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 Abstract 
Aim: To investigate whether (1) environmental predictors allow to delineate the distri- 
bution of discrete community types at the continental scale and (2) how data complete- 
ness influences model generalization in relation to the compositional variation of the 
modelled entities. 
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36 1 | INTRODUC TION 
37 
38 Understanding the spatial variation of vegetation across broad geo- 
39 graphical extents is a major challenge in conservation biogeography 
40 (Prentice et al., 1992; Venevsky & Veneskaia, 2003). Although  con- 
41 servation initiatives need accurate information on broadscale vege- 
42 tation patterns to evaluate the extent of occurrence and the area of 
43 occupancy of habitat types and related ecosystems (Janssen et  al., 
44 2016; Keith, Elith, & Simpson, 2014), detailed vegetation maps are 
45 generally not available for large areas, or they are based on expert 
46 interpretation at coarse spatial resolution (Bohn & Neuhäusl, 2003). 
47 This  challenge  can  be  addressed  by  modelling  the relationships 
48 between vegetation and environment under functional or species- 
49 compositional approaches (Noss, 1990; Whittaker et al., 2005). The 
50 functional approach has been widely used for modelling the distri- 
51 bution of plant functional types across biomes (Box, 1981; Greve, 
52 Lykke, Blach-Overgaard, & Svenning, 2011; Prentice et al., 1992) but 
53 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

it reflects vegetation structure rather than species composition. In 
contrast, the compositional approach provides information  about 
the constituent species of vegetation cover (Ferrier & Guisan, 2006) 
and it represents a promising tool for characterizing spatial patterns 
of vegetation diversity. 

Under the species-compositional approach, broadscale vegeta- 
tion patterns can be studied using community distribution models 
(CDMs), which comprise methods for modelling the occurrence of 
plant communities in relation to abiotic factors (Chapman & Purse, 
2011; Potts, Hedderson, Franklin, & Cowling, 2013). Ferrier and 
Guisan (2006) suggested that modelling pre-defined plant commu- 
nity types (classifying species assemblages first and then predict- 
ing the distribution of the resulting groups) is a straightforward 
approach to achieve congruence with vegetation  classifications. 
This emphasizes the Clementsian view of communities as discrete 
entities (Clements, 1936), providing a practical perspective for map- 
ping community types at broad scales. This view of CDMs has been 

JIMÉNEZ-ALFARO Et AL. 

Location: Europe. 
Methods: We used comprehensive datasets of two community types of conservation 
concern in Europe: acidophilous beech forests and base-rich fens. We computed 
community distribution models (CDMs) calibrated with environmental predictors to 
predict the occurrence of both community types, evaluating geographical transfera- 
bility, interpolation and extrapolation under different scenarios of sampling bias. We 
also used generalized dissimilarity modelling (GDM) to assess the role of geographical 
and environmental drivers in compositional variation within the predicted 
distributions. 
Results: For the two community types, CDMs computed for the whole study area 
provided good performance when evaluated by random cross-validation and external 
validation. Geographical transferability provided lower but relatively good perfor- 
mance, while model extrapolation performed poorly when compared with interpola- 
tion. Generalized dissimilarity modelling showed a predominant effect of geographical 
distance on compositional variation, complemented with the environmental predic- 
tors that also influenced habitat suitability. 
Main conclusions: Correlative approaches typically used for modelling the distribu- 
tion of individual species are also useful for delineating the potential area of occu- 
pancy of community types at the continental scale, when using consistent definitions 
of the modelled entity and high data completeness. The combination of CDMs with 
GDM further improves the understanding of diversity patterns of plant communities, 
providing spatially explicit information for mapping vegetation diversity and related 
habitat types at large scales. 
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community distribution models, ecosystem properties, extent of occurrence, generalized 
dissimilarity modelling, habitat conservation, plant communities, vegetation 



 
1 TA B LE 1 A selection of studies using community distribution models (CDMs) to assess the distribution of community types, vegetation 
2 types or ecosystems previously identified by plant species composition. The studies were selected to cover as much as possible the variation 
3 in modelled entities, geographical scale, grid size, methods and predictor variables 
4 Modelled entity Geographical scale Grid size Modelling method Predictor variables 

5 Brzeziecki, Kienast and 
6 Wildi (1995) 

Forest community 
types 

Switzerland 1 km BM Topography, climate, 
soil 

7 Lechmere-Oertel and 
8 Cowling (1999) 

Fynbos and karoo 
community types 

Western Cape (South 
Africa) 

1.8 km GLM Topography, climate, 
soil 

9 Cairns (2001) Treeline vegetation 
10 types 

Glacier national Park 
(USA) 

30 m GLM, ANN, CT Topography, 
geomorphology 

11 Miller and Franklin (2002) Vegetation alliances Mojave desert (USA) 30 m GLM, GAM, CT Climate, topography, 
12 geomorphology 
13 Vogiatzakis and Griffiths 
14 (2006) 

Grassland commu- 
nity types 

Lefka Ori, Crete 
(Greece) 

10 m CT Topography, 
geomorphology 

15 Marage and Gégout 

16 (2009b) 
Forest community 
types 

France 50 m LR Climate, soil 

17 Dlamini (2011) Forest classes Swaziland 0.7 km EM Climate, topography, 
soil 

18 
Essl et al. (2011) Mire community 

19 types/habitats 
20 

Austria 250 m Ensemble of 
methods 

Present and future 
climate, topography, 
soil 

21 Potts et al. (2013) Thicket vegetation 
22 subtypes 

Albany coast (South 
Africa) 

~4 km Ensemble of 
methods 

Present and future 
climate 

23 Keith et al. (2014) Mire ecosystem South-eastern 
24 Australia 

250 m BRT Climate, topography, 
soil 

25 Stenzel, Feilhauer, Mack, 
26 Metz and Schmidtlein 

27 (2014) 

Natura 2000 habitat 
types 

Munich region 
(Germany) 

30 m Maxent RapidEye satellite 
imagery 

28 Zhou et al. (2016) Alpine vegetation 
29 groups 

Qilian mountains (NW 
China) 

30 m DT, MLC, RF Satellite images, 
climate 

30 Janská et al. (2017) Vegetation types Siberia (Russia) ~4 km Maxent Climate, soil 

31 ANN, artificial neural network; BM, Bayesian model; BRT, boosted regression tree; CT, classification tree; DT, decision tree; EM, expectation- 

32 maximization algorithm; GAM, generalized additive model; GLM, generalized linear model; LG, logistic regression; MLC, maximum-likelihood classifica- 
tion; RF, random forest. 

33 
34 
35 mainly applied for modelling the distribution of vegetation types 
36 across small geographical extents, for example landscapes or regions 
37 (Table 1). However, modern vegetation classification uses compre- 
38 hensive datasets collected across larger spatial extents (De  Cáceres 
39 et al., 2015; Jennings, Faber-Langendoen, Loucks, Peet, &  Roberts, 
40 2009; Mucina et al., 2016), opening new possibilities for developing 
41 broadscale vegetation mapping products requested by conservation 
42 agencies (Álvarez-Martínez et al., 2017; Keith et al., 2014). 
43 Community distribution models need to consider analogous as- 
44 sumptions to those employed in species distribution models (SDMs), 
45 especially equilibrium in time and space and stability of biotic inter- 
46 actions (Wiens, 2011), with the main difference that the response 
47 variable is a community type rather than a species (Franklin, 2013). 
48 A first question that arises is how to model the occurrence of com- 
49 munity types as discrete entities (Mücher, Hennekens, Bunce, 
50 Schaminée, & Schaepman, 2009). This is related to taxonomic bias 
51 (i.e. inconsistent use of species’ concepts across the data) but at 
52 the community level this can be less problematic because commu- 
53 nity types are usually defined by many co-existing species. Another 

issue is how discrete community types are defined (Ferrier & Guisan, 
2006), and how consistent these definitions are at broad scales (De 
Cáceres et al., 2015). Uncertainties related to subjective judgement 
or ambiguity can occur when a community type is not consistently 
identified, that is when the entity to be modelled is not homoge- 
neously described across its distribution range (Regan, Colyvan, & 
Burgman, 2008). This problem affects the classification of any bio- 
logical entity (Keith et al., 2015) but it may be particularly problem- 
atic in CDMs. 

In addition, geographical sampling bias (i.e. uneven sampling den- 
sities across the study area) is particularly relevant when it leads to re- 
duced representation of environmental variability, which limits model 
generalization (Thuiller, Brotons, Araújo, & Lavorel, 2004). A crucial 
issue is whether predictions can be generalized to new geographical 
areas, considering spatial interpolation (applying predictions to data- 
deficient parts of the study area), transferability (applying predictions 
to areas not spatially overlapping with the calibration dataset, but 
with a similar range of predictor values) and extrapolation (applying 
predictions to new areas and different range of predictor values; 
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1 Peterson et al., 2011). Sampling bias affects model transferability 
2 and extrapolation in SDMs (Heikkinen, Marmion, & Luoto, 2012; 
3 Wenger & Olden, 2012). In the special case of CDMs, model general- 
4 ization can be influenced by the compositional variation of the target 
5 communities across different regions, assuming the Gleasonian per- 
6 spective that not all species may respond equally to environmental 
7 changes (Gleason, 1926). Therefore, a new question related to CDMs 
8 is how to assess the spatial complexity of species assemblages within 
9 the target vegetation. This question can be addressed by methods 

10 such as generalized dissimilarity modelling (GDM) for analysing the 
11 relative influence of geographical and environmental gradients on 
12 compositional variation (Ferrier, Manion, Elith, & Richardson, 2007). 
13 Generalized dissimilarity modelling might be useful for understand- 
14 ing the influence of sampling bias at broad scales, detecting to what 
15 extent the compositional variation of target communities is linked to 
16 environmental gradients (Brown, Cameron, Yoder, & Vences, 2014). 
17 Since GDM allows to project compositional variation into spatially 
18 explicit maps, they also can help in predicting vegetation variation 
19 within the extent of occurrence predicted by CDMs. 
20 Here, we combine CDMs and GDM for modelling both the dis- 
21 tribution and the compositional variation of community types at  the 
22 continental scale. We hypothesized that, given a community type en- 
23 compassing certain compositional consistency at continental scale, 
24 environmental predictors will predict its occurrence under similar 
25 assumptions as in SDMs. We also hypothesized that geographical 
26 sampling bias influences model generalization (transferability and 
27 extrapolation) in relation to the internal compositional variation of 
28 the modelled entity across geographical and environmental gradi- 
29 ents. We selected as study cases two plant community types that 
30 characterize acidophilous beech forests and base-rich fens, repre- 
31 senting habitats of conservation concern, which have been sampled 
32 comprehensively in Europe. We further discuss how both CDMs and 
33 GDM reveal spatial vegetation patterns to serve nature conserva- 
34 tion at the continental scale. 
35 
36 2 | METHODS  
37 
38 2.1 | Plant community data 
39 
40 We used data stored in the European Vegetation Archive (EVA), 
41 a  repository  of  vegetation-plot  data  containing  full  records  of 
42 species co-occurring in relatively small areas (usually <1,000  m2; 
43 Chytrý  et al.,  2016).  Although  some  vegetation  plots  were as- 
44 signed to vegetation types by the original authors, this classifi- 
45 cation is  not consistent across the EVA  database and many  plots 
46 are  unclassified. Therefore, the EVA  database is  currently  being 
47 used  to  perform comprehensive  classifications of  major vegeta- 
48 tion  types at  the  level  of  phytosociological alliances  (see www. 
49 euroveg.org/eva-database-eva-publications).  Alliances  are useful 
50 units in  practical applications, because they  are  transferable  to 
51 the European habitat classifications, which is one of the main uses 
52 of EVA for assisting nature conservation in Europe (Chytrý et al., 
53 2016; Janssen et al., 2016). 

We selected two vegetation datasets representing well-sampled 
communities in Europe. Our first dataset consists of vegetation 
plots interpreted as European acidophilous beech forests (hereaf- 
ter, beech forests) in a previous classification project using composi- 
tional data (Willner et al., 2017). These data include 2,827 vegetation 
plots (Figure 1) sampled across surface areas of 100–500 m2 and 
assigned to the alliance Luzulo-Fagion sylvaticae, which is character- 
ized by oligotrophic and acidophilous species (Barbati, Piermaria, & 
Marchetti, 2007). This community type defines the habitat of con- 
servation concern “9110 Luzulo-Fagetum beech forests” (Thauront 
& Stallegger, 2008), which is protected by the European Habitat 
Directive 92/43/ECC (Annex I), and corresponds to the habitat “G1.6 7  

Fagus woodland” of EUNIS classification (www.eunis.org). 
The second dataset consists of 1,510 vegetation plots (Figure 1) 

sampled in areas from 1 to 100 m2 assigned to mountain base-rich 
fens (hereafter, rich fens) in a pan-European classification (Jiménez- 
Alfaro, Hájek, et al., 2014). This study found this range of plot sizes 
appropriate for describing the alliance Caricion davallianae (Peterka  
et al., 2017), which is mainly associated with base-rich and water- 
logged soils in cool areas with high precipitation (Essl, Dullinger, 
Moser, Rabitsch, & Kleinbauer, 2011; Jiménez-Alfaro, Hájek, et al., 
2014). This vegetation characterizes the European protected habitat 
“7230 Alkaline fens” and the EUNIS type “D4.1—Rich fens, including 
eutrophic tall-herb fens and calcareous flushes and soaks” (Šefferová 
Stanová, Seffer, & Janák, 2008). The most frequent species of the 
two community types are presented in Appendix S1 (Table 2). 8  

 

2.2 | Environmental data 

We compiled the 18 bioclimatic variables of WorldClim (Hijmans, 
Cameron, Parra, Jones, & Jarvis, 2005) at the grid size of 2.5 arc 
minutes (c. 4.2 km). This grid resolution matches the geographi-   
cal uncertainty estimated for the occurrence data, ranging in most 
cases from a few hundred metres to a few kilometres. In addition, we 
used the solar radiation toolset in ArcGIS to model potential annual 
mean irradiation – reflecting the amount of energy incident on the 
earth surface for each grid cell); and obtained an estimate of poten- 
tial evapotranspiration (PET) from the Global-PET Database (www. 
cgiar-csi.org) – reflecting the capacity for transpiration flow and 
primary production when water is not limiting (Fisher, Whittaker, & 
Malhi, 2011). PET is based on the temperature-radiation equation of 
Hargreaves, recommended for broadscale studies (Zomer, Trabucco, 
Straaten, & Bossio, 2006). We finally included a predictor estimat- 
ing topsoil pH(H2O) as provided by the ISRIC World Soil Information 
(http://www.isric.org/). This variable is useful for comparing the re- 
gional dominance of calcareous and non-calcareous bedrock. Other 
soil variables from the same source (e.g. fraction of silt and clay) 
were also explored, but they did not provide any contribution to the 
models and, consequently, they were not used. 

We managed all spatial data with ArcGIS 10.3 (ESRI, Redlands, 
CA, USA) using the European ETRS89 (LAEA) projection system to 
minimize geographical distortion. Solar radiation, PET and pH were 
obtained at 1 km grid resolution and then aggregated to 4.2 km as 

http://www.euroveg.org/eva-database-eva-publications
http://www.euroveg.org/eva-database-eva-publications
http://www.eunis.org/
http://www.cgiar-csi.org/
http://www.cgiar-csi.org/
http://www.isric.org/
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External validation 

37 
(Regional subsets) (Occurrence data) (Suitability models) 

38 
FI G U R E 1 Occurrence data and habitat suitability predicted with community distribution models (CDMs) for (a) acidophilous beech 

39 
forests and (b) base-rich fens in Europe. The study area was defined according to the known distribution range of the two community types 

40 
and partitioned in four regional subsets based on geographical quadrants (R1–R4). Regions zoomed out from suitability maps show the 

41 
distribution of localities used for external validation 

42 
43 the spatial resolution of the study. Collinearity between pairs of vari- 
44 ables was tested using the Pearson correlation coefficient r. Highly 
45 correlated predictors (r > .7) were excluded from each pair, choosing 
46 the variable with stronger ecological meaning for modelling plant 
47 diversity in temperate regions (e.g. Franklin et al., 2013). We finally 
48 kept eight predictors to reflect major environmental gradients that 
49 are supposed to influence the distribution and composition of the 
50 studied communities: temperature seasonality, mean temperature 
51 of the wettest quarter, annual precipitation, precipitation seasonal- 
52 ity, precipitation of the warmest quarter, solar radiation, potential 
53 evapotranspiration and topsoil pH. 

2.3 | Community distribution models 

We used Maxent V.3.3.3k, a package implementing a presence- 
background method that combines machine-learning and statistical 
inference (Elith et al., 2011; Phillips et al. 2006), to model the occur- 9 

rence of community types. Maxent provides good performance in 
transferability to new climatic scenarios (Hijmans & Graham, 2006)  
and geographical regions (Heikkinen et al., 2012) and with low sam- 
ple sizes when compared with presence-only or presence–absence 
methods (Elith et al., 2006; Gibson, Barrett, & Burbidge, 2007). 
Maxent is  especially recommended  for  distribution  data  gathered 
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1 TA B LE 2 Averaged model performance (mean ± SD) of n-fold cross-validations performed for predicting the occurrence of beech forests 
2 and base-rich fens in Europe. Interpolation was based on random fourfold CV in the whole study area (cf. baseline models). Geographical 
3 transferability was computed with occurrences from three regions (3R) in the remaining one (R′). Geographical interpolation shows the 
4 predictive value of 75% of occurrences within one focal region (1R75) to the remaining 25% of the same region (1R25). Geographical 

extrapolation reflects the predictive value of 75% of occurrences within one focal region (1R75) to the whole occurrences of the other three 
5 regions separately (3R’). AUCdiff reflects AUC for training data minus AUC for testing data 
6 
7 
8 
9 

10 
11 
12 

diff 
13 
14 
15 
16 
17 
18 
19 

diff 
20 
21 
22 
23 
24 
25 
26 from  records  sampled  without  a  unique  sampling  protocol con- 
27 tain no reliable information about species absences (Phillips et al., 
28 2009). Indeed, our data also rely on the compilation of regional and 
29 national datasets collected under different, usually subjective sam- 
30 pling schemes. Moreover, the spatial accuracy of the sampling units 
31 (up to a few kilometres) makes impossible to infer absences in a grid 
32 cell where another type has been recorded, since many community 
33 types occur in different habitats within the same grid cell because of 
34 local habitat variation. 
35 We first calibrated a “baseline model” using the default param- 
36 eters of Maxent and 10,000 background points randomly selected 
37 within the area that has been sampled for each community type 
38 (Figure 1). We consider this model as one scenario with non-biased 
39 data and high data completeness. Model outputs were mapped using 
40 a minimum threshold of suitability based on the equate entropy in 
41 Maxent, because it provides an intermediate threshold between  the 
42 most conservative (minimum predicted area) and the least conser- 
43 vative (equal sensitivity and specificity) options (Morán-Ordóñez, 
44 Suárez-Seoane, Elith, Calvo, & de Luis, 2012). Model discrimination 
45 was assessed with the area under the receiver-operating character- 
46 istic (ROC) curve (AUC), using the fraction of the study area pre- 
47 dicted as suitable to calculate the commission error (1 – specificity) 
48 as implemented in Maxent. AUC was averaged from (1) model in- 
49 terpolation using a random fourfold cross-validation with 10 repli- 
50 cates (each replicate using 75% of occurrences for training and 25% 
51 for validation) and (2) external evaluation using a dataset provided 
52 by the Italian National Vegetation Database (BVN/ISPRA; Casella, 
53 Bianco, Angelini, & Morroni, 2012). These data consisted of plots 

sampled in beech forests from the Italian Alps (n = 255) and rich fens 
from the Apennines (n = 16) that were identified by the database as 
the same alliances analysed here. 

We tested for geographical transferability by simulating scenarios 
in which the available dataset is sampled in ¾ of the study area, par- 
titioning the data into subsets based on four geographical quadrants 
(Figure 1). The regions defined by these quadrants showed a clear 
climatic differentiation for the two vegetation types, as reflected by 
discriminant analyses computed with the environmental predictors 
(Appendix S2). We performed four regionally biased models using 
the occurrences of 3 of 4 geographical regions for calibration and 
the remaining one for evaluation, that is using a “geographical four- 
fold cross-validation” (Radosavljevic & Anderson, 2014). We also 
tested for extrapolation by simulating a more challenging scenario  
in which calibration data are taken from one region only. Since these 
models differ largely in the number of occurrences and regional fea- 
tures, we compared their performance with interpolation models 
computed for each region using the same calibration data. A random 
selection of 75% of occurrences from each region was used for cali- 
bration (R175, R275, R375 and R475) and the remaining 25% were kept 
for evaluation. Thus, a model calibrated with R175 was tested first 
for interpolation within the region R1 using R125 as evaluation data 
and, secondly, predictions were extrapolated separately to the other 
geographical regions (R2, R3 and R4). To deal with the sampling bias 
of calibration data, background points were masked in all models to 
the extent of the region/s used as data sources. 

We  quantified  model  overfitting  for  all  model  scenar- 
ios as the difference between training and testing AUC 

Geographical extrapola- 
tion (1R75 to 3R′) 

12-fold 

Geographical interpolation 
(1R75 to 1R25) 

Fourfold 

Geographical transferability 
(3R to 1R′) 

Interpolation baseline 
model (all study area) 

Fourfold Cross-validation Fourfold 

Acidophilous beech forests 

AUC 0.856 ± 0.013 0.697 ± 0.131 0.908 ± 0.030 0.616 ± 0.230 

AUC 0.018 ± 0.015 0.175 ± 0.127 0.007 ± 0.013 0.309 ± 0.230 

Omission rate 
(min) 

0.001 ± 0.002 0.002 ± 0.005 0.003 ± 0.006 0.178 ± 0.192 

Omission rate 
(10th) 

0.134 ± 0.037 0.494 ± 0.257 0.151 ± 0.043 0.693 ± 0.329 

   Base-rich fens  

AUC 0.907 ± 0.008 0.725 ± 0.208 0.781 ± 0.277 0.603 ± 0.214 

AUC 0.013 ± 0.009 0.189 ± 0.196 0.078 ± 0.125 0.256 ± 0.152 

Omission rate 
(min) 

0.004 ± 0.005 0.020 ± 0.040 0.073 ± 0.086 0.280 ± 0.258 

Omission rate 0.117 ± 0.041 0.536 ± 0.443 0.145 ± 0.054 0.564 ± 0.354 
(10th) 
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1 (AUCDIFF = AUCtraining−AUCtesting),   where   higher   values indicate 
2 loss of performance (Warren & Seifert, 2011). To obtain a direct 
3 estimate  of  model  performance  using  presence-only  data, we 
4 also evaluated omission rates, which reflect the number  of  false- 
5 negative predictions based on a threshold of habitat suitability de- 
6 fined by the training data. We selected the minimum omission rate 
7 (minimum value of habitat suitability of training data) and the 10th 
8 percentile (minimum threshold for  the 90% of  occurrences  with 
9 the highest suitability values) provided by Maxent. Omission rates 

10 range from 0 to 1, low values indicating good model performance 
11 and thus low overfitting. Spatial predictions of habitat suitability 
12 achieved for all modelling scenarios, including the baseline model, 
13 were compared with the Pearson correlation coefficient based on 
14 a  random selection of  8,000 points. We  also assessed  potential 
15 differences in the contribution of ecological drivers to different 
16 models using the Jackknife evaluation method in Maxent. 
17 
18 2.4 | Generalized distribution modelling 
19 
20 We used generalized distribution modelling (GDM) as a method to 
21 predict spatial patterns of turnover in species composition (Ferrier 
22 et al., 2007) using the gdm  package in R (Manion et al., 2017). 
23 Generalized distribution modelling uses a nonlinear matrix regres- 
24 sion technique for analysing spatial patterns in compositional dis- 
25 similarity,  providing  fitted  I-splines  to  describe  the relationships 
26 between  a  dissimilarity  metric  (beta  diversity)  and  predictors, 
27 then  estimating  the  partial  deviance  explained  by  each  predic- 
28 tor (Fitzpatrick et al., 2013). For each community type, we created 
29 a  presence–absence  matrix  with  the  full  species  composition of 
30 each plot and generated site pairs described by their compositional 
31 (Bray–Curtis) distance, geographical coordinates and environmental 
32 variables. After running the GDM analysis, we quantified the impor- 
33 tance of geographical distance and environmental predictors and 
34 computed predictions for the whole study area to visualize patterns 
35 of compositional dissimilarity. We created a series of maps to show 
36 the spatial variation for the first three axes of a principal component 
37 analysis (PCA) separately; and for three PCA axes combined into a 
38 unique RGB (red-green-blue) layer. 
39 
40 3 | RESULTS 
41 
42 3.1 | Baseline model 
43 
44 The baseline models calibrated with the whole dataset of beech for- 
45 ests showed the highest habitat suitability in Central Europe, with a 
46 wide distribution range between Southern Scandinavia and the mar- 
47 gins of the southernmost temperate mountains (Figure 1). The equate 
48 entropy threshold defined as non-suitable those areas with habitat 
49 suitability <0.18, distributed through the Mediterranean and Atlantic 
50 regions, as well as the easternmost regions of the study area. The most 
51 important predictors estimated from the Jackknife evaluation method 
52 were temperature seasonality (42% of total contribution), summer pre- 
53 cipitation (21%), potential evapotranspiration (19%) and soil pH (10%) 

(Figure 2). For rich fens, the highest habitat suitability was predicted 
for the Central European mountain systems, especially for the Alps and 
the Carpathians, but also for the Pyrenees and Bulgarian mountains 
(Figure 1). The equate entropy threshold was 0.13, identifying as non- 
suitable the areas far from inland European mountains and continental 
islands. The main predictors were summer precipitation (74%), solar ra- 
diation (12%), potential evapotranspiration (5%) and temperature sea- 
sonality (4%) (Figure 2). Appendix S3 shows the variable contributions 
and response curves for both community types. 

External validation suggested good model performance for the 
two vegetation types (Figure 1). In the beech forests, 100% of the 
occurrence data were predicted as suitable for the minimum training 
presence threshold and 70% for the 10th training presence threshold, 
indicating omission rates of 0 and 0.3, respectively. Mean habitat suit- 
ability was 0.38 (SD ± 0.13), AUC was 0.743, and AUCdiff was 0.120. 
For rich fens, 100% of the data were predicted as suitable using the 
minimum training presence threshold and 99% for the 10th training 
presence threshold. Mean habitat suitability was 0.22 (SD ± 0.05), AUC 
was 0.812, and AUCdiff was 0.099. 

 
3.2 | Interpolation, transferability and extrapolation 

Model interpolation of the baseline model showed better per- 
formance (higher average AUC, lower AUCdiff  and  lower  omis- sion 
rates) than models testing geographical transferability from three 
regions to one (Table 1). Nevertheless, many of the latter models 
showed fair performance (e.g. AUC ~ 0.7 or higher). We also found 
strong correlations between the spatial predictions computed with 
the baseline models and the subsets used for geo- graphical 
transferability (Pearson’s r, n = 4; mean ± SD; 0.92 ± 0.04 in 
forests; 0.96 ± 0.03 in fens). In the two community types, par- tial 
contribution of variables in transferability was very similar to that 
contributing in the baseline models (Figure 2). In contrast, ex- 
trapolation from a unique region to the others provided poor per- 
formance reflected by AUC (~0.6 or lower), high overfitting and 
high omission rates (Table 1). These results were worse than those 
achieved from the interpolation within each region. The correla- 
tions between models derived from extrapolation and the baseline 
model were significant, but the coefficients were lower than those 
from transferability models (0.52 ± 0.16 in forests; 0.56 ± 0.37 in 
fens). In the two community types, the importance of environmen- 
tal variables differed strongly between the subsets and the base- 
line model computed for all regions (Figure 2). 

 
 

3.3 | Compositional variation 

The total deviance explained by GDM was 19% and 15% for beech 
forests and rich fens, respectively. In both cases, variable contribu- 
tion was higher for geographical distance than for environmental 
distances (Table 3). In beech forests, the most important predictors 
(after geographical distance) were continental variation in solar ra- 
diation and temperature seasonality. According to the predicted 
dissimilarities, the first and second PCA axes represented main 
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FI G U R E 2 Variable contribution in 
community distribution models (CDMs) 
computed for plant community types of (a) 
acidophilous beech forests and (b) base- 
rich fens in Europe, using combinations 
of geographical regions (R1, R2, R3 and 
R4) as input data. Regions as in Figure 1. 
Bars in the central panel show results for 
models computed with three regions for 
testing transferability, and bars in the right 
panel show models computed for each 
region separately for testing extrapolation 

 
 
 

TA B LE 3 Variable importance (Var. 
Imp., in %) and relative contribution (Rel. 
Cont., summarizing coefficients in 
l-splines) of predictor variables in 
generalized dissimilarity modelling 
computed for the variation on plant 
species composition across acidophilous 
beech forests (total explained 
deviance = 19%) and base-rich fens (total 
explained deviance = 15%) in Europe 

47 variation  across  latitude  and  longitude,  respectively,  while the 
48 third axis differentiated lowland and mountain regions (Figure 3a). 
49 The combination of the three axes showed similar patterns of 
50 species composition (similar colours) in  areas aggregated  mainly 
51 in Central Europe, Eastern Europe, Atlantic regions and northern 
52 Europe. In rich fens, the best predictor after geographical distance 
53 

was the continental variation in summer precipitation (Figure 3b). 
Predictions for the first and second PCA axes reflected longitudi- 
nal and latitudinal patterns, while the third PCA mainly pointed to 
the higher Central European mountain systems. The combination 
of the three PCA axes predicted the strongest differences along 
the longitudinal gradient. 
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23 FI G U R E 3 Spatial predictions obtained from generalized dissimilarity modelling for the compositional variation of (a) acidophilous beech 
24 forests and (b) base-rich fens in Europe. Maps show variation in community dissimilarity according to the values predicted for three axes of a 
25 principal component analysis (PCA), and the combination of the three axes into a unique model output using an RGB (red-green-blue) colour 
26 plate. The strongest differences in colour reflect the strongest predicted differences in species composition. All maps are masked to suitable 
27 regions predicted for each community type as in Figure 1 
28 
29 4 | DISCUSSION 
30 
31 4.1 | Modelling the distribution of discrete 
32 community types 
33 
34 This study demonstrates how correlative CDMs predict the distribu- 
35 tion of discrete community types at the continental scale. The spatial 
36 patterns predicted here are in accordance with country-level maps 
37 of European habitats related to beech forests (Thauront & Stallegger, 
38 2008) and mountain alkaline fens (Šefferová Stanová et al., 2008); 
39 and also with the maps provided for the European Red list of 
40 Habitats (Janssen et al., 2016). Nevertheless, our predictions offer a 
41 significant improvement to these initiatives by providing continental 
42 maps at relatively high resolution, covering non-sampled areas and 
43 providing further information about environmental drivers. We also 
44 were able to predict the two community types in non-sampled re- 
45 gions, supporting the role of deterministic environmental factors for 
46 explaining the distributions of discrete vegetation entities. 
47 The predicted areas of suitability for acidophilous beech for- 
48 ests were mainly correlated with the interaction of precipitation 
49 and temperature, which is consistent with the ecological pref- 
50 erences known for these communities (Leuschner, Ellenberg, & 
51 Sutcliffe, 2017) and their predicted distribution at regional ex- 
52 10 tents (e.g. Luzulo-Fagion in France, Marage & Gégout, 2009a,b). 
53 Interpedently, this community type was not predicted to occur in 

the European Atlantic region, where another beech-dominated 
community type influenced by oceanic climate occurs on acidic soils 
(Ilici-Fagion alliance in northern Spain and Western France, Marage & 
Gégout, 2009a,b). Similarly, the suitable areas for base-rich fens 
were associated with the main climatic drivers influencing these 
habitats in European mountains, namely sum- mer precipitation and 
solar radiation (Essl et al., 2011). As it was shown in our models, 
mountain base-rich fens hardly occur in the Mediterranean region, 
where summer drought limits water avail- ability (Jiménez-Alfaro, 
Hájek, et al., 2014). 

We note that both community types also depend on soil factors, 
since they only occur on acidic soils (acidophilous beech forests) and 
in calcareous hard-water habitats (base-rich fens). However, the ex- 
pected influence of soil pH was only confirmed in the case of the 
beech forests. This likely reflects their occurrence in zonal habitats 
of regions with predominant acidic bedrocks. In contrast, base-rich 
fens are azonal habitats usually associated with springs, while not all 
base-rich bedrocks support the existence of springs (Grootjans et al., 
2005). This makes it difficult to predict the distribution of base-rich 
fens using coarse-grain variables related to soil conditions. Although 
the spatial accuracy of our occurrence data (~1–2 km) is good enough 
to estimate the extent of occurrence of the modelled entities, it 
seems also limited by high commission error, especially in azonal 
habitats. This issue, caused by the fact that broadscale predictors do 
not account for variation in local conditions, is actually a well-known 
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1 limitation of SDMs (Guisan & Thuiller, 2005) or biodiversity models 
2 based on remote sensing (Rocchini et al., 2010). 
3 
4 4.2 | Model generalization and compositional 
5 dissimilarity 
6 
7 Our results support the hypothesis that CDMs strongly depend on 
8 data completeness at broad scales, as indicated by lower model per- 
9 formance under increasing geographical sampling bias. The models 

10 perform better when more regions are used for calibration and when 
11 used for interpolation, in agreement with the known effect of sam- 
12 pling bias in SDMs (Anderson & Gonzalez, 2011; Heikkinen et al., 
13 2012; Phillips et al., 2009). In general, we found geographical trans- 
14 ferability good enough to be applied from a large proportion of the 
15 study region to non-sampled areas. However, extrapolation seems 
16 too challenging for obtaining good models at the continental scale, as 
17 it has been found in similar scenarios using SDMs (Wenger & Olden, 
18 2012). Under a scenario of strong sampling bias, our extrapolation 
19 exercise showed very low performance and low correlation with the 
20 baseline model. This was expected given the reduced geographi- 
21 cal extent of the calibration data in the context of the whole study 
22 area, producing truncated responses when models are computed 
23 with data from one region only (Heikkinen et al., 2012; Thuiller et al., 
24 2004). This confirms our hypothesis that increasing geographical 
25 sampling bias significantly decreases model performance. 
26 The performance of spatial transferability and extrapolation was 
27 also dependent on the characteristics of the regions selected for 
28 model calibration, as it has been shown in SDMs (Suárez-Seoane, 
29 Virgós, Terroba, Pardavila, & Barea-Azcón, 2014). Some of these re- 
30 gions are more representative of the environmental variation avail- 
31 able also outside the focal region, as indicated by the variance of AUC 
32 values and omission rates. This also explains the lower model perfor- 
33 mance found in base-rich fens, for which some of the geographical 
34 partitions represented marginal regions with a low proportion of 
35 the environmental variation captured therein. The performance of 
36 model generalization was related to the compositional variation of 
37 the community types and the influence of environmental drivers ob- 
38 served with GDM. Indeed, habitat suitability and species dissimilarity 
39 were influenced by similar predictors in beech forests (e.g. tempera- 
40 ture seasonality) and rich fens (e.g. summer precipitation). The influ- 
41 ence of geographical distance was, however, more important than 
42 environmental  variation  in  both  community types, indicating  that 
43 compositional variation is also related to assembly processes such 
44 as biogeographical history or dispersal limitation (HilleRisLambers, 
45 Adler, Harpole, Levine, & Mayfield, 2012). These results suggest that 
46 model transferability and extrapolation are limited by the truncation 
47 of the environmental space in the training data, but also by the inter- 
48 nal variation in species composition across geographical gradients. 
49 This challenges the assumption of equilibrium in space and time, es- 
50 pecially when increasing regional sampling bias. Thus, extrapolation 
51 from a restricted geographical region to the whole continent seems 
52 to be a risky business in terms of statistical performance and reli- 
53 ability of spatial predictions, except for the hypothetical case that a 

focal region contains the full gradient of environmental conditions 
that is available at the continental extent. 

 

4.3 | Applications for broadscale 
vegetation mapping 

In contrast with the geographical extent traditionally used in CDMs, 
this is one of few studies modelling the distribution of plant commu- 
nity types at the continental scale. Similar models may be useful for 
estimating the extent of occurrence and the area of occupancy of veg- 
etation types in ecosystem assessment (Rodríguez et al., 2015) and 
for supporting projections under past (Potts et al., 2013) and future 
(Keith et al., 2014) environmental conditions. The distribution maps 
produced with our CDMs can be also used to estimate the potential 
area of occupancy of specific habitats related to forests and mires, 
which is a current requirement for conservation in Europe (Álvarez- 
Martínez et al., 2017). We note that, in analogy with the spatial hierar- 
chy of species beta-niches in SDMs (Ackerly, Schwilk, & Webb, 2006), 
predictions in grid cells of a few km represent heterogeneous land- 
scapes where different community types may co-occur. The potential 
area of occupancy therefore assumes that different community types 
can occur in the same grid cell, which is an important difference to 
vegetation mapping based on high-resolution data (Miller & Franklin, 
2002), or CDMs using remote sensing (Álvarez-Martínez et al., 2017). 
In addition, GDM offers complementary information about the com- 
positional variation within the potential area of occupancy. GDM has 
been used to address biodiversity patterns and spatial regionalization 
of different organisms under compositional approaches (Brown et al., 
2014; Fitzpatrick et al., 2013; Lasram, Hattab, Halouani, Romdhane, 
& Le Loc’h, 2015), while similar approaches for modelling species 
turnover have also been suggested with remote sensing applications 
(Rocchini et al., 2010). Nevertheless, these approaches are still poorly 
integrated in the analysis of broadscale vegetation patterns. 

Although we modelled vegetation alliances as entities that are 
known to respond to broadscale environmental factors in Europe 
(Jiménez-Alfaro, Hájek, et al., 2014; Mucina et al., 2016), we conclude 
that any community type at any hierarchical level may be modelled at 
continental extent, provided it is consistently defined by species com- 
position and constrained by environmental factors. A key assumption 
of this approach is that community types defined by species com- 
position are discrete entities that respond similar to abiotic factors, 
thus adopting a Clementsian view. This community resolution encap- 
sulates, to a certain extent, the effect of assembly processes such as 
environmental filtering and biotic interactions (HilleRisLambers et al., 
2012). A major limitation attributed to SDMs – the lack of informa- 
tion about biotic interactions (Wisz et al., 2013) – is thus expected to 
have a minor impact on models computed for plant community types 
that involve interspecific interactions implicitly (Lortie et al., 2004). 
However, community types defined by similar species assemblages 
and co-occurring niches are not floristically identical across their dis- 
tribution range, and complementary methods such as GDM allow to 
integrate a Gleasonian perspective, evaluating the extent of internal 
variation in species responses. The combination of both CDMs and 
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GDM is therefore a promising tool for mapping large-scale vegeta- 
tion patterns, assuming that continental vegetation classifications are 
nowadays on the agenda of biodiversity research, and similar data 
will be accessible due to the increasing availability of international 
databases (Franklin, Serra-Diaz, Syphard, & Regan, 2017). 
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