Grapevine water status is critical as it affects fruit quality and yield. We assessed the potential of field hyperspectral data in estimating leaf water content (C_w) (expressed as equivalent water thickness) in four commercial vineyards of *Vitis vinifera* L. reflecting four grape varieties (Mencia, Cabernet Sauvignon, Merlot and Tempranillo). Two regression models were evaluated and compared: ordinary least squares regression (OLSR) and functional linear regression (FLR). OLSR was used to fit C_w and vegetation indices, whereas FLR considered reflectance in four spectral ranges centred at the 960, 1190, 1465 and 2035 nm wavelengths. The best parameters for the FLR model were determined using cross-validation. Both models were compared using the coefficient of determination (R^2) and percentage root mean squared error (%RMSE). FLR using continuous stretches of the spectrum as input produced more suitable C_w models than the vegetation indices, considering both the fit and degree of adjustment and the interpretation of the model. The best model was obtained using FLR in the range centred at 1465 nm ($R^2 = 0.70$ and %RMSE = 8.485). The results depended on grape variety but also suggested that leaf C_w can be predicted on the basis of spectral signature.

© 2017 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Water plays an important role in plant physiology, as it conditions yield and quality of crops such as grapes (Vitis vinifera L.). Water stress induces stomata closure to reduce transpiration, which, in turn, also reduces photosynthesis and carbon assimilation. The management of water deficits by controlling grapevine vigour and improving grape maturity could be an efficient strategy for producing a high-quality wine (Chaves et al., 2010). Water content estimation is, therefore, an important issue in managing vineyards.

Several techniques are available for water content estimation in crops. The main ground-based method used in viticulture is leaf water potential, which requires measurement of sap pressure in the xylem (Scholander, Hammel, Bradstreet, & Hemmingsen, 1965). However, this is a destructive and laborious method for estimating water content, especially as variations in water potential are often related to soil type (Chone, Van Leeuwen, Dubordieu, & Gaudillère, 2001). Thus, although it provides the most accurate assessments of plant water status, it is not feasible for estimates involving large areas (Oumar & Mutanga, 2010).

Since water has some absorption maxima in the infrared region of the spectrum centred at the 970, 1200, 1440 and 1950 nm wavelengths (Palmer & Williams, 1974), it is possible to assess plant water status using non-destructive remote sensing technologies. These are faster than the water potential method, and so offer a cost/time ratio advantage; moreover, spatial patterns of water plant content can also be detected by imagery (Moshou, Pantazi, Kateris, & Gravalos, 2014; Xue & Su, 2017).

The use of remote sensing to monitor crop growth and development is attracting interest from researchers and commercial organisations alike. This interest is primarily driven by opportunities for cost-effective generation of spatial data capable of supporting precision agriculture (Hall, Lamb, Holzapfel, & Louis, 2002). To date, limited use has been made of this technology in the grape and wine sector, whether for research or commercial monitoring purposes. This article describes the key principles of remote sensing, reviews the current status of remote sensing in viticulture and discusses remote sensing’s potential as an integrated management tool for vineyards. Sims and Gamon (2003) classified remote sensing methods as follows: (1) vegetation index calculation using mathematical formulae for reflectance at several wavelengths; (2) continuum removal (CR) of the spectral signature and analysis of depth and area in the dip below the continuum; and (3) water content fitting to spectral reflectance over a range of two wavelengths mainly centred on the water absorption maxima.

Spectroscopic determination of leaf water content has been explored by Cheng, Rivard, and Sánchez-Azofeifa (2011) and Ustin, Riaño, and Hunt (2012), while a number of studies have analysed vine water status estimation using remote sensing. Strever (2005) assessed water stress in vines by field spectroscopy, finding important differences depending on vine vigour and concluding that the spectral reflectance of higher vigour and lower vigour vines was related to leaf water content and pigment, respectively. Serrano, González-Flor, and Gorchs (2010) studied the feasibility of using field spectral measurement to estimate vine water status at both leaf and canopy levels, reporting strong correlations for the water index (WI) and stomatal conductance (g_s), with coefficient of determination (R^2) values over 0.80. Note, however, that this result was obtained for potted plants subjected to varying degrees of water availability. In the field they demonstrated a correlation between predawn water potential and the normalized difference vegetation index (NDVI), achieving $R^2 = 0.57$. Serrano, González-Flor, and Gorchs (2012) related berry yield and quality with hyperspectral reflectance indices at canopy level, estimating berry yield by NDVI and WI ($R = 0.57$ and $R = 0.61$, respectively), and suggesting that total soluble acidity and the total soluble solids/total soluble acidity ratio might be estimated by WI when vineyards were experiencing moderate to severe water deficits.

Field spectroscopy is an effective technique for assessing the canopy density of vines. Dobrowski, Ustin, and Wolpert (2002) observed strong correlations between leaf area per metre of canopy and narrow vegetation indices, achieving R^2 values of 0.87, 0.92 and 0.79 for the ratio vegetation index (RVI), NDVI and perpendicular vegetation index (PVI), respectively. These authors recommended RVI for vineyard remote sensing applications, since it is more linearly related to canopy density and contains the same information as the NDVI. Similar results were found for imagery at vineyard level: the RVI was linearly correlated (R^2 values of between 0.68 and 0.88) with pruning weight for growing seasons (Dobrowski, Ustin, & Wolpert, 2003). Dobrowski, Pushnik, Zarco-Tejada, and Ustin (2005) linked vine physiological status and photosynthetic functioning with reflectance fluorescence indices (RFIs) calculated in the red-edge spectral region at canopy level. They indicated that RFIs were more suitable than the photochemical reflectance index (PRI) and NDVI indices for tracking photosynthetic status and plant stress, especially for rapid changes in vine status.

The use of sensors in applications to grapevines is complicated by the fact that a vineyard has a temporally and spatially changing environment that affects light interactions with leaves and grapes (Strever, Bezuidenhout, Zorer, Moffat, & Hunter, 2012). Nevertheless, the literature cited above would support the usefulness of passive reflectance measurements in monitoring vine physiological status, so remote sensing methods for estimating water content merit further study.

A different approach to tackling the problem of water content estimation from reflectance is based on considering spectral signatures as continuous curves instead of discrete values. A review of potential applications of this kind of functional data analysis is provided by Aguilera, Escabias, Mariano, Valderrama, and Aguilera-Morillo (2013) and by Saëys, Ketelare, and Darius (2008). In exemplifying the use of functional models, Saëys et al. (2008) concluded that functional data analysis is comparable to partial least squares regression (PLSR) in terms of predictive ability. Reiss and Ogden (2007) introduced functional versions of principal component regression and PLSR to NIR spectral analyses of both real and simulated data, concluding that functional models offer advantages over non-functional approaches. Dias, Garcia, Ludwig, and Saraiva (2015) also used functional data techniques to calibrate and predict NIR spectral data. Ordóñez, Martínez, Matías, Reyes, and...
Rodríguez-Pérez (2010) estimated vine leaf water content using functional linear regression (FLR) and functional radial basis functions, concluding that the complex dependency relationship between reflectance and vine leaf water content might explain the poor results obtained with methods based on indices. Ordóñez, Rodríguez-Pérez, Moreira, and Sanz (2013) used FLR and non-parametric functional methods to predict certain vine leaf chemical characteristics (moisture, dry mass and nitrogen, phosphorous, potassium, calcium, iron and magnesium concentrations) from electromagnetic reflectance between 350 and 2500 nm, reporting that non-parametric methods yielded better results and that moisture and phosphorous were the best predicted components. However, non-parametric methods have the drawback that since they do not allow for a physical interpretation of the model, there is a risk of overfitting.

This work reports the results of functional analysis of the vine leaf spectrum, using VIS/NIR spectroscopy at the leaf level, as the basis for rapid and non-destructive assessment of water content. The results are compared with those for ordinary least squares regression (OLSR) and vegetation indices.

2. Material and methods

2.1. Study site and experimental setup

The study vineyard was located in Bierzo DO in northern Spain (550 m mean height above sea level and 42°36’N, 6°42’W; Datum: WGS84). Measurements of leaf water content were made for four varieties (Mencía, Cabernet Sauvignon, Merlot and Tempranillo) of 18-year-old vines (V. vinifera L.; rootstock: 1103 Paulsen). The vines were vertical shoot-positioned with a regular grid of 20 m × 30 m was defined to select the 162 data vines (47 Cabernet Sauvignon, 45 Mencía, 27 Merlot and 43 Tempranillo), corresponding to 14 vines ha⁻¹. Three leaves per vine were marked, giving a total of 486 leaf samples. All the mature leaves had the same relative location on the shoot (the opposite side of the first cluster from the bottom). In accordance with Santos and Kaye (2009), field data were collected between berry set and veraison (on 17 July 2012).

2.2. Workflow

The methodology involved three main steps: (1) spectral data collection, (2) leaf data collection, and (3) statistical analysis. The field and laboratory measurement sequence for each leaf was as follows: reflectance measurements were made, the leaf was picked, placed in a plastic bag and stored in a cooler, fresh mass (M₀) was measured, the leaf was dried and finally, dry mass (Mₐ) was calculated. From the spectral data, two different transformations were made to obtain the CR intervals and the vegetation indices. FLR and OLSR were used to estimate Cₓ.

2.3. Spectral data

2.3.1. Field spectroscopy measurements

Reflectance measurements of the 486 leaves were made using an ASD FieldSpec 4 spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) that detects reflectance in the 350–2500 nm spectral region. The spectroradiometer was coupled with a leaf clip and a plant probe to ensure correct data acquisition at leaf level. Three spectral measurements per leaf were made from the adaxial surface and the mean reflectance value for each point was saved. Measurements were made avoiding leaf veins and spots and applying the same criteria: thus, the first measurement was made on the right part of the leaf, the second in the centre and the third on the left part of the leaf. Each capture saved was the average of three spectral measurements, meaning that there were three spectral signatures per sample. The spectroradiometer was calibrated against the white panel face following ASD Inc. (2012) recommendations and was recalibrated before measuring the first leaf of each vine.

2.3.2. Spectral data pre-processing

The field reflectance data were pre-processed using ViewSpec Pro 6.0 (Analytical Spectral Devices, Inc., Boulder, CO, USA) and SAMS 3.2 (Center for Spatial Technologies and Remote Sensing-CSTARS, University of California, Davis CA, USA; http://cstars.metro.ucdavis.edu/resources/software/), obtaining an average spectral signature per leaf sample. The spectral data processing resulted in the calculation of the narrow-band vegetation indices derived from the spectral signatures, the CR transformation and the functional analysis.

2.3.3. Vegetation indices

Eleven vegetation indices, which take into account the wavelengths most related to spectrum water absorption, were calculated to estimate water content using OLSR. Table 1 shows the vegetation indices calculated for this research.

2.3.4. Continuum removal

CR was used to enhance the absorption characteristics of the spectrum (Kokaly & Clark, 1999). CR transformation normalises reflectance values to a common baseline, thereby allowing individual absorption features to be compared and highlighting and identifying absorption features of interest. The CR calculation requires the target regions to be identified, and in this study they were determined by the main water absorption features located at 970, 1200, 1440 and 1950 nm (Kokaly, Asner, Ollinger, Martin, & Wessman, 2009; Sims & Gamon, 2003). Table 2 shows the wavelengths for the four zones (Z) where CR was calculated.

2.4. Leaf data collection

Immediately after reflectance measurement, three 6.16-cm² disks were cut from each leaf and weighed using a SINO-G-150 precision scale (Xiamen Jiahe Scale Co., Xiamen, Fujian, China) in order to determine Mₐ for each sample. The leaf disks were then dried in an oven at 65 °C for 72 h, after which Mₐ was calculated. Water content was determined by the equivalent water thickness (Cₓ), obtained by calculating the difference between fresh and dry mass (M₀ − Mₐ) per unit of leaf area (Aₓ) according to the following equation (Datt, 1999):

\[Cₓ = (M₀ - Mₐ) / (ρₓ × Aₓ) \]

where ρₓ is the density of pure water (1 g cm⁻³).
2.5. Statistical analysis

2.5.1. Functional analysis: mathematical model

We constructed a mathematical model based on FLR to estimate water content from the reflectance. We used this technique because data collected by the spectroradiometer can be considered as samples of continuous curves, so it could be assumed that the underlying curve-generation process was smooth and that the measured data were dependent. It was considered as samples of continuous curves, so it could be approximated by means of a penalty function that prevents excessive smooth and that the measured data were dependent. We used this technique because data collected by the spectroradiometer can be considered as samples of continuous curves, so it could be assumed that the underlying curve-generation process was smooth and that the measured data were dependent.

In functional regression analysis, which is an extension of ordinary linear regression analysis, the covariates are functions instead of scalar values (Ramsay & Silverman, 2002). The model takes the form:

\[y = f(x) + \epsilon \]

where \(y \) represents the response variable; \(f(x) \) represent the covariates, which are real functions; \(\alpha \) and \(\beta(s) \) are the regression coefficients, represented by a real valued and real functions, respectively; and \(\epsilon \) is the error term.

Since discrete data instead of functions are normally available, \(f(x) \) and \(\beta(s) \) are approximated by means of decomposition into basis functions:

\[x(s) = \sum_{k=1}^{n} a_k \phi_k = a^T \phi(s) \]

\[\beta(s) = \sum_{k=1}^{m} b_k \psi_k = b^T \psi(s) \]

where \(a \) and \(b \) are vectors of coefficients, and \(\phi(s) \) and \(\psi(s) \) are the basis functions. These functions can be polynomial, exponential, B-splines or Fourier functions, among others.

Substituting the expressions in Equation (5) in Equation (4), an estimate of \(y \) is obtained as follows:

\[\tilde{y} = \tilde{\alpha} + a^T \tilde{b} \]

where the \(nxm \) matrix \(J \) is given by:

\[J_{ij} = \int \psi_j(s) \phi_i(s) ds = \langle \psi, \phi \rangle \]

The prediction \(\tilde{y} \) in Equation (6) can be expressed as:

\[\tilde{y} = Z\xi \]

where \(Z = [1, a^T J_{\phi}] \) and \(\xi = (\alpha, b_1 \ldots b_m) \).

The estimate of the vector of regression coefficients \(\hat{\xi} \) is obtained by minimising the residual sum of squares

\[\hat{\xi} = (Z^T Z)^{-1} Z^T y \]

To avoid overfitting, a regularisation of the solution is obtained by means of a penalty function that prevents excessive local fluctuation in the estimated function. Given any twice differentiable function \(\omega \), it is possible to define the penalised residual sum of squares as:

\[P_\lambda(\alpha, \beta) = \left[y - \alpha - \int x(s) \beta(s) ds \right]^2 + \lambda \int [D^2 \omega(s)] ds \]

where the operator \(D^2 \) represents the second derivative, and where the smoothing parameter \(\lambda > 0 \) controls the trade-off between roughness and infidelity in the observed data (Ramsay & Silverman, 2002). When the smoothing value \(\lambda \) is close to zero, we are mainly concerned with the fit to the data; a complex and difficult to interpret regression coefficient \(\beta(s) \) is typically the result and overfitting of the model is common. With increased \(\lambda \) we obtain a smoother solution, which means

Table 2 – Definitions of spectral zones for continuum removal calculations.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Interval (nm)</th>
<th>Range</th>
<th>Central wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁</td>
<td>860–1065</td>
<td>205</td>
<td>960</td>
</tr>
<tr>
<td>Z₂</td>
<td>1114–1265</td>
<td>151</td>
<td>1190</td>
</tr>
<tr>
<td>Z₃</td>
<td>1265–1668</td>
<td>403</td>
<td>1465</td>
</tr>
<tr>
<td>Z₄</td>
<td>1830–2240</td>
<td>410</td>
<td>2035</td>
</tr>
</tbody>
</table>

Total specific leaf fresh mass (\(C_{fm} \), Equation (2)) and specific leaf mass (\(C_{dm} \), Equation (3)) were calculated for \(M_f \) and \(M_d \), respectively, per unit of leaf area:

\[C_{fm} = M_f/A_l \]

\[C_{dm} = M_d/A_l \]

Table 1 – Spectral indices.

<table>
<thead>
<tr>
<th>Vegetation index</th>
<th>Acronym</th>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red/green index</td>
<td>RGI</td>
<td>(RGI = \frac{R_{554}/R_{695}}{R_{554}/R_{800}})</td>
<td>(Fuentes, Gamon, Qiu, Sims, & Roberts, 2001)</td>
</tr>
<tr>
<td>Structure intensive pigment index</td>
<td>SIPI</td>
<td>(SIPI = \frac{R_{1265}/R_{1200}}{R_{1114}/R_{1020}})</td>
<td>(Peñuelas, Baret, Filella, 1995)</td>
</tr>
<tr>
<td>Water index</td>
<td>WI</td>
<td>(WI = \frac{R_{858}}{R_{870}})</td>
<td>(Peñuelas, Pinol, Ogaya, Filella, 1997)</td>
</tr>
<tr>
<td>Simple ratio water index</td>
<td>SRWI</td>
<td>(SRWI = \frac{R_{1260}}{R_{1190}})</td>
<td>(Zarco-Tejada & Ustin, 2001)</td>
</tr>
<tr>
<td>Normalized difference vegetation index</td>
<td>NDVI</td>
<td>(NDVI = \frac{R_{665}/R_{690}}{R_{665}/R_{705}})</td>
<td>(Rouse, Haas, Schell, Deering, 1974)</td>
</tr>
<tr>
<td>Normalized difference water index</td>
<td>NDWI</td>
<td>(NDWI = \frac{R_{1240}/R_{1200}}{R_{1240}/R_{1200}})</td>
<td>(Gao, 1996)</td>
</tr>
<tr>
<td>Floating position water band index</td>
<td>FWBI</td>
<td>(FWBI = \frac{R_{580}/R_{570}}{R_{580}/R_{590}})</td>
<td>(Strachan, Pattey, & Boisvert, 2002)</td>
</tr>
<tr>
<td>Shortwave infrared water stress index</td>
<td>SIWSI</td>
<td>(SIWSI = \frac{R_{905}/R_{950}}{R_{905}/R_{950}})</td>
<td>(Fensholt & Sandholt, 2003)</td>
</tr>
<tr>
<td>Normalized difference infrared index</td>
<td>NDII</td>
<td>(NDII = \frac{R_{670}/R_{705}}{R_{670}/R_{705}})</td>
<td>(Hardisky, Klemas, & Smart, 1983)</td>
</tr>
<tr>
<td>Zarco–Tejada–Miller Index</td>
<td>ZTM</td>
<td>(ZTM = \frac{R_{670}/R_{500}}{R_{670}/R_{500}})</td>
<td>(Zarco-Tejada & Ustin, 2001)</td>
</tr>
<tr>
<td>Photochemical reflectance index</td>
<td>PRI</td>
<td>(PRI = \frac{R_{554}/R_{665}}{R_{800}/R_{800}})</td>
<td>(Gamon, Peñuelas, Field, 1992)</td>
</tr>
</tbody>
</table>

\(R_s \): Reflectance at \(\lambda \) wavelength.
that the regression coefficient is easier to interpret. However, since larger smoothing parameter values produce excessively smooth solutions that approach standard linear regression, it is very important to locate a compromise value for this parameter.

The solution to the regularisation problem with a roughness penalty is analogous to that of Equation (9):

$$\hat{\xi} = (\mathbf{Z}'\mathbf{Z} + \lambda R)^{-1}\mathbf{Z}'\mathbf{y}$$

where R is an $m \times m$ matrix with elements

$$R_{jk} = \int D^2 \psi_j(s)D^2 \psi_k(s)ds = (D^2 \psi_j, D^2 \psi_k).$$

The smoothing parameter λ can be chosen subjectively if we have some a priori knowledge of the relationship between the response and explanatory variables; alternatively, it can be chosen by means of cross-validation, that is, by minimising a cross-validation score defined as:

$$CV(\lambda) = \frac{1}{N} \sum_{j=1}^{N} \left[y_j - \hat{\beta}_0(j) - \int X_j(s)\hat{\beta}_1(j)ds \right]^2$$

where N is the sample size, and where $\hat{\beta}_0(j)$ and $\hat{\beta}_1(j)$ are the estimates of α and β obtained by minimising the penalised residual sum of squares based on all the data except (X_j, y_j).

2.5.3. **Validation**

The regression models were compared using observed and predicted values. They were validated by means of the leave-one-out cross-validation method, using two comparison criteria, namely, the highest cross-validated coefficient of determination (R^2) and the least error (root mean square error (RMSE) and %RMSE (RMSE expressed as a percentage of the mean value of the variable) as per Equation (13):

$$\%\text{RMSE} = \left(\frac{\text{RMSE}}{\mathbf{X}} \right) \times 100$$

where RMSE is the root-mean-square error of the cross-validation calibration and \mathbf{X} is the mean of the predicted values for C_w, C_{fm} and C_{dm}. Accurate models should reduce the RMSE by at least 2% (Clevers, Kooistra, & Schaepman, 2008).

3. Results

3.1. **Spectral and leaf data**

Leaf disk mass for the different varieties was not very different in terms of fresh and dry matter and water content (Table 3). For this reason, it was difficult to correlate spectral information and leaf water content.

Spectral signatures for the leaves with highest, medium and lowest C_w for the studied varieties showed similar trends for all four varieties (Fig. 1). The differences in reflectance values in the visible region (350–650 nm) were small, but were greater for higher wavelengths. Since differences were greatest in the range 650–1400 nm, these were the most suitable intervals for detecting variations in water content. Tempranillo was the variety which showed the greatest differences, followed by Mencia, Merlot and Cabernet, in that order.

3.2. Vegetation indices

R^2 values and errors (RMSE and %RMSE) obtained in estimating C_w using the vegetation indices as spectral data indicated that R^2 values were higher than 0.5 only for Tempranillo, for the shortwave infrared water stress index (SIWSI) ($R^2 = 0.53$) and for the normalized difference infrared index (NDII) ($R^2 = 0.52$) (Table 4). No vegetation indices were suitable for predicting C_w for Mencia, Merlot or Cabernet, which would suggest that these indices are not suitable for estimating water content.

3.3. **Functional linear regression**

Regression values obtained for prediction of C_w using FLR as the fitted method showed — as with the vegetation indices — that Tempranillo was the variety that gave the highest regression values — notably the models for Z_3 and Z_4, both with $R^2 = 0.7$ (Table 5). Both these models had the same %RMSE (8.485), but the model based on Z_4 had a smaller smoothing parameter (Sp) than that based on Z_3 (2.5 and 4, respectively); hence, the model for Z_4 was easier to interpret than the model for Z_3. The suitability of Z_3 and Z_4 for determining C_w was confirmed for the other grape varieties. Z_4 was the most appropriate interval for Merlot, with $R^2 = 0.61$, the smallest %RMSE and the same Sp as Z_5. Mencia gave the highest regression value in Z_4 ($R^2 = 0.54$), but since the difference in %RMSE between Z_3 and Z_4 was greater than 2%, Z_3 was the most appropriate interval. On the other hand, Z_4 gave a lower Sp than Z_3, so Z_3 and Z_4 were both suitable for predicting water content.

Table 3 – Leaf variables statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cabernet</th>
<th>Mencia</th>
<th>Merlot</th>
<th>Tempranillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_w</td>
<td>0.072</td>
<td>0.065</td>
<td>0.078</td>
<td>0.073</td>
</tr>
<tr>
<td>C_{dm}</td>
<td>0.017</td>
<td>0.013</td>
<td>0.026</td>
<td>0.025</td>
</tr>
<tr>
<td>C_{fm}</td>
<td>0.028</td>
<td>0.028</td>
<td>0.030</td>
<td>0.033</td>
</tr>
</tbody>
</table>

Variables: C_w: equivalent water thickness (kg m$^{-2}$); C_{dm}: total specific leaf fresh mass (kg m$^{-2}$); C_{fm}: specific leaf mass (kg m$^{-2}$). **Statistics:** SD: standard deviation.

Please cite this article in press as: Rodríguez-Pérez, J. R., et al., Leaf water content estimation by functional linear regression of field spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.1016/j.biosystemseng.2017.08.017
content for Mencía. Cabernet gave R^2 values lower than 0.5 for all the spectral intervals, indicating that this variety was not suitable for estimating water content.

Plots of C_w versus wavelength were created to investigate the relationship between measured water content and leaf reflectance. The results varied depending on grape variety and the smoothing parameter applied to the functional algorithm. Since the best results were obtained for Tempranillo, these are the only results reported here. In Figs. 2 and 3, the continuous line represents the regression coefficient value $\beta(\lambda)$ obtained for the C_w estimate with respect to the reflectance value for each wavelength, and the broken line shows the confidence interval for the regression coefficient.

$\beta(\lambda)$ values obtained for C_w estimates for the Tempranillo variety, using CR-transformed reflectance values as the predictor variable (from 860 to 2240 nm) and using FLR as the fitting method, indicated the largest absolute regression coefficient values for wavelength intervals near 1500–1900 nm and 2100–2250 nm, although with opposite signs (Fig. 2). Higher water content was associated with lower reflectances in the first interval and with higher reflectances in the second interval. The lowest wavelengths, especially those in the

Fig. 1 – Spectral signatures for three leaves with high (—), medium (–) and low (···) equivalent water thickness values (C_w) for (a) Mencía, (b) Merlot, (c) Cabernet and (d) Tempranillo.

<table>
<thead>
<tr>
<th>Cabernet</th>
<th>Mencía</th>
<th>Merlot</th>
<th>Tempranillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>RMSE</td>
<td>%RMSE</td>
<td>R^2</td>
</tr>
<tr>
<td>fWBI</td>
<td>0.23</td>
<td>0.017</td>
<td>10.897</td>
</tr>
<tr>
<td>NDII</td>
<td>0.25</td>
<td>0.016</td>
<td>10.256</td>
</tr>
<tr>
<td>NDVI</td>
<td>0.00</td>
<td>0.019</td>
<td>12.179</td>
</tr>
<tr>
<td>NDWI</td>
<td>0.18</td>
<td>0.017</td>
<td>10.897</td>
</tr>
<tr>
<td>PRI</td>
<td>0.00</td>
<td>0.019</td>
<td>11.999</td>
</tr>
<tr>
<td>RGI</td>
<td>0.01</td>
<td>0.019</td>
<td>12.179</td>
</tr>
<tr>
<td>SIPI</td>
<td>0.01</td>
<td>0.019</td>
<td>12.179</td>
</tr>
<tr>
<td>SIWSI</td>
<td>0.25</td>
<td>0.016</td>
<td>10.256</td>
</tr>
<tr>
<td>SRVI</td>
<td>0.28</td>
<td>0.016</td>
<td>10.256</td>
</tr>
<tr>
<td>WI</td>
<td>0.25</td>
<td>0.016</td>
<td>10.256</td>
</tr>
<tr>
<td>ZTM</td>
<td>0.00</td>
<td>0.019</td>
<td>12.179</td>
</tr>
</tbody>
</table>

R^2: coefficient of determination (cross-validation); RMSE: root mean square error (cross-validation); %RMSE: percentage root mean square error (cross-validation) in relation to the average value of the variable. **Variable**: C_w: equivalent water thickness (kg m$^{-2}$). **Vegetation indices**: fWBI: floating position water band; NDII: normalized difference infrared index; NDVI: normalized difference vegetation index; NDWI: normalized difference water index; PRI: photochemical reflectance index; RGI: red/green index; SIPI: structure intensive pigment index; SIWSI: shortwave infrared water stress; SRVI: simple ratio water index; WI: water index; ZTM: Zarco–Tejada–Miller index.

Please cite this article in press as: Rodríguez-Pérez, J. R., et al., Leaf water content estimation by functional linear regression of field spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.1016/j.biosystemseng.2017.08.017
interval 860–1000 nm, corresponded to confidence intervals around zero, so this region does not provide useful information for estimating \(C_w \).

Results for \(Z_1 \), with the sign of the regression coefficient changing from positive to negative depending on wavelength, indicated that, for the first part of the \(Z_1 \) interval (860–900 nm), the \(\beta(\lambda) \) values were not different from zero and, moreover, remained low until 1100 nm, from which point they increased rapidly (Fig. 3(a)). This would indicate a strong variation in the effect of reflectance on \(C_w \) according to wavelength.

Regression values obtained for \(C_w \) estimates for Tempranillo, using FLR as the fitting method for \(Z_2 \), showed that the regression coefficient decreased as the wavelength value increased, and became negative from 1140 nm (Fig. 3[b]). The lowest confidence interval value was obtained at 1190 nm, indicating less uncertainty in coefficient estimation. In the interval 1114 nm–1265 nm, the response for \(C_w \) was negative when the wavelength value increased, mainly from 1190 nm. This would indicate that \(C_w \) and reflectance were inversely related.

Regression values obtained for \(C_w \) estimates for Tempranillo, using FLR as the fitting method for \(Z_3 \), showed a strong increase in \(\beta(\lambda) \) with \(\lambda \) until 1375 nm (Fig. 3(c)). Thereafter, the slope of coefficient of regression tended to decrease and its absolute value was smaller, indicating a lower effect of reflectance on \(C_w \). \(Z_3 \) appeared to be most suitable in relating water content and reflectance by FLR, given the strong response of \(C_w \), especially in the interval 1265–1375 nm.

In the \(Z_4 \) interval, the relationship between \(C_w \) and wavelength was more sinusous and unstable (Fig. 3[d]), even though \(R^2 \) reached 0.7, as happened with \(Z_2 \) (Table 5). This could indicate a complex relationship between reflectance and \(C_w \), but may also be partially explained by overfitting. In this case, using this functional regression coefficient with a new dataset could produce a poor estimate for \(C_w \).

4. Discussion

4.1. Spectral and leaf data

Spectral data collected with a field spectroradiometer were used to estimate water content in four vineyard plots, given the well-known relationship between leaf reflectance and leaf
composition (Ordóñez et al., 2013; Xue & Su, 2017). The results for C_w estimation differed depending on grape variety. Tempranillo was the variety with the largest leaves and also had the highest C_w and C_{fm} values, but not the highest C_{dm} value; it was thus the variety with the greatest water content and the greatest difference between fresh and dry matter content in the sample. These results were confirmed by representation of the spectral signatures for the leaves with the highest, medium and lowest C_w values (Fig. 1). Spectral signatures for Tempranillo showed the highest differences for C_w (Fig. 1). Those results corroborate the conclusion that Tempranillo was the most vigorous variety, as reported in studies of the same vine samples (González-Fernández, Marcelo, Valenciano, & Rodríguez-Pérez, 2012). Moreover, Tempranillo gave the highest correlation values for spectral data and C_w. This corroborates the findings of Strever (2005), who indicated that water content determination was influenced by the variety and its vegetative state. In this regard, Diago, Fernandes, Millan, Tardáguila, and Melo-Pinto (2013) developed a method for grapevine identification based on spectroscopy imagery acquired with a hyperspectral camera, classifying the Tempranillo, Grenache and Cabernet Sauvignon varieties as a function of the reflectance properties of their leaves and obtaining identification higher than 92% for all the varieties. De Bei et al. (2011) also found different values for estimated water content depending on the variety studied, while Strever (2005) showed that low-vigour vines compared to high-vigour vines produced spectral responses to water content estimates in shorter wavelengths.

On the other hand, C_w estimations based on reflectance for Cabernet Sauvignon were not feasible, possibly because this variety is isohydric (Schultz, 2003), unlike Tempranillo, Merlot (Sánchez de Miguel, De la Fuente, Linares, Lissarrague, 2007; Gutiérrez, 2014) and Mencía (Baeza et al., 2011), which are anisohydric. In a water restriction period, Tempranillo, Merlot and Mencía would continue using available water, whereas
Cabernet would vary growth and physiology to conserve water, causing its leaves to be drier than in normal conditions. This is corroborated by Table 3, which shows that Cabernet was the variety with the highest C$_{\text{mm}}$, indicating that its leaves contained more dry matter than the other varieties. According to studies by Strever (2012), this situation may be due to a mixing of the water content and pigment signals, which would change the wavelengths most suitable to estimating water content.

4.2. Vegetation indices

In the regression performed with the vegetation indices, a relationship between C_w and the vegetation indices was found for Tempranillo. Zhao et al. (2009) and Wang, Hunt, Qu, Hao, and Daughtry (2013) showed the usefulness of the NDII and SIWSI for the determination of water content in leaves. The WI, as one of the most studied vegetation indices, has been demonstrated to correlate highly with leaf water content. However, it has always been studied in crops cultivated in controlled conditions (Serrano et al., 2012). Serrano et al. (2010) also indicated that the WI is not an effective index to estimate water content for non-irrigated vines.

The relationship between vegetation indices and C_w could be improved by optimising the wavelengths when computing spectral indices, as done by Verrelst et al. (2016) and Rivera, Verrelst, Delegido, Verostraete, and Moreno (2014). Verrelst et al. (2016) obtained a suitable relationship to estimate the leaf area index and leaf chlorophyll from an empirical spectral index obtained by optimising wavelengths. Rivera et al. (2014) demonstrated that Gaussian process regression band analysis to optimise wavelengths could correctly predict leaf chlorophyll and the green leaf area index, because this tool identifies the most informative bands for a variable and determines the least number of bands that preserve a high predictive accuracy.

4.3. Functional linear regression

The models obtained using spectral ranges were more suitable for estimating C_w than those obtained with the vegetation indices, for three main reasons: (1) functional data obtained a better prediction in terms of R^2 and RMSE; (2) functional regression coefficients allowed a better interpretation of the relationship between water content and reflectance; and (3) considering the spectral signature as a function enabled the dependence between reflectance values to be taken into account. Our findings are corroborated by previous research, at the same study site (González-Fernández, Rodríguez-Pérez, Marabel, & Álvarez-Taboada, 2015), that demonstrated that using spectral ranges pointed to stronger relationships than methods that use narrow bands.

The FLR results indicate that suitable spectral ranges for water content estimation in grapevines were Z$_3$ and Z$_4$ (centred on 1465 nm and 2035 nm, respectively). This is consistent with the findings of Santos and Kaye (2009) and Zhang, Li, and Zhang (2012), who indicated that 1400 nm (Z$_3$) and 1900 nm (Z$_4$) were the intervals most correlated with leaf water content. These bands correspond to the first overtones of $\text{O}^\circ \text{H}$ excitation for H_2O and the combination of $\text{O}^\circ \text{H}$ and $\text{H}^\circ \text{O}^\circ \text{H}$ deformation. Other bands associated with water content are also associated with cellulose and other organic leaf components (Shenk, Workman, & Westerhaus, 2001).

The FLR results were somewhat poorer for Z$_4$, given the values of R^2 and RMSE. However, the regression coefficient was smoother — even more so than those obtained for the rest of the zones, especially for Z$_4$. It could be said, nonetheless, that the result for Z$_2$ was satisfactory in terms of simplicity and interpretability. What remains clear from Fig. 3(b) is that longer wavelengths correspond to negative increases in water concentration.

Regarding the use of spectral ranges for all the varieties, Z$_4$ obtained a value for R^2 that was similar to that for Z$_3$, but the regression coefficient distribution for estimates of C_w fitted using FLR and Z$_3$ was more stable and easier to interpret than that obtained with Z$_4$. As mentioned earlier, it is very difficult to determine whether the regression coefficient reflects the real relationship between reflectance and C_w or whether there is a problem of overfitting. This is consistent with De Bei et al. (2011) who, using an ASD FS3 spectroradiometer, identified water absorption bands in the 1400–1450 nm region for Chardonnay, Cabernet Sauvignon and Shiraz leaves.

We report R^2 values of 0.70 for Tempranillo fitted by FLR to estimate water content. Research conducted in the same study area by Gonzalez-Fernández et al. (2015), using PLSR as the statistical method, demonstrated that the most suitable models for predicting C_w obtained R^2 values of 0.68. This agrees with De Bei et al. (2011), who obtained lower values using PLSR to estimate water in vineyards than we obtained in our study.

Finally, we suggest that models to estimate water content in vineyards based on using FLR as the fitting method and normalising reflectance using CR may be more suitable than models obtained using narrow bands or other statistical methods that use spectral ranges.

5. Conclusions

Using functional analysis regression, we analysed four different reflectance bands between 860 nm and 2240 nm to estimate the water content of leaves representing four grape varieties (Mencía, Cabernet Sauvignon, Merlot and Tempranillo) and to determine whether the results depended on wavelength. Our research demonstrates that field spectroscopy data processed by functional analysis regression was better able to predict leaf water content than ordinary least squares regression with vegetation indices. Furthermore, this method enabled a better understanding of the relationship between reflectance and leaf water content as a function of wavelength.

The best models were achieved for bands Z$_3$ (1265–1668 nm) and Z$_4$ (1830–2240 nm), previously continuum-removal transformed. However, the more complex relationship revealed for Z$_4$ made it more difficult to establish a simple interpretation of this dependence. The suitability of the models varied according to the grape variety, with the highest R^2 value obtained for Tempranillo.

We suggest that the detailed information obtained from the functional regression coefficients regarding the
relationship between reflectance and leaf water content could be the basis for future implementation of a precise, rapid and non-destructive approach to detecting water stress in vineyards.

Acknowledgements

This work was supported by the University of León [grant number 2016/00145/001-T102]. The authors acknowledge the assistance of the Ribas del Cúa SA winery and thank Bonsai Advanced Technologies SL for providing equipment and support.

REFERENCES

Please cite this article in press as: Rodríguez-Pérez, J. R., et al., Leaf water content estimation by functional linear regression of field spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.1016/jbiosystemseng.2017.08.017.