RT info:eu-repo/semantics/article T1 Use of the flavonoid taxifolin for sperm cryopreservation from the threatened Bermeya goat breed A1 Santiago Moreno, J A1 Martínez Pastor, Felipe A1 Tamargo, C A1 Salman, A A1 Cantoral Fernández, Manuel A1 Merino, M J A1 Lacalle Fernández, Estíbaliz A1 Toledano Diaz, A A1 Hidalgo González, Cristina A1 Caamaño Gesto, José Manuel A2 Biologia Celular K1 Biología K1 Taxifolin K1 Goat K1 Autochthonous breed K1 Sperm cryopreservation K1 Sperm quality AB Taxifolin is a plant flavonoid effective as an antioxidant. This study aimed to assess the effect of adding taxifolin to the semen extender during the cooling period before freezing on the overall post-thawing sperm variables of Bermeya goats. In the first experiment, a dose-response experiment was performed with four experimental groups: Control, 10, 50, and 100 μg/ml of taxifolin using semen from 8 Bermeya males. In the second experiment, semen from 7 Bermeya bucks was collected and extended at 20 °C using a Tris-citric acid-glucose medium supplemented with different concentrations of taxifolin and glutathione (GSH): control, 5 μM taxifolin, 1 mM GSH, and both antioxidants. In both experiments, two straws per buck were thawed in a water bath (37 °C, 30 s), pooled, and incubated at 38 °C. Motility (CASA) was assessed at 0, 2, and 5 h, and sperm physiology was assessed at 0 and 5 h by flow cytometry (viability, intact acrosome membrane, mitochondria membrane potential, capacitation, intracellular reactive oxygen species -ROS-, mitochondrial superoxide, and chromatin status). In experiment 2, an artificial insemination trial (AI) was included with 29 goats for testing the taxifolin 5-μM treatment on fertility. Data were analyzed with the R statistical environment using linear mixed-effects models. In experiment 1 and compared to the control, T10 increased progressive motility (P < 0.001) but taxifolin decreased total and progressive motility at higher concentrations (P < 0.001), both post-thawing and after the incubation. Viability decreased post-thawing in the three concentrations (P < 0.001). Cytoplasmic ROS decreased at 0 and 5 h at T10 (P = 0.049), and all doses decreased mitochondrial superoxide post-thawing (P = 0.024). In experiment 2, 5 μM taxifolin or 1 mM GSH (alone or combined) increased total and progressive motility vs. the control (P < 0.01), and taxifolin increased kinematic parameters such as VCL, ALH, and DNC (P < 0.05). Viability was not affected by taxifolin in this experiment. Both antioxidants did not significantly affect other sperm physiology parameters. The incubation significantly affected all the parameters (P < 0.004), overall decreasing sperm quality. Fertility after artificial insemination with doses supplemented with 5 μM taxifolin was 76.9% (10/13), not significantly different from the control group (69.2%, 9/13). In conclusion, taxifolin showed a lack of toxicity in the low micromolar range and could benefit goat semen cryopreservation. PB Elsevier SN 0093-691X LK https://hdl.handle.net/10612/18046 UL https://hdl.handle.net/10612/18046 NO Caamaño, J. N., Santiago-Moreno, J., Martínez-Pastor, F., Tamargo, C., Salman, A., Fernández, Á., Merino, M. J., Lacalle, E., Toledano-Díaz, A., & Hidalgo, C. O. (2023). Use of the flavonoid taxifolin for sperm cryopreservation from the threatened Bermeya goat breed. Theriogenology, 206, 18–27. https://doi.org/10.1016/j.theriogenology.2023.05.004 DS BULERIA. Repositorio Institucional de la Universidad de León RD 30-jun-2024