
1.1	Introduction
Species	distribution	models	(SDM)	are	correlative	approaches	that	allow	for	the	estimation	of	species’'	ecological	requirements	at	multiple	scales	in	the	framework	of	the	ecological	niche	theory	(Austin,	2002,	2007;	Kearney,

2006;	Peterson,	2006;	Jiménez-Valverde	et	al.,	2008;	Warren,	2012).	When	SDM	are	based	on	static	 limiting	conditions	(scenopoetic	variables)	that	may	control	species’'	ecophysiology	and	drive	 its	occurrence	at	 large	scale,	 these

models	can	be	interpreted	as	describing	the	Grinnellian	niche.	When	SDM	are	based	on	biotic	interactions	and	resource	consumer	dynamics	(bionomic	variables)	that	determine	species	abundance	and	reproductive	rates	operating	at

more	detailed	scales,	they	can	be	interpreted	as	describing	the	Eltonian	niche	(Soberon,	2007;	Tingley	et	al.,	2009;	Peterson	et	al.,	2012;	Alvarez-Martínez	et	al.,	2015).

SDM	are,	therefore,	potentially	useful	tools	for	ecologists	and	land	managers	dealing	with	processes	of	decision-making	addressed	to	biological	conservation	actions	(Suárez-Seoane	et	al.,	2002;	Franklin,	2010a).	However,	their

applicability	decreases	 if	 they	fail	 to	describe	the	ecological	system	under	study	across	different	scenarios	(Elith	et	al.,	2002;	Dawson	et	al.,	2011;	Guisan	et	al.,	2013).	This	problem	 is	 inherently	 linked	to	 the	uncertain	nature	of

ecological	processes,	but	it	might	also	depend	on	the	methods	and	decision-making	applied	by	researchers.	In	this	sense,	scientists	must	cope	with	the	uncertainties	derived	from	incompatibilities	between	ecological	background,	input

data	and	statistical	methods	(Austin,	2007)	that	can	permeate	model	results	and	management	recommendations.	Authors	such	as	Harwood	and	Stokes	(2003)	and	Ascough	II	et	al.	(2008)	have	argued	that	the	failure	of	ecologists	to
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Abstract

Species	distribution	modelling	may	support	ecologists	in	conservation	decision-making.	However,	the	applicability	of	management	recommendations	depends	on	the	uncertainty	associated	to	the	modelling	process.	A 

key	source	of	uncertainty	is	the	underspecificity	of	the	research	question.	Modelling	specific	questions	is	straightforward	since	they	drive	clearly	the	methodological	choices	about	input	data	and	model	building.	Nevertheless, 

when	the	research	questions	remain	underspecific,	modellers	must	choose	among	a	wide	spectrum	of	choices,	with	each	decision	sequence	driving	to	a	different	outcome	that	explain	partially	the	target	question.	We	show 

how	 the	underspecificity	 associated	 to	 a	general	 research	question	about	Great	Bustard	breeding	 success	at	geographic	 scale	drives	 to	multiple	decision	 choices,	 leads	 to	a	 variety	of	model	 outcomes	and	hampers	 the 

identification	 of	 specific	 conservation	 actions.	We	 ran	 generalised	 linear	models	 using	multi	 -model	 inference	 on	 a	 set	 of	 databases	 built	 according	 to	 specific	 sequences	 of	methodological	 choices.	 Then,	 we	 evaluated 

variations	 in	model	performance,	 complexity	 (parsimony)	 and	nature	of	predictors,	 as	well	as	averaged	model	predictions	 and	spatial	 congruence	 among	model	outputs.	Deviance	 and	parsimony	 varied	widely	 (11.46%	to 

83.33%	and	7	to	18,	respectively),	as	did	model	averaged	mean	predictions	in	occupied	areas,	contributing	predictors	and	spatial	congruence	among	outputs	(rPearson = 0.44 ± 0.23	for	models	calibrated	 in	occupied	areas; 

0.48 ± 0.06	for	models	calibrated	in	potential/accessible	areas).	We	recommend	to	carefully	fix	research	questions	and	associated	methodological	options	through	collaborative	working	frameworks	to	conceptualize	modelling 

approaches	and,	thus,	to	mitigate	problems	arising	from	underspecificity	and	other	forms	of	uncertainty	in	conservation	applications.
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evaluate	accurately	the	uncertainties	associated	with	their	advice	(e.g.,	integrated	assessment	models,	optimization	algorithms	and	multi-criteria	decision	analysis	tools)	diminishes	their	influence	in	decision-making.	Therefore,	it	is

compulsory	to	understand	the	practical	consequences	of	these	uncertainties,	which	may	be	exacerbated	when	the	system	under	study	is	complex	and	changing	(Álvarez-Martínez	et	al.,	2010;	Polasky	et	al.,	2011).

Random	uncertainty	refers	to	the	inherent	variability	of	a	given	system	and	is	typically	referred	to	named	as	variability,	irreducible	uncertainty,	inherent	uncertainty	or	stochastic	uncertainty.	Besides	this	uncertainty	due	to

chance,	three	main	human	dependant	sources	of	uncertainty	can	affect	soundly	SDM	predictions:	epistemic,	linguistic	and	human	decision-making	(Regan	et	al.,	2002;	Elith	et	al.,	2002;	Kujala	et	al.,	2013).	Epistemic	uncertainty	is	due

to	thea	lack	of	knowledge	about	the	state	of	the	system	that	is	being	modelled.	It	is	associated	to	technical	decisions,	as	well	as	systematic	and	measurement	errors	in	data	collection,	such	as	those	related	to	location	(e.g.,	spatial

accuracy	and	representativeness	of	 the	species'	range	requirements;	Thuiller	et	al.,	2004;	Randin	et	al.,	2006;	Menke	et	al.,	2009),	 shape	 (e.g.,	areal	unit	 for	which	data	are	collected,	which	may	 lead	 to	 the	modifiable	areal	unit

problem	MAUP;	Openshaw	and	Taylor,	1981;	Wong,	2004)	 or	nature	of	 input	data	 (e.g.,	 species	data	 can	be	 continuous,	 counts	 or	binary	and	predictor	 values	 can	be	 collected	 from	different	 sources;	Synes	 and	Osborne,	 2011).

Linguistic	uncertainty	originates	when	language	used	for	stating	research	questions	or	defining	terms	is	underspecific,	vague,	ambiguous	or	context-dependent.	Underspecificity	arises	when	the	research	question	is	excessively	general

and	portraits	a	lack	of	clarity.	For	example,	the	question	“which	environmental	factors	determine	temporal	changes	in	biological	fitness?”	is	underspecific	because	it	does	not	clarify	whether	we	are	interested	in	the	assessment	of

factors	behind	inter	or	interannual	variability	in	fitness,	neither	if	we	are	looking	for	the	factors	that	determine	the	mean	or	the	variation	of	fitness	values	for	a	particular	time	span,	the	biotic	or	abiotic	factors	driving	the	temporal

changes	 and	 so	 on.	 On	 the	 opposite,	 “is	 annual	maximum	 temperature	 behind	 interannual	 variation	 of	mean	 breeding	 success?”	 or	 “does	 spring	 cumulative	 rainfall	 determine	 weekly	 variations	 in	 breeding	 success	 during	 the

reproductive	season?”	are	both	specific	research	questions	that	can	be	nested	within	the	former	underspecific	question.	Vagueness	refers	to	the	possibility	of	borderline	cases	due	to	categorical	classifications	of	data	(Regan	et	al.,

2002).	It	arises	when	terms	are	defined	using	arbitrarily	sharp	boundaries	(e.g.,	“high	fitness”,	“optimal	habitat”	or	“viable	population”)	that	may	alter	drastically	the	output	(Bull	et	al.,	2016).	Ambiguity	originates	because	some	words

may	 have	more	 than	 one	meaning	 (e.g.,	 “fitness”	 can	 be	 defined	 either	 as	 the	 variation	 in	 survival	 and	 reproductive	 success	 or	 as	 the	 genotype’'s	 rate	 of	 increase	 in	 future	 generations;	Michod,	 2000).	 Context-dependence	 is

problematic	when	the	framework	of	the	question	at	hand	has	not	been	correctly	specified,	which	may	affect	its	interpretation.	The	lack	of	a	coherent	understanding	of	the	context	under	which	to	answer	ecological	questions	may	be

associated	with	large	variability	in	the	research	predictions	(Lajoie	and	Vellend,	2015).	For	instance,	different	answers	should	be	expected	if	we	explore	the	fitness	variations	in	Great	Bustard	populations	in	Spain	or	Russia	due	to

different	biotic	(e.g.	interspecific	relationships)	and	abiotic	(e.g.	climate	constraints)	contexts.	Finally,	uncertainty	derived	from	human	decision-making	may	arises	from	human	beliefs,	values,	preferences,	choices	and	actions,	as	it	is

the	case	of	scale	preferences	(e.g.	spatial	resolution)	or	subjective	choice	of	predictors	to	be	included	in	a	model.	However,	the	best	recognisedrecognized	type	is	subjective	judgement,	which	is	frequently	associated	to	scenario	planning

or	interpretation	of	model	results.	This	problem	is	especially	relevant	when	data	are	scarce	and	error	prone.	The	standard	way	of	dealing	with	it	is	to	assign	a	level	of	certainty	to	the	target	event	in	the	form	of	a	subjective	probability

(Regan	et	al.,	2002).	For	instance,	we	might	assign	a	probability	of	0.8	to	the	event	“the	mean	breeding	success	of	Great	Bustard	in	Spain	during	the	last	five	years	was	15%”.	There	are	different	techniques	within	decision	science	that

can	help	to	address	this	area	of	uncertainty.	Among	them,	structured	decision	making	(Gregory	and	Keeney,	2002)	and	adaptive	management	(Runge,	2011)	are	particularly	relevant	for	applying	formal	decision-analysis	tools	in	natural

resource	management	decisions.

In	this	context,	the	underspecificity	associated	to	the	statement	of	the	research	question	emerges	as	a	critical	and	under	evaluated	issue	that	can	be	particularly	relevant	in	conservation	applications.	Despite	wide	assessment

of	epistemic	uncertainty	in	SDM	approaches	(e.g.,	Elith	et	al.,	2002;	Thuiller,	2003;	Pearson	et	al.,	2006;	Convertino	et	al.,	2012),	the	role	of	underspecificity	still	remains	underexplored,	as	it	occurs	with	other	forms	of	linguistic	and

human	decision-making	uncertainty.	In	fact,	according	to	Kujala	et	al.	(2013),	from	the	set	of	papers	considering	uncertainty	that	were	published	during	the	period	1945‐–2011	with	an	ecological	scope,	only	1.5%	mentioned	specifically

the	underspecificity,	as	did	the	1%	of	the	papers	with	a	conservation	scope.	Therefore,	underspecificity	should	be	deeper	explored,	as	it	may	have	serious	implications	in	model	interpretation	and	subsequent	applicability.	The	specific

definition	of	the	research	question	is	crucial	since	it	frames	the	problem	and	drives	the	methodological	choices	to	be	done,	structuring	the	modelling	approach	and	the	nature	of	the	requested	data	(Kuhnert	et	al.,	2010).	Modelling

specific	questions,	with	a	 low	level	of	underspecificity,	 is	straightforward	since	they	drive	clearly	the	methodological	choices	to	be	done	through	the	development	of	 the	modelling	approach.	However,	research	questions	might	be

underspecific	due	to	a	lack	of	theoretical	knowledge	or	because	scientists	do	not	consider	explicitly	the	complexity	and	dynamics	of	the	ecological	systems	under	evaluation.	General	questions,	with	a	high	level	of	underspecificity,	are

associated	to	broader	environmental	responses	and	result	much	more	difficult	to	capture	in	a	single	model.	This	is	problematic	since	scientists	are	required	to	make	specific	decisions	about	input	data	and	methods,	which	leaves	open	a

wide	 spectrum	 of	 possibilities	 and,	 therefore,	 underspecificity	 issues.	 Each	 sequence	 of	 decisions	will	 determine	 the	 nature	 of	 the	 outputs,	 the	model	 performance	 and	 the	 chance	 of	 error	 given	 the	 different	 types	 of	 data	 and

approaches,	as	well	as	the	different	levels	of	risk	aversion	(Barry	and	Elith,	2006).	Practitioners	must	be	aware	of	the	implications	of	their	decisions	since	each	possible	model	outcome	would	explain	only	partially	the	target	question,

with	a	wide	array	of	different	outputs.

In	this	work,	we	aim	to	show	how	the	underspecificity	associated	to	a	general	research	question	drives	to	multiple	modelling	decisions,	leads	to	a	variety	of	model	outcomes	and,	therefore,	hampers	the	identification	of	specific

management	choices.	We	formulate	an	underspecific	research	question	about	Great	Bustard	(Otis	tarda)	breeding	success	 in	Spain	during	the	 last	 two	decades	 (period	1987‐–2010)	and	evaluate	differences	 in	explained	deviance,

averaged	mean	predicted	values	across	distributional	areas,	model	complexity,	nature	of	predictors	(scenopoetic	and	bionomic)	and	spatial	prediction	patterns	obtained	when	applying	different	sequences	of	methodological	choices

(with	different	ecological	meaning)	in	a	SDM	framework.	The	evaluation	of	this	ecological	trait	remains	a	challenge	because	of	complex	trade-offs	between	individual	life	traits	of	Great	Bustards	(quality,	age	or	experience;	Lescroël	et



al.,	2009),	social	relationships	(e.g.,	reproductive	skew	in	social	species;	Johnstone,	2000;	Ryder	et	al.,	2009)	and	environmental	constraints	of	distribution	(widely	changing	across	space	and	time;	Barbraud	and	Weimerskirch,	2005).

We	intend	to	draw	attention	to	the	risks	of	generalising	the	outcomes	obtained	by	applying	specific	methodological	choices	when	modelling	underspecific	questions,	highlighting	the	importance	of	carefully	specifying	the	ecological

question	that	one	aims	to	disentangle.

2.2	Methods
2.1.2.1	Data	on	Great	Bustard	breeding	success	in	Spain

Great	Bustard	is	a	globally	threatened	lekking	bird	species	with	a	population	severely	fragmented	throughout	the	Paleartic	(BirdLife	International,	2017).	Almost	60‐–70%	of	the	world	population	of	the	species	is	located	in	the

Iberian	Peninsula	(Alonso	and	Palacín,	2010).	To	calculate	Great	Bustard	breeding	success	 in	Spain,	we	used	a	24-year	series	 (1987‐–2010)	of	population	censuses	carried	out	across	 its	breeding	range.	Censuses	were	conducted	 in

September,	when	families	can	easily	be	detected	(Martin	et	al.,	2007).	The	geographic	position	of	all	located	flocks	of	females	with	or	without	chicks	was	incorporated	into	a	GIS	database.	Flocks	wherewere	assigned	to	the	nearest	lek

(location	of	the	largest	male	flock	in	late	winter	and	early	spring)	identified	in	Spain	(Alonso	et	al.,	2011),	by	using	a	minimum	distance	criterion	refined	by	considering	discontinuities	and	physical	barriers	(roads,	rivers,	high	elevations),

as	well	as	information	derived	from	long-term	radio-tracking	studies	(Palacín	et	al.	2011).	Leks	are	spatial	and	functional	units	to	which	adult	males	and	females	show	a	marked	site-fidelity	throughout	the	reproductive	season	(Alonso	et

al.,	2000;	Magaña	et	al.,	2011).	All	flocks	assigned	to	the	same	lek	and	year	formed	a	reproductive	group	(RG).	We	accounted	for	208	RGs.	Breeding	success	was	estimated	annually	for	each	RG	as	young	productivity	(i.e.,	ratio	of	the

number	of	chicks	to	females).	Productivity	ranged	from	0	to	100%.	RGs	showing	values	of	productivity	higher	than	100%	(small	groups	sampled	only	once	or	twice	and	consisting	of	one	or	two	females	and	their	chicks	mainly	located	in

peripheral	areas)	or	with	a	low	detectability	(the	number	of	females	in	autumn	was	lower	than	30%	of	those	counted	in	spring)	were	discarded.	These	values	were	incorporated	in	a	multi-temporal	database.	We	used	annual	productivity

values	for	each	of	the	208	RG	to	define	temporally	averaged	productivity	patterns	across	Spain	for	the	study	period	(see	Section	2.3).	Alvarez-Martínez	et	al.	(2015)	and	Suárez-Seoane	et	al.	(2017)	provide	more	technical	details	on	the	GIS

database	building.

2.2.2.2	Environmental	variables
We	created	a	comprehensive	pool	of	environmental	GIS	predictors	related	to	Great	Bustard	breeding	success	(Morales	et	al.,	2002;	Alonso	et	al.,	2004;	Pinto	et	al.,	2005;	Martínez,	2008;	Alvarez-Martínez	et	al.,	2015;	Suárez-Seoane	et

al.,	2017)	(Table	1).	We	chose	a	wide	spectrum	of	potentially	explanatory	variables,	both	scenopoetic	and	bionomic,	to	allow	for	flexibility	when	fitting	the	models	characterizing	the	ecological	niche	of	the	species	(Alvarez-Martínez	et	al.,

2015).	The	risk	of	over-fitting	when	using	large	pools	of	variables	is	arguable	(Knape	and	de	Valpine,	2011),	but	increasing	the	number	of	covariates	improves	the	chance	of	including	the	most	relevant	predictors.	Variables	described

topography	and	geographic	position,	climate,	primary	production,	landscape	structure	and	human	disturbances.	The	scale	of	original	data	ranged	from	1:25000	to	1:200000	and	the	pixel	size	from	200 m	to	1 km.	Therefore,	all	All	data

were	rescaled	to	the	same	spatial	resolution,	matching	the	broader	pixel	size	of	1 km.

Table	1	List	of	environmental	predictors.	Spring	(SP)	includes	March,	April	and	May;	summer	(SU):	June,	July	and	August;	and	autumn-winter	(WI):	September	to	March.	CV	is	the	coefficient	of	

,	where	SD	is	the	standard	deviation.

alt-text:	Table	1

Variable Code Units Source Pixel
(m) Scale

Topography,	geographic
position

Southness	(south-north	downslope,	ranging	from	+1	to	‐
−1)

SOUTH
EAST Adimensional

DEM	25 m	(CNIG,	2012) 200 1:200000
Eastness	(east-west	downslope,	ranging	from	+1	to	‐−1) EAST Adimensional

Curvature	(second	derivative	of	the	surface;	‐−1	in
valleys,	+1	in	ridges) CURV Adimensional

Roughness	(standard	deviation	of	the	slope) RUG Degrees

Mean	slope SLOSP 0‐–255
GIS	database	of	agricultural	plots	(SIGPAC,	2012) 1000 1:10000

CV	of	slope SLOSPcv 0‐–255

Longitude LONG m ArcGIS	desktop	10.5	(ESRI,	2016) 100 1:50000

	

	



Climate

Mean	temperature:	summer	(CV) TMEvSU Dimensionless

Climatic	Map	of	the	Iberian	Peninsula		(Ninyerola	et	al.,	2005,	2007)	(Original
data:	monthly,	period	1950‐–99) 200 1:200000

Mean	temperature:	autumn-winter	(CV) TMEvWI Dimensionless

Mean	temperature:	thermal	amplitude	of	spring	(range) TMErSP °C

Minimum	temperature:	summer	(mean) TMImSU °C

Minimum	temperature:	autumn-winter	(CV) TMIvWI Dimensionless

Minimum	temperature:	annual	thermal	amplitude
(range) TMIrAN °C

Minimum	temperature:	thermal	amplitude	of	summer
(range) TMIrSU °C

Maximum	temperature:	summer	(CV) TMAvSU Dimensionless

Maximum	temperature:	autumn-winter	(CV) TMAvWI Dimensionless

Maximum	temperature:	thermal	amplitude	of	summer
(range) TMArSU °C

Rainfall:	spring	(mean) PPmSP mm

Rainfall:	spring	(CV) PPvSP Dimensionless

Rainfall:	autumn-winter	(CV) PPvWI Dimensionless

Rainfall	amplitude:	annual	(range) PPrAN mm

Rainfall	amplitude:	spring	(range) PPrSP mm

Absolute	evapotranspiration	(AE):	autumn-winter	(mean) AEVPmWI [(mm)/day]

METEOSAT	(Original	data:	10-daily	basis,	period	1988‐–2010) 5000

Absolute	evapotranspiration:	summer	CV AEVPvSU Dimensionless

Absolute	evapotranspiration:	autumn-winter	CV AEVPvWI Dimensionless

Relative	evapotranspiration	(soil	moisture):	autumn-
winter	(mean) REVPmWI [%]

Relative	evapotranspiration	(soil	moisture):	annual	(CV) REVPvAN Dimensionless

Relative	evapotranspiration	(soil	moisture):	autumn-
winter	(CV) REVPvWI Dimensionless

Net	Radiation:	spring	(CV) NRADvSP Dimensionless

Net	Radiation:	summer	(CV) NRADvSU Dimensionless

Maximum	difference	in	annual	mean	absolute
evapotranspiration MD_EmAN [(mm)/day]

Maximum	difference	in	annual	mean	net	radiation MD_NmAN W/m2

Maximum	difference	in	annual	CV	relative
evapotranspiration MD_RvAN Dimensionless

Maximum	difference	in	annual	CV	net	radiation MD_NvAN Dimensionless

Primary	production

NDVI:	spring	(mean) NDVImSP Dimensionless

NOAA-AVHRR	(monthly	data,	period	1987‐–2010) 1000

NDVI:	summer	(mean) NDVImSU Dimensionless

NDVI:	annual	(CV) NDVIvAN Dimensionless



NDVI:	spring	(CV) NDVIvSP Dimensionless

NDVI:	summer	(CV) NDVIvSU Dimensionless

NDVI:	autumn-winter	(CV) NDVIvWI Dimensionless

Landscape	structure

Plot	Fragmentation	Index	(no.	plots	divided	by	their
average	area) PFI %

GIS	database	of	agricultural	plots	(SIGPAC,	2012) 1000		1:10000CV	of	plot	perimeter PERIMv Dimensionless

Sum	of	plot	perimeter PERIMsum km

Maximum	perimeter	of	plots PERIMmax km

Arable	land	(%	occupation) ARLAND %

Land	Cover	Information	System	of	Spain	(SIOSE,	2012) 200 1:25000

Other	crops	(%	occupation):	olive	and	vineyards OLIVIN2 %

Irrigated	lands	(%	occupation) IRRIG %

Dry	cereal	crops	(%	occupation) CEREAL %

Dry	olives	and	vineyards	(%	occupation) OLIVIN %

Human	disturbances

Distance	to	paved	roads	of	communication	(roads	and
highways) DISTRO m BCN200	(CNIG,	2012) 200 1:200000

Distance	to	human	infrastructures	(villages,	cities,	urban
sprawl,	industries) DISTED m SIOSE	(2012) 200 1:25000

Human	footprint HUMFP Dimensionless NASA	(2012) 1000 1:200000

Distance	to	SCI	(Sites	of	Community	Importance;
“Natura	2000”	Network) DISTSCI m

“Natura	2000”	Ecological	Network	(MAGRAMA,	2012) 200 1:200000Distance	to	SPAs	(Special	Protection	Areas;	“Natura
2000”	Network) DISTSPA m

Distance	to	IBAs	(Important	Bird	Areas;	BirdLife
International) DISTIBA m

To	evaluate	the	effect	of	climate,	we	developed	two	datasets:	(i)	Temperature	(maximum,	mean	and	minimum)	and	rainfall,	extracted	from	the	Climatic	Map	of	the	Iberian	Peninsula	(Ninyerola	et	al.,	2005,	2007).	These	measures

were	achieved	by	interpolating	(multiple	regression	in	combination	with	a	residual	correction	method)	the	observed	monthly	averaged	ground-data	collected	from	meteorological	stations	distributed	all	across	the	Iberian	Peninsula	for

the	period	1950‐–1999	at	200 m	resolution.	 (ii)	Net	radiation	and	both	absolute	and	relative	evapotranspiration	derived	 from	a	combination	of	METEOSAT	satellite	data	 (period	1988‐–2010,	10-day	products)	at	ca.	5 km	resolution

(visible	and	infrared	channels)	with	ground-truth	information.	Data	came	from	the	European	Energy	and	Water	Balance	Monitoring	System	(EWBMS;	Rosema	et	al.,	2001).	See	Suárez-Seoane	et	al.	(2004)	for	a	more	complete	explanation

of	these	variables.	The	above-ground	net	primary	production	was	estimated	using	the	Normalized	Difference	Vegetation	Index	(NDVI;	Pettorelli	et	al.,	2011;	Bro-Jørgensen	et	al.,	2008)	obtained	from	a	temporal	series	of	NOAA-AVHRR

satellite	imagery	(period	1987‐–2010)	acquired	from	the	Spanish	National	Research	Council	(CSIC)	databases.	Data	on	climate	and	primary	production	were	annually	and	seasonally	averaged	(mean,	variation	coefficient	and	range)	to

assess	their	effect	on	breeding	success	during	critical	periods	of	the	year.	Landscape	structure	was	quantified	from	the	Spanish	Geographic	Information	System	for	Agricultural	Plots	(SIGPAC,	2012)	and	the	Land	Cover	Information

System	of	Spain	(SIOSE,	2012).	SIGPAC	was	used	to	create	spatial	indices	of	landscape	structure	on	the	basis	of	the	property	limits	in	1x1km	grids	(authors'	unpublished	data).	SIOSE	was	handled	to	obtain	single	land	covers	types	of

interest.	Independent	layers	for	each	land	cover	were	achieved	by	merging	those	polygons	where	target	land	covers	were	dominant	(over	than	70%	of	coverage).	Human	disturbances	were	quantified	as	the	Euclidean-distance	from

each	pixel	to	the	nearest	town,	road	or	other	infrastructure;	human	footprint	(NASA,	2012);	and,	land	protection	status.	All	GIS	analyses	were	done	in	ArcGIS	10.5	(ESRI,	2016).

2.3.2.3	Methodological	choices	and	databases
Six	methodological	dilemmas	emerged	when	building	both	 the	response	variables	and	 the	environmental	predictors	 from	the	original	multi-temporal	dataset.	Each	dilemma	 implied	alternative	methodological	choices	with

different	ecological	meaning	(Figure.	1).	(1)	Dilemma	1:	Data	could	be	collected	across	different	spatial	extents,	i.e.	within	occupied	nesting	areas	or	within	potential/accessible	breeding	areas	(Suárez-Seoane	et	al.,	2002;	Alvarez-Martínez



et	al.,	2015).	(2)	Dilemma	2:	Dependent	variables	could	be	made	of	continuous	or	binary	values.	(3)	Dilemma	3:	In	the	case	of	continuous	dependent	variables,	annual	productivity	data	could	be	averaged	across	the	temporal	series	using

either	the	mean	or	the	range	of	the	values.	(4)	Dilemma	4:	Regarding	binary	dependent	variables,	productivity	values	could	be	split	into	"high"	or	"positive"	vs.	"low"	or	"null".	“High	productivity”	corresponds	to	those	RGs	showing

consistently	the	best	values	of	fitness	(mean	productivity	higher	than	the	averaged	mean	value	for	all	RGs	across	the	study	period	(i.e.,	15%).	“Positive	productivity”	allocates	to	RGs	with	a	productivity	value	greater	than	“0”	(i.e.,	birds

successfully	bred,	independent	of	the	number	of	chicks	raised).	(5)	Dilemma	5:	On	their	hand,	“low	productivity”	corresponds	to	RGs	where	productivity	is	positive,	but	lower	than	the	averaged	mean	value	of	all	RGs	across	the	study

period	(i.e.,	marginal	RGs	in	terms	of	fitness).	“Null	productivity”	corresponds	to	random	points	located	in	non-occupied	sites	within	the	potential/accessible	breeding	distribution	area	where	it	 is	known	that	birds	were	not	able	to

breed	(Suárez-Seoane	et	al.,	2002).	 (6)	Dilemma	6:	Environmental	predictors	could	be	gathered	using	points	or	patches.	Points	were	spatially	assigned	to	the	point	 location	of	 the	female	flock	with	chicks	(isolated	family	or	 flock	of

females	 including	at	 least	 one	 family)	 closest	 to	 the	 “centroid”	 of	 all	 female	 flocks,	with	 or	without	 chicks,	 in	 a	RG	 (FamCRG;	Alvarez-Martínez	et	 al.,	 2014).	The	1 km-pixels	 holding	FamCRG	 locations	were	 overlapped	with	 the

explanatory	variables	to	extract	their	values.	Patches	consisted	of	reproductive	areas	(RA)	defined	by	applying	1000-m	buffers	around	all	flocks	included	in	the	same	RG	to	simulate	family	home	ranges	during	the	early	rearing	period	in

summer	(unpublished	data	from	intensive	radio-tracking,	Martín	et	al.,	2007).	around	all	flocks	included	in	the	same	RG.	Patches	could	be	continuous	or	discontinuous,	depending	on	whether	between-flock	distances	were	smaller	or	higher

than	1 km.	Explanatory	variables’'	values	were	extracted	for	all	pixels	conforming	each	patch	and	their	values	averaged	(mean)	for	the	whole	patch.	Both	points	and	buffers	were	recalculated	for	each	year	during	the	study	period.	The

time-averaged	productivity	values	were	associated	with	the	family	flock	closest	to	the	centroid	of	all	"“centroids"”	defined	for	successive	years,	or	to	the	corresponding	RAs.	For	“null	productivity”	cases	in	potential/accessible	sites,	we

applied	a	2000-m	buffers	around	each	point,	since	this	is	approximately	in	correspondence	with	the	mean	area	of	all	reproductive	areas	defined	within	occupied	nesting	sites	(1296	and	1361 ha,	respectively).	After	applying	the	cascade	of

methodological	dilemmas	and	choices,	we	obtained	10	databases	(Figure.	2)	that	were	used	for	model	calibration.

Figure	1.Fig.	1	Methodological	dilemmas	and	specific	choices	(each	with	a	different	ecological	meaning)	emerging	when	modelling	the	underspecific	research	question	related	to	Great	Bustard	breeding	success.
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2.4.2.4	SDM	building:	multicollinearity,	step-AIC,	multi-model	inference	and	spatial	outputs
We	 independently	 modelled	 each	 of	 the	 10	 databases	 (Figuress.	 1	 and	 2).	 To	 reduce	 multicollinearity	 problems	 that	 may	 lead	 to	 variance	 inflation	 and	 parameter	 bias	 (Freckleton,	 2011),	 we	 checked	 Pearson’'s	 bivariate

correlations	among	all	predictors	for	each	database.	Each	variable	from	a	highly	correlated	pair	(rPearson > 0.7;	Randin	et	al.,	2006)	was	retained/rejected	according	to	the	ratio	model	deviance/null	deviance	estimated	for	that	variable	in

univariate	generalised	linear	models	(GLM).	Additionally,	we	eliminated	predictors	showing	a	variance	inflation	factor	(VIF)	higher	than	4.	There	is	no	formal	VIF	threshold,	but	a	value	of	10	is	commonly	used	as	an	indicator	of	severe

multicolinearity	(Neter	et	al.,	1990;	Graham,	2003;	Zuur	et	al.,	2010).

After	filtering	the	effect	of	correlation,	we	performed	stepwise	selection	on	the	basis	of	AIC	(Akaike’'s	Information	Criterion)	to	reduce	the	number	of	predictors	in	each	database	(Venables	and	Ripley,	2002).	Some	statisticians

strongly	discourage	automatic	stepwise	methods	with	many	potential	predictors	since	they	may	increase	the	chance	of	spurious	correlations	(Mundry	and	Numm,	2009).	However,	 its	disciplined	application	is	considered	appropriate

when	data	exploration	is	clearly	separated	from	hypothesis	testing	(Pinheiro	and	Bates,	2000;	Zuur	et	al.,	2010).

Then,	we	implemented	a	multi-model	inference	analysis	on	the	remaining	variables	for	each	dataset	to	select	the	best	subset	(i.e.,	that	with	the	smallest	AIC	value	indicating	the	most	parsimonious	candidate	model),	among	all

possible	ones	(Burnham	et	al.,	2011).	Models	with	Δ-AIC ≤ 2	were	considered	substantially	supported	by	the	data	and	similar	to	the	best	model	in	their	empirical	support	(Burnham	and	Anderson,	2002;	Heinze	et	al.,	2018).	Combining	all

possible	candidate	models,	we	estimated	the	averaged	standardized	coefficients,	significance	and	relative	importance	of	each	predictor.	The	predictor	relative	importance	is	the	sum	of	the	Akaike	weights	of	all	models	in	the	subset

where	the	predictor	is	present.	The	value	of	the	summed	Akaike	weight	ranges	from	0	(the	predictor	appears	only	in	the	most	unlikely	models)	to	1	(it	appears	in	all	the	best	models)	(Burnham	and	Anderson,	2002;	Symonds	and	Moussalli,

2011).	GLMs	were	built	using	either	a	Gamma	distribution	with	 log	 link,	when	 the	response	variable	was	continuous,	or	a	Binomial	distribution	with	 logit	 link,	when	 it	was	binomial.	Models	were	spatially	projected	within	a	GIS

framework	to	generate	maps	of	breeding	habitat	suitability.

Differences	across	the	10	model	outputs	were	evaluated	in	terms	of:	i)	Deviance	explained	by	the	best	subset	of	variables	against	a	null	model.	ii)	10	cross-folder	validation	within	each	of	the	10	datasets,	which	allowed	for	calculating

a	value	of	dDelta	(raw	cross-validation	estimate	of	prediction	error)	and	delta	adjusted	(adjusted	cross-validation	estimate,	designed	to	compensate	for	the	bias	introduced	by	not	using	leave-one-out	cross-validation)	for	each	case	values

derived	from	10	cross-folder	validation	analysis	(Davison	and	Hinkley,	1997).	(iii)	Averaged	predicted	values	(mean)	in	each	distributional	range	of	Great	bustard	in	Spain	(occupied,	potential	and	accessible	areas;	Alvarez-Martínez	et	al.,	2015),

with	predicted	values	extracted	using	a	 sample	of	10,000	 independent	 points	 randomly	distributed.	 (iv)	Model	 complexity	 (i.e.,	 parsimony).	 (v)	Nature	 of	 the	predictors	 included	 in	 the	model.	 vi)	Broad	 spatial	 patterns	 of	model

predictions	(visual	inspection).	Additionally,	we	assessed	the	spatial	agreement	between	the	predictions	achieved	by	models	calibrated	in	occupied	(databases	1‐–6)	and	potential/accessible	(databases	7‐–10)	areas	in	two	ways.	First,	we

Figure	2.Fig.	2	Spatial	distribution	of	dependent	and	independent	variables	included	in	each	of	the	10	databases.	They	were	obtained	by	applying	different	methodological	dilemmas	and	choices.
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combined	the	spatial	predictions	obtained	for	each	of	these	areas	for	visual	inspection.	Each	continuous	output	was	thresholded	by	applying	75th	percentile	on	the	prediction	values	to	produce	Boolean	maps	of	breeding	suitability.

These	Boolean	images	were	overlaid	and	the	number	of	times	each	pixel	was	defined	as	suitable	recorded	to	produce	integrated	maps	of	suitability	for	occupied	and	potential/accessible	areas.	Second,	we	calculated	bivariate	Pearson

correlations	among	the	spatial	predictions	achieved	by	models	calibrated	in	botheach	areas.	Correlation	analyses	were	carried	out	using	two	separate	samples	of	10,000	random	points	with	a	minimum	allowed	distance	of	300 m,	each

distributed	across	either	occupied	or	potential/accessible	area.

Analyses	were	done	with	the	packages	MASS	(Venables	and	Ripley,	2002)	and	MuMIn	(Barton,	2018)	from	R	3.4.3	statistical	software	(R	Development	Core	Team,	2017)	and	ArcGIS	10.5	(ESRI,	2016).	See	Appendix	1	for	checking	the

R	script.

3.3	Results
Methodological	decisions	taken	when	building	the	 input	databases	(Figure.	1)	had	clear	 implications	 in	model	outcomes	(Table	2).	The	deviance	explained	by	the	best	subset	of	variables	varied	substantially	across	the	ten

models,	 ranging	 from	11.46%	 to	83.33%	 (46.01 ± 26.12).	Delta	 adjusted	 strongly	differed	across	databases,	with	 values	 ranging	 from	198.82	 to	281.56	 in	Gamma	models	 (databases	1‐–4)	 and	 from	0.05	 to	 0.23	 in	 binary	models

(databases	5	to	10).	The	averaged	mean	of	the	predicted	values	also	changed	across	databases	and	distributional	ranges	(see	Appendix	2).	For	the	case	of	models	calibrated	 in	occupied	breeding	areas	with	continuous	dependent

variables	(databases	1	to	4),	model	predictions	were	the	most	consistent	for	occupied	areas,	with	values	narrowly	ranging	from	0.05‐–0.06	(i.e.,	averaged	mean	value	of	5‐–6	chicks	per	100	females).	On	their	hand,	models	based	on

binary	dependent	variables	(databases	5	to	10),	calibrated	in	either	occupied	or	potential/accessible	areas,	achieved	an	averaged	mean	predicted	value	ranging	from	0.48	to	0.72	in	occupied	areas,	with	values	significantly	much	lower

in	both	potential	 (0.24‐–0.30)	and	accessible	(0.10‐–0.11)	areas.	The	complexity	 (parsimony)	and	nature	of	 the	most	 relevant	predictors	changed	markedly	across	 the	 ten	outputs.	Parsimony	ranged	 from	7	 to	18	 (12 ± 4.55),	being

summer	mean	NDVI,	distance	to	IBAs,	mean	relative	evapotranspiration	in	autumn-winter	and	distance	to	roads	the	variables	most	regularly	included	in	the	models	(in	50%	or	even	more).	The	visual	inspection	of	the	ten	spatial	outputs

highlighted	important	differences	regarding	breeding	suitable	areas,	as	shown	in	Appendix	3.	For	the	case	of	the	spatial	agreement	analysis,	we	found	a	rPearson	value	(mean	and	standard	deviation)	of	0.44 ± 0.23	for	models	calibrated

in	occupied	areas	and	0.48 ± 0.06	for	models	calibrated	in	potential/accessible	areas	(Figure.	3	and	Appendix	4).

Table	2	Results	of	multi-model	averaging	(see	Table	1	for	variable	codes).	Each	cell	shows	the	sign,	model-averaged	standardisedstandardized	coefficients	(β)	multiplied	by	100,	significance	(***p < 0.001,	**p < 0.01;
*p < 0.05)	and,	in	parenthesis,	relative	importance	of	each	variable	included	in	n	subsets	of	models	having	Δi	(AICbest-AICi)	≤2.	Deviance	explained	in	relation	to	the	null	model	was	calculated	for	the	best	subset	of
variables,	as	well	as	delta	and	delta	adjusted	for	10	cross-folder	validation	models	(10-cv).



alt-text:	Table	2

The	first	methodological	dilemma	(i.e.,	spatial	extent	of	the	area	of	data	collection)	had	a	major	impact	on	model	outputs.	Models	of	breeding	performance,	that	were	calibrated	in	occupied	areas	(databases	1	to	6),	were	more

Figure	3.Fig.	3	Spatial	agreement	between	Boolean	model	outputs	in	occupied	and	potential/accessible	areas.	The	threshold	for	map	reclassification	was	the	75th	percentile	of	the	prediction	values.	The	maximum	value	was	6	and	4,	respectively,	for	occupied	and

potential/accessible	areas.
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parsimonious	and	explained	less	deviance	than	models	of	nesting	site	selection,	calibrated	in	potential/accessible	nesting	areas	(databases	7	to	10).	The	last	group	of	models	was	more	consistently	associated	with	typical	scenopoetic

variables,	such	as	land	cover,	topography	and	climate	than	the	former.

According	to	the	second	dilemma,	models	calibrated	in	occupied	areas	with	continuous	values	of	breeding	success	explained	a	higher	deviance	(24.72%	‐	–46.92%)	with	a	lower	parsimony	than	those	calibrated	with	binary

values	(11.46%	‐	–16.90%).	In	potential/accessible	areas,	where	all	models	were	calibrated	with	binary	dependent	variables,	explained	deviance	was	the	highest,	with	values	over	69.07%.

For	the	third	dilemma	(i.e.,	continuous	dependent	variable	can	be	calculated	using	the	mean	or	the	range	of	temporal	breeding	success	data),	models	of	mean	breeding	success	(databases	1	and	2)	explained	less	deviance	with

lower	levels	of	complexity	(higher	parsimony)	than	those	based	on	breeding	success	variation	range	(databases	3	and	4).	A	similar	combination	of	sScenopoetic	and	bionomic	variables	informing	on	climate,	primary	production	and

human	disturbances	played	an	equivalent	role	when	modelling	the	two	pairs	of	databases,	but	topography	and	landscape	structure	were	more	relevant	when	modelling	the	variation	of	breeding	success.

Concerning	the	fourth	(i.e.,	binary	dependent	variable	can	be	made	of	high	or	positive	values	of	breeding	success)	and	fifth	(i.e.,	binary	dependent	variable	can	be	made	of	low	or	null	values)	dilemmas,	models	calibrated	with

databases	5	and	6	(high	vs.	low	breeding	success;	breeding	performance)	explained	less	deviance	and	were	more	parsimonious	than	those	calibrated	with	databases	7	and	8	(high	vs.	null	breeding	success;	nesting	success).	The	last

pair	of	models	included	more	variables,	with	climate	and	landscape	structure	playing	a	more	important	role	than	the	former.	Models	developed	from	databases	9	and	10	(positive	vs.	null	breeding	success)	were	the	most	complex	of	the

whole	set	(lowest	parsimony),	showed	a	strong	effect	of	all	predictor	families	and	explained	the	highest	values	of	deviance.

Fort	the	sixth	dilemma	(i.e.,	environmental	predictors	can	be	collected	using	points	or	patches),	we	found	that,	when	modelling	reproductive	performance	(databases	1	to	6),	models	built	at	the	point	scale	(family	flock	level)

explained	more	deviance	with	a	lower	parsimony	than	those	built	at	a	patch	scale	(reproductive	area	level).	However,	when	modelling	positive	nesting	site	selection	(databases	7	to	10),	we	found	the	opposite	trend.	The	role	played	by

scenopoetic	variables,	as	topography	and	landscape	structure	was	more	important	at	the	point	scale.

4.4	Discussion
The	results	achieved	in	this	research	highlight	the	importance	of	underspecificity	as	a	source	of	linguistic	uncertainty.	Scientific	approaches	developed	in	SDM	frameworks	require	the	research	question	at	hand	to	be	explicitly

defined	and	described	(i.e.,	low	levels	of	underspecificity)	since	technical	choices	about	input	data	are	very	specific.	As	we	have	shown,	when	the	question	to	be	modelled	is	underspecific,	multiple	sequences	of	methodological	choices

emerge,	driving	to	large	differences	in	explained	deviance,	complexity	and	spatial	congruence	within	the	pool	of	results.	Consequently,	each	model	output	can	only	be	seen	as	a	partial	explanation	of	the	general	question	under	study,

presenting	 limited	 inference	 and	 practical	 applicability	 for	 conservation	 and	 management	 applications.	 The	 combination	 of	 these	 outputs	 (multiple	 responses)	 into	 joined	 spatial	 products	 or	 meta-models	 (Borsuk	 et	 al.,	 2004)

emphasized	the	need	of	considering	explicitly	the	uncertainties	associated	to	methodological	decisions	for	a	complete	understanding	of	the	process	under	study	(Uusitalo	et	al.,	2015).

Typically,	different	forms	of	uncertainty	are	present	on	every	step	of	ecological	analyses	(objectives,	choice	of	technical	options,	influence	and	constraints	of	these	options,	result	interpretation),	being	most	of	them	interrelated

(Beven,	 2005).	 In	 SDM	 approaches,	 environmental	 managers	 and	 decision-makers	 should	 be	 aware	 not	 only	 to	 the	 inherent	 randomness	 and	 natural	 variability	 of	 the	 topic	 under	 study	 (aleatory	 uncertainty),	 but	 also	 to	 the

underspecific	use	of	natural	language	(linguistic	uncertainty)	and	the	methodological	decisions	applied	during	the	process	of	building	spatial	databases	(epistemic	uncertainty).	The	important	message	is	that,	while	aleatory	uncertainty

is	irreducible,	epistemic	and	linguistic	uncertainties	can	be	controlled	(Uusitalo	et	al.,	2015).	In	our	study,	the	methodological	dilemmas	that	emerged	during	the	modelling	process	because	underspecificity	were	directly	linked	to	other

forms	of	linguistic	and	epistemic	uncertainty.

The	first	dilemma	(i.e.,	the	extent	of	the	area	of	data	collection)	was	a	source	of	epistemic	uncertainty	that	can	be	linked	to	the	observation	and	representation	of	the	target	system.	This	is	in	coincidence	with	McCarthy	(2014),

who	concluded	that	some	aspects	of	linguistic	uncertainty	are	typically	related	to	epistemic	uncertainty,	which	is	the	most	recognized	form	of	uncertainty	in	conservation	studies	(Burgman	et	al.,	1993).	In	fact,	this	dilemma	had	the

highest	impact	on	model	outcomes.	Despite	controversies	(e.g.	Hirzel	and	Le	Lay,	2008;	Jiménez-Valverde	et	al.,	2008),	the	large	differences	in	model	performance	generated	by	this	methodological	choice	might	be	understood	in	the

framework	of	 the	 fundamental	and	realized	niche	 (Pearman	et	al.,	2008).	We	may	postulate	 that	models	calibrated	 in	occupied	areas	 (databases	1	 to	6)	could	be	 interpreted	 in	 terms	of	 realized	niche	 (“when	and	why	do	species

occur?”),	so	informing	on	the	state	of	the	environment	allowing	the	species	to	exist	indefinitely	at	its	actual	distribution	in	presence	of	other	species.	On	its	hand,	models	calibrated	in	potential/accessible	areas	(databases	7	to	10)

would	allow	for	evaluating	the	species	potential	distribution	in	absence	of	biotic	interactions	(“when	and	why	do	species	potentially	occur?”;	fundamental	niche).	This	connection	between	SDM	and	niche	concept	could	only	be	made

assuming	the	data	choices	we	made	in	terms	of	sampling,	type	and	scale	of	predictors,	as	well	as	the	predictor	selection	(scenopoetic	vs.	bionomic	variables)	resulting	from	the	applied	modelling	approach	(Soberon	and	Peterson,	2005;

Hirzel	and	Le	Lay,	2008;	Franklin,	2010b).	Modelling	the	realized	niche	was	much	more	challenging	(explained	deviance:	11.46%	‐	–46.92%)	than	modelling	the	fundamental	niche	(deviance:	69.07%	‐	–83.33%).	A	reason	may	be	that

models	developed	in	occupied	areas	are	narrowly	calibrated	across	both	spatial	and	environmental	dimensions,	which	implies	a	high	difficulty	for	identifying	local	differences	in	terms	of	both	scenopoetic	and	bionomic	variables.	In

occupied	areas,	local	differences	are	not	only	related	to	environmental	heterogeneity,	but	also	to	biotic	interactions	and	dispersal,	that	tend	to	occur	at	short	distances	and	fine-scale	(Hirzel	and	Le	Lay,	2008),	remaining	a	challenge



their	incorporation	in	SDM	approaches	at	large	scale	(Alvarez-Martínez	et	al.,	2015).	Oppositely,	models	calibrated	in	potential/accessible	areas	are	typically	based	on	scenopoetic	variables	that	vary	at	larger	scales,	being	easier	to	find

differences	in	terms	of	habitat	suitability	across	space	(see	also	Lobo	et	al.,	2010;	Suárez-Seoane	et	al.,	2017).

The	second	dilemma	(i.e.,	assignment	of	the	dependent	variable	as	continuous	or	binary)	was	associated	with	vagueness,	a	form	of	linguistic	uncertainty.	When	continuous	variables	are	converted	into	binary	variables,	their

inherent	 variability	 (variable	 values	 are	 only	 restricted	 by	measure	 accuracy)	 is	 summarised	 according	 to	 unique	 thresholds	 (Suárez-Seoane	 et	 al.,	 2017).	 Dichotomization	may	 imply	 a	 huge	 loss	 of	 information	 about	 individual

differences,	as	well	as	spurious	statistical	significance	and	overestimation	of	the	size	effect	in	bivariate	relationships,	loss	in	the	potential	to	overlook	nonlinear	relationships	and	loss	of	measurement	reliability	(MacCallum	et	al.,	2002).

Therefore,	 there	 should	 not	 be	 benefits	 in	 this	 approach	 if	 the	 true	 outcomes	 can	 be	 observed	 and	 the	model	 approach	 allows	 for	 describing	 the	 population	 at	 hand	 (Royston	 et	 al.,	 2006;	 Fedorov	 et	 al.,	 2009).	 Despite	 these

circumstances,	many	 researchers	 continue	 applying	 dichotomization,	 probably	 due	 to	 a	 lack	 of	 awareness	 about	 the	 statistical	 consequences,	 an	 absence	 of	 appropriate	methods	 of	 analysis,	 a	 belief	 in	 the	 existence	 of	 types	 of

individuals	or	a	confidence	in	dichotomization	as	a	tool	to	improve	reliability	(MacCallum	et	al.,	2002).	Some	particular	arguments	in	favour	of	dichotomization	have	been	stated	(Fedorov	et	al.,	2009):	(i)	The	dichotomized	estimator

may	 lead	 to	 better	 results	when	we	 intend	 to	 estimate	 a	 large	 cumulative	 distribution	 function	 and	 sample	 size	 is	 large.	 In	 that	 case,	 the	 biasedness	 of	model-based	 estimators	will	 overpower	 the	 improvement	 in	 variance.	 (ii)

Dichotomization	may	drive	to	easiness	and	simplicity	of	the	reporting	results,	with	the	success	of	such	approach	depending	on	the	optimal	choice	of	cut	points	(thresholds).	As	far	as	the	threshold	is	deviated	from	the	optimal	point,

more	severe	are	the	consequences	of	variable	dichotomizing.	In	our	study,	we	have	chosen	different	thresholds	for	building	binary	variables	(dilemmas	4	and	5)	that	had	a	great	impact	on	model	outcomes.	We	have	found	that	models

calibrated	in	occupied	areas	with	continuous	values	of	breeding	success	explained	a	higher	deviance	than	those	calibrated	with	binary	values.	This	result	can	be	justified	by	the	difficulty	of	discriminating	between	occupied	locations

classified	according	 to	an	exigent	 threshold	 (high	vs.	 low	breeding	success)	 into	 two	categories	of	breeding	success,	with	all	 locations	exhibiting	close	environmental	 features.	 In	potential/accessible	areas,	where	all	models	were

calibrated	with	binary	variables,	the	explained	deviance	was	the	highest.	In	these	models,	comparisons	are	made	against	potential	breeding	locations	with	null	productivity	(positive/high	vs.	null	values	of	breeding	success),	which

implies	sharp	environmental	differences	among	locations	that	are	easier	to	capture	in	the	models.

For	the	case	of	dilemma	3,	we	found	that	temporal	variation	(range	values)	through	the	study	period	was	better	predicted	than	the	temporal	general	pattern	(mean	values)	of	breeding	success.	However,	even	if	the	former

models	explained	larger	amounts	of	deviance,	their	parsimony	was	the	lowest.	A	reason	could	be	that,	when	birds	are	looking	for	a	breeding	area,	their	decision	is	based	on	many	interacting	environmental	and	social	“proximate	cues”,

reflecting	environmental	conditions	and	resource	availability.	Some	of	them	are	scenopoetic	predictors	(as	topography	or	landscape	structure	-land	property-)	that	change	slowly	in	human-dominated	landscapes,	such	as	the	cereal

pseudo-steppes	of	the	Iberian	Peninsula	where	Great	Bustards	reside;	while	others	are	highly	dynamic	bionomic	predictors,	as	vegetation	structure	and	phenology,	food	availability	or	conspecific	attraction	(Parejo	et	al.,	2006;	Osborne

et	al.,	2007;	Rieucau,	2011).

In	the	case	of	dilemma	6	(effect	of	gathering	predictors	at	different	observation	levels),	we	found	that,	 in	general	terms,	models	built	at	point	level	(family	flock	locations)	gave	better	results	than	those	built	at	patch	level

(reproductive	areas).	This	result	could	be	related	with	the	kind	of	selection	made	by	birds	of	areas	suitable	for	breeding.	In	this	sense,	lek-breeding	species,	as	Great	Bustards,	evaluate	their	use	of	the	space	in	the	surroundings	of

potential/accessible	breeding	locations.	However,	breeding	performance	may	essentially	depend	on	other	factors	that	are	relevant	at	a	more	local	scale,	like	differences	in	phenology	or	agricultural	practices.	This	effect	illustrates	how

understanding	landscape	patterns	and	processes	may	depend	on	the	level	at	which	observations	are	made	(Suárez-Seoane	and	Baudry,	2002).

5.5	Recommendations	and	implications	for	conservation
Researchers	should	recognise	underspecificity	as	a	main	problem	affecting	the	applicability	of	model	predictions	in	conservation	and	management	(Burgman	et	al.,	2005).	The	inaccurate	statement	of	the	research	objectives

generates	a	potential	unreliability	of	 the	results,	 implying	a	 loss	of	effective	management	and,	also,	of	public	trust	and	confidence	(Ascough	II	et	al.,	2008).	 In	this	sense,	we	strongly	recommend	to	 fix	carefully	both	the	research

questions	and	methodological	choices	through	collaborative	working	frameworks,	involving	stakeholders	and	experts	altogether	from	the	earliest	stages	of	the	ecological	modelling	process	(Redpath	et	al.,	2004;	Milner-Gulland	and

Shea,	2017).	Such	assisted	frameworks	allow	for	conceptualizing	modelling	approaches,	achieving	a	full	understanding	of	the	target	question	and	mitigating	many	of	the	subsequent	problems	that	arise	from	underspecificity	and	other

forms	of	uncertainty	(Mostashari	and	Sussman,	2005;	Jonsson	et	al.,	2007;	Martin	et	al.,	2012).	Some	specific	recommendations	to	reduce	the	impact	of	underspecificity	in	SDM	approaches	applied	to	conservation	and	management	are

the	following:

(1) Research	questions	should	be	framed	carefully,	examining	all	possible	interpretations	in	the	context	in	which	the	conservation	decisions	are	going	to	be	made	(i.e.,	nature	of	that	decision	and	biological,	legal	and	social	context	in	which	it

occurs;	Runge,	2011).	By	doing	so,	“the	right	questions”	can	be	identified	and	the	research	objectives	and	hypothesis	can	be	structured	and	clarified	with	low	levels	of	uncertainty	(Kuhnert	et	al.,	2010).

(2) Research	objectives	should	be	organized	hierarchically,	from	general	to	specific.	General	objectives	are	typically	underspecific	and	can	often	conflict	with	others,	so	they	should	be	clarified	or	removed	according	to	their	degree	of	relevance.

This	is	a	critical	step	because	effective	decisions	must	be	based	on	the	assessment	of	all	relevant	objectives.	Once	the	general	objective	is	defined,	the	specific	ones	should	be	fully	described	as	free	from	linguistic	uncertainty	as	possible.	If	ones



are	in	conflict	with	others,	they	can	be	either	weighted	depending	on	the	preferences	of	the	decision-maker	or	analyzed	separately	to	reveal	trade-offs	between	them	(McCarthy,	2014).

(3) Research	questions	should	be	unambiguous,	comprehensive,	direct,	operational	and	understandable	 (Keeney	and	Gregory,	2005).	 In	SDM	approaches,	 the	 consideration	of	 these	attributes	 is	 essential	 for	 taking	adequate	 specific	 technical

decisions	that	will	enhance	the	value	of	subsequent	analysis.

(4) 		Each	methodological	decision	taken	about	input	data	should	be	conceptually	supported	and	strongly	justified	(both	in	the	context	of	data	availability	and	methodological	limitations)	when	describing	the	modelling	approach,	since	different

sequences	of	technical	choices	drive	to	large	differences	in	model	performance,	complexity	and	spatial	congruence	across	the	model	outputs.

(5) When	building	dependent	variables,	decisions	about	the	extent	of	the	area	(occupied	vs.	potential/accessible)	of	data	collection	should	be	specifically	pondered,	since	this	methodological	choice	has	a	major	impact	on	model	performance	and

ecological	interpretation	of	model	outputs.

(6) We	advise	the	use	of	continuous	against	binary	dependent	variables.	Dichotomization	of	continuous	variables	is	not	a	recommended	practice	in	ecology,	due	to	loss	of	information	and	statistical	constraints.	However,	its	application	can	be

useful	for	explaining	global	ecological	patterns	when	sample	size	is	large	and	the	threshold	(cut-off	point)	is	close	to	the	optimal	point	(Fedorov	et	al.,	2009).

(7) When	evaluating	temporal	patterns	of	ecological	parameters,	not	only	general	patterns	based	on	averaged	mean	values	should	be	explored,	but	also	the	variability	patterns	based	on	variation	metrics	of	observed	values	in	order	to	give	a	full

overview	of	the	process	under	study.

(8) The	observation	level	(point	or	patch)	at	which	predictors	are	gathered	have	a	relevant	effect	on	model	outcomes,	with	models	built	at	point	level	performing	generally	better.	However,	this	question	should	be	further	explored,	as	we	have

found	differences	in	model	performance	depending	on	the	area	(occupied	vs.	potential/accessible)	where	predictors	are	collected.
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Appendix	2.Appendix	2.	Averaged	mean	predicted	values	achieved	for	each	database	and	distributional	area	of
Great	Bustard	in	Spain.	Predicted	values	Predictions	obtained	from	databases	1	to	4	(Gamma	GLM)	can	be
interpreted	as	the	breeding	success	value	predicted	as	a	function	of	the	considered	covariates,	with	values

alt-text:	Unlabelled	Image



productivity	values,	ranging	from	0	(0	chicks	per	100	females)	to	1	(100	chicks	per	100	females).	Predicted
values	achieved	from	databases	5	to	10	(binomial	GLM)	are	the	probability	of	having	either	a	positive	or	a	high
breeding	success,	with	probability	values	ranging	from	0	to	1.	Databases	1	to	6	only	apply	to	occupied	areas,
being	not	possible	to	extrapolate	model	predictions	to	potential	and	accessible	ranges.	Predicted	values	were
extracted	using	an	independent	sample	of	10,000	points	randomly	distributed	across	the	study	area

Appendix	3.Appendix	3.	Spatial	outputs	achieved	for	each	of	the	ten	models	developed	to	answer	the	target
underspecific	question

alt-text:	Unlabelled	Table

Occupied	area Potential	area Accessible	area

(a)	Occupied	area

Database	1 0.06 ‐– ‐–

Database	2 0.06 ‐– ‐–

Database	3 0.05 ‐– ‐–

Database	4 0.05 ‐– ‐–

Database	5 0.49 ‐– ‐–

Database	6 0.48 ‐– ‐–

(b)	Potential/accessible	area

Database	7 0.66 0.25 0.10

Database	8 0.71 0.30 0.11

Database	9 0.67 0.24 0.10

Database	10 0.72 0.29 0.11



Appendix	4.Appendix	4.	Pearson	bivariate	correlations	among	predicted	continuous	prediction	values	achieved
from	models	calibrated	in:	(a)	occupied	area	(models	1	to	6)	and	(b)	potential/accessible	area	(models	7	to	10).
Analyses	were	carried	out	using	two	separate	samples	of	10,000	random	points,	separated	at	least	300 m,	being
each	sample	distributed	across	either	occupied	or	potential/accessible	areas.

alt-text:	Unlabelled	Image

alt-text:	Unlabelled	Table

(a)	Occupied	area

rPearson Model	1 Model	2 Model	3 Model	4 Model	5 Model	6

Model	1 1

Model	2 0.69 1

Model	3 0.11 0.22 1

Model	4 0.28 0.30 0.63 1

Model	5 0.81 0.59 0.18 0.35 1

Model	6 0.59 0.75 0.22 0.36 0.56 1

Mean 0.50 0.51 0.27 0.38 0.50 0.49

SD 0.29 0.23 0.20 0.14 0.24 0.49

(b)	Potential/accessible	area

rPearson Model	7 Model	8 Model	9 Model	10

Model	7 1

Model	8 0.53 1
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