conditions using 2,2′-dipyridyl (100 µM). These samples were analyzed by SDS-PAGE. The nitrocellulose membranes were incubated with polyclonal antibodies diluted 1:100 for 1 h and then with HRPO-labeled goat anti-rabbit IgG (Sigma) diluted 1:5000 in TBS. Bound antibodies were revealed on adding an enhanced chemiluminescent substrate as described above. The assay was performed three times.

Indirect enzyme-linked immunosorbent assay (ELISA)

The plates (Poylsorp, Nunc, Denmark) were coated with 10 µg per well of a purified rTbpA fragment diluted in carbonate buffer and incubated overnight at 4 °C. After blocking with 3% bovine serum albumin (BSA) in PBS for 2 h at 37 °C, 50 µL of each serum diluted 1:100 in PBS+0.05% Tween-20 (PBST) was incubated for 1 h at 37 °C. After three rinses with PBST, 50 µL of HRPO-labeled goat anti-rabbit IgG (whole molecule) (1:5000 in PBST) (Sigma) was incubated for 1 h at 37 °C, followed by five other rinses. Plates were read at 450 nm after adding TMB+0.002% H₂O₂ for 10 min, and stopping with H₂SO₄ 2M. Samples were run in triplicate, and a serum was considered positive when its OD was at least two times higher than that of the mean before immunization+SD. ODs were analyzed using the GRAPHPAD PRISM statistical program 5.0. Tukey’s multiple comparison test was used for comparing the ODs of the five types of sera. Significance was set at *P* < 0.05.

Bactericidal assays

The bactericidal activity of the sera was tested as described earlier (Danve et al., 1993; Rokbi et al., 1997). Sera (50 µL of...
serial twofold dilutions) were mixed in 96-well microplates with 25 µL of an iron-starved *H. parasuis* Nagasaki strain suspension (2 × 10^4 CFU mL⁻¹) and 25 µL of commercial baby-rabbit serum (Sigma), screened previously for the lack of antibodies to *H. parasuis* by ELISA, as the complement source. After incubation for 1 h at 37 °C, the mixture was plated onto a chocolate agar and incubated as described above. Sera were considered to be bactericidal when < 50% of *H. parasuis* were able to grow in comparison with the complement control. All bactericidal assays were performed four times and the results are shown as mean ± SD. ANOVA and Tukey’s multiple comparison tests (GRAPHPAD PRISM statistical program 5.0) were used for comparing the five types of sera. Significance was set at *P* < 0.05.

Immunogold labeling

Immunogold labeling was performed using the method of Li *et al.* (1992). A single colony of *H. parasuis* Nagasaki strain was inoculated into PPLO broth + NAD (40 µg mL⁻¹), Isovitalex® (1.25 µL mL⁻¹; BD) and glucose (250 mg mL⁻¹) and incubated overnight at 37 °C under agitation. After centrifugation and washing, the cells were resuspended in 2 mL of PBS + 1% BSA and sodium azide (PBSB) and 25 µL was placed on Formvar-coated grids and incubated for 30 min at room temperature. Then, unbound cells were removed and grids were blocked for 10 min with 25 µL of 2% BSA, before being incubated for 30 min with 25 µL of rabbit anti-rTbpA fragment serum diluted 1:100 in PBSB. After rinsing five times, the grids were incubated for 30 min with goat anti-rabbit antibody gold particles (25 nm; Aurion, the Netherlands), and observed using JEOL 1010 transmission electron microscopy. The study was carried out using *H. parasuis* grown in both iron-sufficient and deficient media.

Results

Amplification of tbpA gene, cloning of the selected fragment, expression and purification of rTbpA

The two primers selected resulted in the synthesis of a 1.9-kb DNA fragment from chromosomal DNA, representing the partial *tbpA* gene sequence of the reference strain of *H. parasuis* serovar (Fig. 1). This gene was then cloned into the pBAD/Thio-TOPO expression vector, and a second PCR was carried out for identifying the colonies containing the pBAD-Thio-TbpA-V5-His construction and its correct insertion. The positive clones yielded a 600-bp amplified band (Fig. 2b), and one of them was selected. DNA plasmidic was extracted and no mutations in the sequence of the inserted fragment were shown by sequencing.

A difference in 18 nucleotides was detected between this sequence and that of the *tbpA* gene from *H. parasuis*, serovar 5, strain SH0165 (Yue *et al.*, 2009), resulting in two different amino acids (99% homology): Arg to Ser in position 127 and Leu to Asn in position 154 (Fig. 3). Similar results were obtained on analyzing the protein sequence of the *tbpA* gene from *A. pleuropneumoniae* serotype 7, strain AP76 (GenBank accession no. ACE62281.1).

The TbpA-His fusion protein was expressed in *E. coli* LMG194 cells, and the optimal condition of arabinose as an inductor of the protein expression was 0.075% arabinose for 2 h, when 2400 µg mL⁻¹ of the fusion protein was obtained. This rTbpA fragment had an estimated molecular mass of 38.5 kDa (Fig. 4a) and contained thioredoxin, the V5 epitope and six histidine tags. An immunoblotting using HRP-labeled murine anti-V5mAb was carried out for confirming this, and the expected band of 38.5 kDa was observed for the rTbpA fragment under the optimal induction conditions (Fig. 4b, lane 4) and also with 2% arabinose (Fig. 4b, lane 5), but no band was detected in the absence of arabinose (Fig. 4b, lane 3). Different concentrations of imidazole were tested for the purification of the fusion
Fig. 3. Representation of the alignment of the amino acid sequences of the TbpAs from *Haemophilus parasuis* strains Nagasaki (HpsNga) and SH0165, and *Actinobacillus pleuropneumoniae* strain AP76.

Fig. 4. (a) SDS-PAGE depicts the expression of the TbpA-His fusion protein from *Haemophilus parasuis* Nagasaki strain after 120 min of incubation at 37°C with different arabinose concentrations. Lane 1, molecular weight marker (Precision Plus Protein™ standards, Biorad); lane 2, *Escherichia coli* LMG194 cells transformed with pBAD-Thio-TbpA-V5-His induced without arabinose; lane 3, *E. coli* LMG194 cells transformed with pBAD-Thio-TbpA-V5-His induced with 0.02% arabinose; lane 4, *E. coli* LMG194 cells transformed with pBAD-Thio-TbpA-V5-His induced with 0.05% arabinose; lane 5, *E. coli* LMG194 cells transformed with pBAD-Thio-TbpA-V5-His induced with 0.075% arabinose. (b) Immunoblotting using an HRPO-labeled murine anti-V5 monoclonal antibody shows the expression of the TbpA-His fusion protein. Lane 1, molecular weight marker similar to Fig. 3a; lane 2, nontransformed *E. coli* LMG194 cells (negative control); lane 3, *E. coli* LMG194 cells transformed with pBAD-Thio-TbpA-V5-His induced without arabinose; lane 4, *E. coli* LMG194 cells transformed with pBAD-Thio-TbpA-V5-His induced with 0.075% arabinose (optimal induction conditions); and lane 5, *E. coli* LMG194 cells transformed with pBAD-Thio-TbpA-V5-His induced with 2% arabinose. (c) SDS-PAGE depicts the correct purification of the TbpA-His fusion protein after nickel affinity chromatography. Lane 1, molecular weight marker similar to Fig. 3a; lane 2, TbpA fusion protein before being purified; lanes 3 and 4, eluted fractions of TbpA.
protein, and 250 mM in PBS showed the highest rate of separation from sepharose. The eluted fraction was subjected to a new SDS-PAGE in order to confirm purity (Fig. 4c).

Immunoblotting for testing the specificity of polyclonal antibodies

In order to demonstrate the specificity of the rabbit antibodies against the rTbpA fragment, immunoblots using other *Pasteurellaceae* were performed. Positive results (a 100 kDa band corresponding to a bacterial extract containing iron-binding proteins) were obtained for the *H. parasuis* Nagasaki strain and *A. pleuropneumoniae* WF83. In addition, *S. aureus* CIP 5710 was included in the study, and no bands were revealed for this gram-positive organism (Fig. 5).

ELISA results

The highest antibody levels were reached for antigens c and d, the ODs being about 15 and 17 times higher, respectively, than that obtained when immunizing with only PBS (Fig. 6). Antigen b resulted in antibody levels about one-half those measured for antigen c, while those of antigen a were approximately one-third those of antigen d. This latter antigen resulted in significantly higher titers than the remaining preparations (*P* < 0.01 vs. antigen c, and *P* < 0.001 vs. antigens a and b). Similarly, significant differences (*P* < 0.001) were found between antigen c vs. antigens a and b.

Bactericidal assays

Haemophilus parasuis counts were significantly lower for all sera developed against any of the rTbpA fragment preparations, ranging from (4.5 ± 1.3) × 10⁴ CFU mL⁻¹ for group (a) to (5.5 ± 3.0) × 10⁵ CFU mL⁻¹ for group (b), compared either with group (e) (PBS) or (f) (without serum) (*P* < 0.01 in both cases). No significant differences were found when comparing any of the groups (a) to (d) with each other (Fig. 7).
Haemophilus parasuis recombinant TbpA

Immunogold labeling

Haemophilus parasuis Nagasaki strain cells (0.2–2.0 × 1.0–7.0 μm), grown in an iron-deficient medium and exposed to any of the sera developed, were covered with an irregular and discontinuous layer of gold particles (Fig. 8a). A minor amount of gold particles was seen when this H. parasuis strain was grown in an iron-sufficient medium (Fig. 8b). Finally, these particles were absent on cells in which the first antibody was excluded (Fig. 8c).

Discussion

For access to these limited resources of iron, pathogenic bacteria from the family Pasteurellaceae can either synthesize siderophores (del Rio et al., 2006) or utilize high-affinity iron uptake systems, such as Tbps (Litwin & Calderwood, 1993). The organization of the TonB region, involved in transferrin iron uptake and composed of tonB, exbB, exbD, tbpB and tbpA genes, has already been described in H. parasuis (del Rio et al., 2005), but the expression of the tbpA gene has not been reported previously. The TbpA forward primer designed in this study, along with the reverse primer tbpA33 reported previously (de la Puente Redondo et al., 2000), successfully allowed the amplification of the complete tbpA gene, unlike the forward primer designed by de la Puente Redondo et al. (2000), which was unable to amplify the first 21 nucleotides of the tbpA gene. As the amplification product of tbpA gene obtained in H. parasuis is different in size from the 2.8-kb fragment revealed in A. pleuropneumoniae and A. suis (de la Puente Redondo et al., 2000), the amplification of this gene could be a good candidate for an effective diagnostic tool for porcine respiratory infections caused for Pasteurellaceae.

On the other hand, the molecular mass of the predicted, mature TbpA of A. suis was 104.3 kDa (Bahrami et al., 2003), while that of a complete rTbpA of A. pleuropneumoniae was 110 kDa (Kim & Lee, 2006). After selection of a 600-bp tbpA fragment from H. parasuis, purification and elution of rTbpA, there was clear evidence of the production of a 38.5 kDa protein on the SDS-PAGE gel, which represents about one-third of the estimated size for the complete TbpA of other Pasteurellaceae. In a previous study, an rTbpB from H. parasuis was generated (del Rio et al., 2005) using a similar methodology; however, in that case, rTbpB contained the first 102 amino acids of its N-terminal domain and it was shown that this partial rTbpB behaved as an immunodominant antigen, in agreement with that described for the N-terminal domain of other gram-negative organisms (del Rio et al., 2005). This N-terminal domain was not selected for the rTbpA fragment tested here because an earlier report about gonococcal TbpA (Yost-Daljev & Cornelissen, 2004) showed that the most exposed fragments are located in intermediate domains, which therefore are more readily accessible to antibodies.

According to the data gathered in our study, the intermediate domain of H. parasuis rTbpA might also represent an immunodominant region, as the rabbit antibodies raised against it developed high titers by ELISA and also reacted against TbpA from other Pasteurellaceae, such as A. pleuropneumoniae, revealing the high conservation of this protein, as reported in other species (González et al., 1995; Myers et al., 1998). In this respect, other porcine rTbps generated from A. pleuropneumoniae have developed a strong humoral immune response in experimental studies in pigs, being comparable to that induced by natural infection (Rossi-Campos et al., 1992). On the other hand,
the bactericidal activity revealed by any of the four sera developed clearly shows that our rTbpA fragment, about one-third of the full length of native TbpA, was sufficient for the induction of bactericidal antibodies against the homologous serovar of *H. parasuis*. In this sense, a hypothetical protection induced by this rTbpA fragment against *H. parasuis* infection might be due to complement-mediated lysis, and serum bactericidal activity might be an appropriate predictor of efficacy for a potential vaccine based on this recombinant protein fragment. Finally, electron microscopy confirmed that the native TbpA appears to be accessible to antibodies at the cell surface, because the rabbit antibodies raised against this rTbpA fragment were able to bind specifically to *H. parasuis*.

Protective responses against TbpA from other gram-negative organisms, such as *Neisseria meningitidis* (Ferreiros & Criado, 1994; West et al., 2001) and *A. pleuropneumoniae* (Kim & Lee, 2006), have demonstrated the potential efficacy of this protein as a vaccine candidate. The production of a soluble and purified form of *H. parasuis* rTbpA fragment, which is likely to be surface accessible to antibodies, provides an opportunity to directly assess whether this antigen can serve as a good candidate to protect not only against serovar-specific *H. parasuis* but also against other serovars. In conclusion, this work reports for the first time the characterization of a rTbpA fragment from *H. parasuis* serovar 5, a highly virulent and one of the most prevalent serovars (Oliveira & Pijoan, 2004). Further studies are needed to demonstrate whether this 200-amino acid fragment could be used as an effective vaccine to prevent Glässer’s disease.

Acknowledgements

This work was supported by grant AGL2008-00110/GAN from the Spanish Ministry of Science and Innovation. S.M. and R.F. were recipients of long-predoctoral fellowships from this Ministry.

Authors’ contribution

S.M. and R.F. contributed equally to this work.

References

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Description</th>
<th>Author Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: Please define HRPO.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>AUTHOR: Please confirm the change from babby-rabbit to baby-rabbit in text and figure caption.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: Fig. 1a mentioned in the legend of Fig 2. However, there is no part label (a) in Fig. 1. Please check.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>AUTHOR: Fig. 3a mentioned in the legend of Fig 4. However, there is no part label (a) in Fig. 3. Please check.</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>AUTHOR: Lane 7 is not explained in figure caption of Fig. 5. Please check.</td>
<td></td>
</tr>
</tbody>
</table>
USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required Software
Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs. Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html

Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar looks like this:

![Commenting Toolbar](image)

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a preference setting in order to edit.

In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and change the setting “PDF/A mode:” to “Never”.

![PDF/A View Mode](image)

Note Tool — For making notes at specific points in the text
Marks a point on the paper where a note or question needs to be addressed.

![Note Tool](image)

How to use it:

1. Right click into area of either inserted text or relevance to note
2. Select Add Note and a yellow speech bubble symbol and text box will appear
3. Type comment into the text box
4. Click the X in the top right hand corner of the note box to close.

Replacement text tool — For deleting one word/section of text and replacing it
Strikes red line through text and opens up a replacement text box.

![Replacement text tool](image)

How to use it:

1. Select cursor from toolbar
2. Highlight word or sentence
3. Right click
4. Select Replace Text (Comment) option
5. Type replacement text in blue box
6. Click outside of the blue box to close

Cross out text tool — For deleting text when there is nothing to replace selection
Strikes through text in a red line.

![Cross out text tool](image)

How to use it:

1. Select cursor from toolbar
2. Highlight word or sentence
3. Right click
4. Select Cross Out Text
Approved tool — For approving a proof and that no corrections at all are required.

How to use it:
1. Click on the Stamp Tool in the toolbar
2. Select the Approved rubber stamp from the ‘standard business’ selection
3. Click on the text where you want to rubber stamp to appear (usually first page)

Highlight tool — For highlighting selection that should be changed to bold or italic.

How to use it:
1. Select Highlighter Tool from the commenting toolbar
2. Highlight the desired text
3. Add a note detailing the required change

Attach File Tool — For inserting large amounts of text or replacement figures as a files.

How to use it:
1. Click on paperclip icon in the commenting toolbar
2. Click where you want to insert the attachment
3. Select the saved file from your PC/network
4. Select appearance of icon (paperclip, graph, attachment or tag) and close

Pencil tool — For circling parts of figures or making freeform marks

How to use it:
1. Select Tools > Drawing Markups > Pencil Tool
2. Draw with the cursor
3. Multiple pieces of pencil annotation can be grouped together
4. Once finished, move the cursor over the shape until an arrowhead appears and right click
5. Select Open Pop-Up Note and type in a details of required change
6. Click the X in the top right hand corner of the note box to close.
Help
For further information on how to annotate proofs click on the Help button to activate a list of instructions: