• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Consorcio BUCLE Recolector
  • Contact Us
  • Send Feedback
  • Enlaces y accesos
    • Derechos de autor
    • Políticas
    • Guía de autoarchivo
    • FAQ y ayuda
    • La ULE y el Acceso Abierto
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Repositorio
    Institucional
    Abierto

    Consorcio BUCLE Recolector

    Browse

    All of BULERIACommunities and CollectionsAuthorsDirectoresTitlesSubjectsFacultad/CentroÁrea de conocimientoFecha de creación/publicaciónTitulaciónThis CollectionAuthorsDirectoresTitlesSubjectsFacultad/CentroÁrea de conocimientoFecha de creación/publicaciónTitulación

    My Account

    Login

    Statistics

    View Usage Statistics

    Otros enlaces

    View Item 
    •   BULERIA Home
    • Scientific Production
    • Untitled
    • View Item
    •   BULERIA Home
    • Scientific Production
    • Untitled
    • View Item

    Compartir

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Título
    Using predictive models as a spatially explicit support tool for managing cultural landscapes
    Autor
    Morán Ordóñez, Alejandra
    Suárez Seoane, SusanaAutoridad Buleria
    Calvo Galván, María LeonorAutoridad BuleriaORCID
    Luis Calabuig, Estanislao de, 1949-Autoridad Buleria
    Facultad/Centro
    Facultad de Ciencias Biologicas y Ambientales
    Área de conocimiento
    Ecologia
    Datos de la obra
    Applied Geography, 2011, vol. 31, n.2
    Editor
    Elsevier
    Fecha
    2011-04
    Abstract
    Due to the high sensitivity of mountain landscapes to environmental changes, the study of land cover dynamics has become an essential tool for guiding management policies. Since the second half of the twentieth century, the Cantabrian Mountains (NW Spain) have been substantially altered by the loss of traditional management practices and, more recently, by the new environmental schemes developed by the Regional Government. This area is a biodiversity hotspot, representing the south-western-most distribution limit for a large number of species in Europe. Therefore, small changes in landscape patterns can result in biodiversity losses. In this study, we analyzed land cover changes in the Cantabrian Mountains from 1991 to 2004 by means of remote sensing techniques, identifying the main driving forces and classifying the territory according to its risk of land cover change. Forest expansion and loss of shrublands were the two major trajectories of change apparent during this period. When modeling the occurrence of these land cover changes, we found that performance of models was related to the nature of the change. The most accurate models were associated with processes of secondary succession, i.e. forest expansion (78.6%), while the least accurate models related to changes linked with management decisions, i.e. loss of shrubs (61.8%). The main drivers of change were variations in the number of goats (for the forest expansion model) and changes in the number of head of sheep and cattle (for the loss of shrubs model). Topographic conditions (altitude and slope) were relevant in both models. Our approach proposes an explicit decision support tool for landscape managers, allowing better identification of the areas where they should focus their attention.
    Materia
    Ecología. Medio ambiente
    Palabras clave
    Rural abandonment
    LANDSAT imagery
    Socio-economic drivers
    Predictive modeling
    URI
    http://hdl.handle.net/10612/10286
    Collections
    • Untitled [60]
    Show full item record
    Files in this item
    Nombre:
    Using predictive models as a spatially 2011.pdf
    Tamaño:
    644.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen