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ABSTRACT

Diatom detection has been a challenging task for computer scientist and biologist during past years. In this work,
the new state of art techniques based on the deep learning framework have been tested, in order to check whether
they are suitable for this purpose. On the one hand, RCNNs (Region based Convolutional Neural Networks),
which select candidate regions and applies a convolutional neural network and, on the other hand, YOLO (You
Only Look Once), which applies a single neural network over the whole image, have been tested. The first one
is able to reach poor results in out experimentation, with an average of 0.68 recall and some tricky aspects, as
for example it is needed to apply a bounding box merging algorithm to get stable detections; but the second
one gets remarkable results, with an average of 0.84 recall in the evaluation that have been carried out, and less
aspects to take into account after the detection has been performed. Future work related to parameter tuning
and processing are needed to increase the performance of deep learning in the detection task. However, as for
classification it has been probed to provide succesfully performance.
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1. INTRODUCTION

Diatoms are a kind of microscopic algae that have been extensively used for water quality assessment. For
such reason, during recent years the identification of these organisms has been approached with several machine
learning techniques. Nowadays, with the irruption of the deep learning paradigm, a new horizon is open to
explore the power of this framework and its suitability for this problem. In this work, both detection and
classification of 100 taxa have been tackled using this kind of algorithms. This work analyses different deep
learning approaches including regional convolutional neural networks (RCNN) and their performance for taxon
detection and classification.

One of the main points that need to be addressed with such techniques is the availability of enough data.
For this purpose, three expert diatomists have digitized and labelled a significant amount of specimens per
taxon. Once this information is processed, an initial dataset is obtained, which is further enhanced through data
augmentation.

The pearls or lights that deep learning show in this problem are related to classification, were outstanding
results are obtained when the number of available data is enough to take advantage from this technique, as
shown in 1. In this work, fine-tuned versions of state-of-art models such as AlexNet have been tested providing
outstanding results above 99% accuracy. This can be considered as a remarkable result considering the high
amount of species and their variability. On the other hand, as stated in 2, with a reduced number of samples
traditional methods are able to obtain better results than with CNN.

However, the use of CNN for detection by means of RCNN has shown some pitfalls. The problems comes in
terms of detection, when several aspects such as the proposal of candidate regions has to be considered. These
will be discussed in this work, as well as the methods proposed to overcome them.
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2. MATERIALS AND METHODS

In order to approach an object detection problem, a dataset is needed with enough samples to train using a
technique such as deep learning. For this reason, an extensive process of data collecting, labeling and processing
has been performed.

2.1 Data acquisition

The first step is to capture a large number of images with real samples of diatoms as they are observed under
the microscope. To achieve this, the collaboration of an expert diatomist is crucial. As a result, Dr S. Blanco
and his team were responsible for taking close to 11,000 images from the 10 species that are considered in this
work. The specific relation of the number of images per species is stated in table 1.

Table 1. List of diatom taxa and number of samples considered

Species Number
Achnanthes subhudsonis 984
Eolimna rhombelliptica 1056
Nitzschia capitellata 984
Nitzschia inconspicua 2040
Skeletonema potamos 1240
Eolimna minima 1392
Gomphonema rhombicum 512
Nitzschia frustulum var frustulum 1808
Nitzschia palea var palea 100
Staurosira venter 696

2.2 Data labeling

Using these images, the expert was provided with a labeling tool so that he was capable of manually extract
a significant amount of ROIs (Regions of Interest), thus fulfilling the experiment requirements. The labeling
information was stored in a suitable format so that it was easier to process it.

2.3 Validation

To perform the experiments, 10-fold cross-validation has been applied, with 9 folds for training and the remaining
one in each iteration for testing. Hence, joining the results from test folds, the whole dataset is validated.

In order to measure performance, the F-score (also known as F-measure) has been chosen. This is one of
the most commonly used metrics to obtain the performance of a binary decision, such as diatom detection. T.
Fawcett performs a comprehensive review of this topic in 3. Here, the most important concepts are summarized.

The first equation states the general expression of the F-score, in terms of True positive (TP), True negative
(TN), Type 1 error (False positive, FP) and Type 2 error (False negative, FN), of a given confusion matrix:

(1+8?%)- TP
(1+p52%)-TP + %2 -FN+FP

Fy = (1)

This expression can be stated in terms of Precision (P) and Recall (R), as shown in the following equations.

TP

P=—" _ 2
TP + FP @)

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/28/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



TP
B=Tp 1 FN )

The F-score can be understood as a weighted measure of false positives and negatives, varying the balance
between them with the b value, so that recall is given b times more importance than precision. Some common
values to b are 0.5, 1 and 2. For this problem the selected value is 1, so the equation used to calculate the
measure in our experiments is:

P-R

! P+R (4)

3. CNN FOR REGION DETECTION
3.1 RCNN

Region-based Convolutional Neural Networks is a technique for deep learning applied to object detection that
has been extensively used in recent years, along with some variants that improve the performance of certain
details. This deep learning-based object detection approach is based in four fundamental steps:

1. Edge boxes for region proposal

2. Region proposal rejection

w

. Classification of regions

W

. Box merging

These steps are described as follows.

3.1.1 Edge boxes for region proposal

Using the method described in ( 4), several candidate regions are obtained. These are proposed according to
the concentration of edges over different areas of the input image. Moreover, a score is provided so that the
likelihood that a specific region contains an object can be measured, and it can be used as a threshold too.

3.1.2 Region proposal rejection

Since the previous algorithm provides several candidate regions, and most of them are overlapped, it is necessary
to process them. For this reason, this step takes as input the raw regions that are highlighted previously and
merges them using these criteria and a threshold:

e Union area: given two bounding boxes, the overlap index is calculated using the intersection of both areas
and also its union, as follows:

area(A N B)

Union = m (5)

e Minimum area: criterion is similar to the previous one but taking into account the area of the minimum
box, as stated in equation (6).

area(A N B)

Min = min(area(A), area(B)) (6)

Using these criteria, the obtained overlap intersection metric states how much both boxes overlap, so depend-
ing on the threshold it is decided whether the value is enough to merge them. To perform this operation, the
minimum area that includes both boxes is calculated.
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3.1.3 Classification of regions

Once the region proposals are processed, they are classified using the neural network that RCNN has trained.

3.1.4 Box merging (implementation and problems)

One of the facts that has to be considered when using this kind of region-based detectors is that the overall
performance highly relies on how well proposed these regions are. Whether artifacts or inaccurate boxes are
provided to the network or, on the other hand, are discarded, may have a significant impact over final results.
For this reason, the parameters that rule these candidate box proposals have to be wisely chosen, depending
on the intrinsic features of the input images and the kind of objects that are to be detected. By tuning these
parameters, every raw box can be obtained or some of them may be thresholded, depending on their distance
and similarity to other boxes.

In order to overcome this problem, a custom algorithm was developed that, given a list of candidate bounding
boxes, merges them by taking into account the classes they predict and their overlap ratio. The main steps of
this algorithm are:

1. Check the overlap of each pair of boxes, using the criteria exposed before about union or minimum overlap

2. When a positive merge is detected a new box is built that includes both of them, and they are appended
to the list for the next iteration. If not, they are appended as is (if they were not included before)

3. Repeat the process until the list does not change in two consecutive iterations.

Fig. 1 and Fig. 2 show how this problem is overcome with the algorithm described above.

Figure 1. Bounding box merging applying overlap threshold. Left column: a) raw bounding boxes; Right column: b)
merged bounding boxes

Moreover, some of the problems that these methods exhibit in our experiments are related to the inability to
correctly identify diatoms that are very close to each other, giving a single bounding box and, as a result, failing
to quantify the number of diatoms in the slide. This is clearly shown in Fig. 1.

3.2 Object Detection with YOLO

The same problem but with a different approach has been faced using Darknet (see 5). This framework is based
on a specific network that follows a different philosophy than traditional R-CNN or even Fast/Faster-RCNN,
that increases the running time significantly, which is known as YOLO 6. The traditional approaches are based
on applying the model to the input image at multiple locations and scales. However, this recent approach applies
a single neural network to the input image, once. This pass is responsible of dividing the image into candidate
regions (instead of trusting on additional algorithms that add extra cost). Additionally, as the whole image is
fed to the network (instead of several patches), the model has global information about the context of the object,
which is more advantageous for accurate decisions.

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/28/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 2. Bounding box merging for the case of multiple detections over the same object. Left column: a) multiple boxes
in raw detections; Right column: b) single box after applying the algorithm

In detail, this framework divides the images in a cell matrix, so each cell is responsible for proposing a fixed
number of candidate regions. Then, each box is moved according to a predicted offset, so that it fits in size
and location to a candidate object. Also, the prediction provides a confidence for both the object class and the
bounding box, with the likelihood that they are object. The result is that myriads of boxes are proposed, but
most of them have very low confidence, so they can be easily rejected using a threshold.

The way this is performed is shown in Fig. 3. In this figure, it is observed how the image is divided in cells
for selecting candidate regions, and how some of them are not taken into account due to a very low confidence.

Figure 3. YOLO/Darknet visualization of cells and detections

The steps that have been taken to apply this framework are the following:

1. Process the labeling information to obtain the expected format

2. Modify some network parameters and hyperparameters of the Darknet architecture and the framework to
produce the expected number of filters/layers suitable to our problem

3. Perform the training process using the compiled binaries and a pretrained network (based on a more
general-purpose problem)

4. Test the model with new images, tuning the detection threshold depending on the response of the model
to the different classes.
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The same problem about overlapped regions appears with this method, but here it has minor impact. For
this reason, the algorithm described before is applied here as well, with results as shown in Fig. 4. In this case,
the framework is able to perform better in terms of the ability to split each diatom into a single bounding box,
which is critical to perform the biological part of the task, related to water quality assessment.

Figure 4. YOLO/Darknet detection

4. RESULTS

In this section, the results obtained with the methods described in previous sections are shown. The performance
has been measured from two perspectives:

e Pixelwise: each pixel is considered as a single element in the detection. With this method the detector is
checked in terms of its ability to fit the detected boxes to the groundtruth as accurately as possible.

e Objectwise: only single objects as a whole are considered to measure the performance, so in this way it is
possible to handle missing objects, as well as false positives in the detection.

The obtained output masks state the performance of the detection in comparison with the groundtruth
regarding the following colour code:

e Purple: regions that corresponds to false negatives, that is, regions that are positive in the groundtruth
but not detected.

e Yellow: regions that corresponds to false positives, that is, regions that are detected but in fact they are
not valid according to the groundtruth,

e Blue: regions that corresponds to true positives, that is, regions that match in both the groundtruth and
the detection.

The results are stated in terms of the measures that have been explained before (precision, recall and F-
measure) and the approaches based on pixels and objects.

4.1 RCNN

The overall performance of this method is stated in Table 2. To provide a better assessment of the detector
performance, Table 3 states the performance for each species. The species with better performance are: Gom-
phonema rhombicum, Achnanthes subhudsonis and Nitzschia palea var palea. It is observed that the performance
is very poor in general in terms of object counting, and more acceptable regarding pixel regions. Fig. 5 shows
how the main drawbacks of this technique appear in our experiments, such as missing objects and oversized
bounding boxes, which is translated into a seriously increasing number of false positives and false negatives,
lowering the performance measures.
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Table 2. Overall performance of RCNNs.

Pixelwise Pixelwise Pixelwise Objectwise | Objectwise | Objectwise
Precision Recall fMeasure Precision Recall fMeasure
0,29 0,68 0,37 0,10 0,13 0,10

Table 3. Performance of RCNNs by species.

Pixelwise Pixelwise Pixelwise Objectwise | Objectwise | Objectwise
Precision Recall fMeasure Precision Recall fMeasure

Achnanthes 0,29 0,78 0,42 0,11 0,12 0,11
subhudsonis

Eolina 0,28 0,75 0,40 0,08 0,09 0,09
minima

Eolimna 0,22 0,63 0,30 0,13 0,22 0,15
rhombelliptica

Gomphonema, 0,42 0,56 0,45 0,05 0,06 0,05
rhombicum

Nitzschia 0,24 0,87 0,35 0,06 0,06 0,06
capitellata

Nitzschia 0,43 0,39 0,38 0,19 0,12 0,15
frustulum
var frustulum

Nitzschia 0,25 0,70 0,36 0,15 0,21 0,17
inconspicua

Nitzschia 0,29 0,75 0,41 0,01 0,01 0,01
palea
var palea

Skeletonema 0,07 0,45 0,13 0,03 0,07 0,04
potamos

Staurosira 0,20 0,83 0,30 0,11 0,28 0,16
venter

4.2 YOLO

The overall performance of this method is stated in Table 4. Table 5 states the performance for each species. The
species with better performance are: Gomphonema rhombicum, Nitzschia frustulum var frustulum and Nitzschia
inconspicua. With this method, most of the problems from the RCNN approach are solved. For example, most
of the diatoms are contained in a single bounding box, and most of them are identified, usually with no missing
samples, as shown in Fig. 6.

Table 4. Overall performance of YOLO.

Pixelwise Pixelwise Pixelwise Objectwise Objectwise Objectwise
Precision Recall fMeasure Precision Recall fMeasure
0,75 0,84 0,78 0,74 0,74 0,72
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Figure 5. RCNN evaluation example. Left column: a) with false positive regions; Right column: b) with false negative
regions

Figure 6. YOLO evaluation example

5. CONCLUSION

In this work, two state of art methods for object detection with deep learning have been compared. The first one,
RCNN, is shown in our experimentation to be difficult to be used in terms of parameters and post-processing,
since it has been shown that it is important to directly manage the candidate region proposal part and box
merging in order to get acceptable results.

On the other hand, YOLO, which is a new approach, where the image is fed to the deep convolutional neural
network only once, is shown to be more accurate, with a top performance of 0.84 in F-measure which is close to
the standards in object detection for problems of this difficulty.

The evaluation of deep learning applied to this problem can be extended with more experimentation in
terms of architectures, paradigms and pre/post processing of datasets. For example, a proposal of future work
could be the application of better techniques of box post-processing, with algorithms more complex than overlap
thresholding.

The experimental part of this in our work has shown to be useful for validating the suitability of deep learning
approaches in such a difficult problem.
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Table 5. Performance of YOLO species.

Pixelwise Pixelwise Pixelwise Objectwise | Objectwise | Objectwise

Precision Recall fMeasure Precision Recall fMeasure
Achnanthes 0,84 0,73 0,77 0,85 0,66 0,74
subhudsonis
Eolina 0,64 0,90 0,74 0,61 0,71 0,65
minima
Eolimna 0,72 0,87 0,78 0,69 0,81 0,73
rhombelliptica
Gomphonema 0,86 0,84 0,84 0,77 0,70 0,72
rhombicum
Nitzschia 0,66 0,95 0,75 0,72 0,66 0,69
capitellata
Nitzschia 0,80 0,85 0,82 0,79 0,78 0,78
frustulum
var frustulum
Nitzschia 0,79 0,85 0,81 0,74 0,81 0,77
inconspicua
Nitzschia 0,73 0,85 0,78 0,63 0,79 0,69
palea
var palea
Skeletonema 0,50 0,76 0,59 0,45 0,66 0,53
potamos
Staurosira 0,73 0,86 0,76 0,79 0,82 0,79
venter
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