
FULL PAPER

Study on the concordance between different SNP-genotyping
platforms in sheep

H. Marina , P. Chitneedi , R. Pelayo , A. Suárez-Vega , C. Esteban-Blanco ,
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Summary Different SNP genotyping technologies are commonly used in multiple studies to perform

QTL detection, genotype imputation, and genomic predictions. Therefore, genotyping errors

cannot be ignored, as they can reduce the accuracy of different procedures applied in

genomic selection, such as genomic imputation, genomic predictions, and false-positive

results in genome-wide association studies. Currently, whole-genome resequencing (WGR)

also offers the potential for variant calling analysis and high-throughput genotyping. WGR

might overshadow array-based genotyping technologies due to the larger amount and

precision of the genomic information provided; however, its comparatively higher price per

individual still limits its use in larger populations. Thus, the objective of this work was to

evaluate the accuracy of the two most popular SNP-chip technologies, namely, Affymetrix

and Illumina, for high-throughput genotyping in sheep considering high-coverage WGR

datasets as references. Analyses were performed using two reference sheep genome

assemblies, the popular Oar_v3.1 reference genome and the latest available version

Oar_rambouillet_v1.0. Our results demonstrate that the genotypes from both platforms are

suggested to have high concordance rates with the genotypes determined from reference

WGR datasets (96.59% and 99.51% for Affymetrix and Illumina technologies, respectively).

The concordance results provided in the current study can pinpoint low reproducible

markers across multiple platforms used for sheep genotyping data. Comparing results using

two reference genome assemblies also informs how genome assembly quality can influence

genotype concordance rates among different genotyping platforms. Moreover, we describe

an efficient pipeline to test the reliability of markers included in sheep SNP-chip panels

against WGR datasets available on public databases. This pipeline may be helpful for

discarding low-reliability markers before exploiting genomic information for gene mapping

analyses or genomic prediction.
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Background

High-throughput SNP genotyping platforms have proven to

be efficient tools to analyse large populations at an

affordable cost to estimate the extension of linkage disequi-

librium in livestock genomes (Mokry et al. 2014; Chitneedi

et al. 2017), perform gene mapping studies based on

different methodologies, from linkage analysis to genome-

wide association analyses (GWAS; Wu et al. 2014; Atlija

et al. 2016), and allow the practical implementation of

genomic selection in many commercial livestock popula-

tions, increasing the efficiency of classical breeding (Weller

& Ron 2011; Martin et al. 2018). For most domestic animal

species, the advancements of this technology have signifi-

cantly increased the number of markers included in the

analysed panel, from the available medium-density chips

(~50–70 SNP-chips) to the later available high-density

panels (~700K SNP-chips). These genomic tools provide a

much higher gene mapping accuracy than previous

genome scans based on microsatellite markers (Gutiérrez-

Gil et al. 2009; McClure et al. 2013). Hence, since the use of

SNP-chips for gene mapping has become routine, many
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thousands of SNP associations with complex traits have

been reported for traits of economic interest in livestock

populations (Animal QTL database; Hu et al. 2019), some of

which have paved the way for the subsequent report of the

corresponding causal genetic variants, such as, for example,

related to reproductive efficiency and Weaver syndrome in

dairy cattle (Adams et al. 2016; Kunz et al. 2016), to dilated

cardiomyopathy in the Doberman pinscher (Meurs et al.

2012) or to milk protein percentage in dairy sheep (Garcı́a-

Gámez et al. 2012). Regarding the use of SNP-chips in

genomic selection programs, high-throughput SNP geno-

typing platforms also offer the interesting option of exploit-

ing low-density chips (e.g., 3K SNP-chips) in combination

with imputation strategies to extend the potential of

exploiting genomic information in livestock populations,

where the generation of genomic data is difficult to afford.

The most common commercial SNP-chip providers are

Illumina (Illumina Inc) and Affymetrix (Affymetrix Inc).

Both platforms offer commercial species-specific SNP-chips

differing substantially in genotyping technology. Illumina

microarray technology uses silica microbeads coated with

specific oligos that fit into patterned microwells bearing

highly multiplexed SNP genotyping array. Infinium assays

are based on a two-colour single base extension from a

single hybridisation probe (50-mer) per SNP marker, with

allele calls ranging from 3K to over 5 million per sample

(Steemers & Gunderson 2007). In contrast, Affymetrix

Axiom technology is a two-colour, ligation-based assay

using 30-mer oligonucleotide probes that allow simultane-

ous genotyping of 384 samples with 50K SNPs or 96

individuals with 650K SNPs (Hoffmann et al. 2011). The

development of specific custom chips that are adapted to

new versions of the genome or particular situations, such as

the imputation of microsatellites used in determining

paternity in specific animal populations, has become

increasingly frequent (Nicolazzi et al. 2015; Marina et al.

2020). Based on these factors, one can easily identify the

need to jointly analyse SNP-chip datasets generated with

different platforms for different purposes (e.g., meta-

analyses in different populations, merging of low- and

high-density chips genotyped in the same population).

Additionally, the advancements and affordability of next-

generation sequencing techniques, such as from whole-

genome resequencing (WGR) datasets, offer a parallel

approach to provide, after the corresponding variant calling

analysis, SNP genotype datasets that can be used to conduct

high-resolution gene mapping or genomic predictions with

increased accuracy (de los Campos et al. 2013; Sanchez

et al. 2019). Although there has been a marked decrease in

sequencing cost in recent years, SNP genotyping remains

the most cost-effective approach when conducting large

population genomic studies (Marguerat et al. 2008; Bonetta

2010). In this scenario, imputation approaches may infer

whole-genome sequence genotypes for a population geno-

typed with medium- or high-density SNP-chip technology to

increase the accuracy and detection power of different

analyses (Al Kalaldeh et al. 2019; Sanchez et al. 2019; Van

Den Berg et al. 2019). Therefore, it is crucial to ensure high

concordance and reliable reproducibility among the result-

ing genotypes when merging genotypes generated through

different platforms and technologies. This will facilitate the

design of meta-analyses based on collaborative projects or

publicly available datasets generated with different plat-

forms.

In this context, we should consider that different studies

have reported variable amounts of genotyping errors in

SNP-chip datasets (Berry et al. 2016, 2021; Wu et al. 2019)

that may impact the results of the subsequent analyses. For

example, genotyping errors have been found to decrease the

power to detect genuine associations between phenotype

and genotype data (Gordon et al. 2002; Sun et al. 2004).

Additionally, the presence of 3% genotyping errors can

significantly influence the accuracy in the estimations of

linkage disequilibrium extent (Akey et al. 2001b), which

applies to a wide variety of topics, including disease-gene

mapping (Collins et al. 1997; Akey et al. 2001a), delineation

of the demographic history of populations (Laan & Pääbo

1997), and testing of hypotheses of human, cattle, and

sheep evolution (Tishkoff & Williams 2002; Kijas et al.

2012; Pérez O’Brien et al. 2014). All of these factors justify

the interest of estimating the average error rate for a given

SNP-chip panel to improve the corresponding probe or to

remove the problematic markers before proceeding into

further analyses.

Therefore, the objective of this study was to compare the

genotypes of SNP markers generated for 31 animals

through two different medium-density chips (50K SNP-

chips) based on the Illumina and Affymetrix array platforms

and considering as a quality reference the genotypes

determined after the corresponding variant calling bioin-

formatic analysis of WGR datasets generated for the same

animals. The analyses have been made considering two

sheep reference genomes: (i) the Oar_v3.1, a popular

reference genome for sheep used in many studies since

2012 (https://www.ensembl.org/Ovis_aries_rambouillet/

Info/Strains); and (ii) the newest available version of the

sheep genome, Oar_rambouillet_v1.0 (https://www.ensemb

l.org/Ovis_aries_rambouillet/Info/Index). This new assem-

bly has been produced using long-read sequencing tech-

nology and has better contiguity (contig N50, LG50) than

Oar_v3.1 (Salavati et al. 2020). The results of this work will

help us: (i) identify the best SNP-chip platform for our future

analyses in sheep populations by investigating the differ-

ences in the frequency of genotyping errors in the analysed

datasets; and (ii) quantify the impact of using different

reference genome assemblies on the genotype reliability

generated by two SNP-chip platforms. Furthermore, we

present a reliable approach based on the minimum amount

of WGR information needed to consider the sequence

variants as reliable genomic information in this work.
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Methods

SNP-chip genotype datasets

All the analyses included in this work included 31 Spanish

Churra rams. The DNA of these animals was extracted from

semen samples following standard procedures (Sambrook

et al. 1983). The 31 DNA samples were first genotyped with

the commercially available Illumina Ovine SNP50 BeadChip

(Illumina Inc) composed of 54 241 SNPs 53 747 SNPs

have a known position according to the sheep reference

genome Oar_v3.1 (https://www.ensembl.org/index.html).

Furthermore, 45 444 SNPs of this array have a known

position according to the latest sheep reference genome

RAMBOUILLET version 1.0 (Oar_rambouillet_v1.0), following

Brauning (2019). Raw signal intensities of the Illumina

BeadChip array were transformed into genotype calls using

GENOME STUDIO software (Illumina Inc).

All the considered DNA samples were also genotyped

with a custom 50K Affymetrix Chip that includes 49 702

SNPs (Affymetrix Inc). This Affymetrix custom chip

includes 43 406 SNPs and 33 806 SNPs shared with the

commercial Illumina SNP-chip considering the Oar_v3.1

and Oar_rambouillet_v1.0 sheep reference genome anno-

tations, respectively. The probe pairs that compose each

SNP of the custom 50K SNP-chip were designed based on

the sheep reference genome Oar_v3.1. In addition, the

corresponding positions of these probes in the latest

available sheep reference genome were inferred through

their alignment against Oar_rambouillet_v1.0 using the

program Burrows–Wheeler Aligner (Li & Durbin 2009).

The positions of the probe pairs were accepted when both

probes were mapped at the same genomic position,

excluding multi-mapped probes. Finally, the SNP positions

were verified using the ensemble variation file based on the

Oar_rambouillet_v1.0 ovine reference genome release 102

(Yates et al. 2020). Following this procedure, a total of

44 456 pair probes were mapped according to the sheep

reference genome Oar_rambouillet_v1.0. The raw signal

intensities of the Affymetrix chip were transformed into

genotype calls through Axiom Analysis Suite software

(Applied Biosystems).

Variant calling analysis of WGR datasets

In addition to SNP array genotyping, the 31 DNA sheep

samples considered in this work were subjected to WGR

using paired-end Illumina sequencing technology (Illu-

mina HiSeq 2000 and HiSeq 2500 sequencers). From the

raw sequencing data, genotypes for SNP markers

obtained by performing a variant calling analysis,

following Marina et al. (2020), were considered for

further comparison with the genotypes generated by

SNP-chip genotyping. The complete variant calling anal-

ysis performed has been previously described by our

research group (see Marina et al. 2020, for details) and

included the following steps: (i) the quality evaluation of

the raw paired-end reads was performed with the FASTQC

program (Andrews et al. 2015); (ii) the poor quality reads

were filtered with Trimmomatic (Bolger et al. 2014),

using filter parameters to paired-end samples (-phred33,

LEADING:5, TRAILING:5 SLIDINGWINDOW:4:20, MIN-

LEN:36 ILLUMINACLIP: Trimmomatic-0.33/adapters/

TruSeq 3-PE.fa:2:30:10); (iii) sample alignments against

the Oar_v.3.1 and Oar_rambouillet_v3.1 ovine reference

genome assemblies (https://www.ensembl.org/index.html)

were performed with the program Burrows–Wheeler

Aligner (Li & Durbin 2009) using the algorithm of

maximal exact matches (mem); (iv) data manipulation

and statistics analysis were performed using SAMTOOLS (Li

et al. 2009), Picard (Wysoker et al. 2019) and Genome

Analysis Toolkit_v4.0 (GATK) (McKenna et al. 2010); (v)

the variant identification was carried out with GATK

version_v4.0 (McKenna et al. 2010), using the Haplo-

typeCaller tool following GATK Best Practices recommen-

dations; (vi) the low-quality variants were removed with

the program SNPSIFT (Cingolani et al. 2012) from the

variants identified with GATK (DP > 10 & QUAL > 30 &

MQ > 30 & QD > 5 & FS < 60); (vii) the BCFtools

utilities (Li et al. 2009) were used to add the identifier

code for each of the known variants through the Ensembl

database as the reference; and (viii) the SNPEFF program

(Cingolani et al. 2012) was used to extract genotypes for

variants also genotyped through the two considered SNP-

chip platforms. Finally, the high-quality WGR variants

were subjected to an additional quality control based on

the genotype probabilities, which were calculated from

allele read counts of the reference (nRef) and the

alternative allele (nAlt) following Ros-Freixedes et al.

(2018). Hence, the probabilities for the reference homozy-

gote (0), heterozygote (1), and alternative homozygote

(2) genotypes were calculated as follows:

p 0ð Þ¼ ð1� eÞnRef∙enAlt,

p 1ð Þ¼0:5nRef∙0:5nAlt, and

p 2ð Þ¼ enRef∙ð1� eÞnAlt

where e is defined as the sequencing error rate, which was

assumed to be 0.01 (Ros-Freixedes et al. 2018). Last, only

those genotypes with at least 99% certainty were considered

reliable and were selected for comparison with the SNP-

chip-derived datasets.

Genotype concordance analyses

Moreover, the genotypes generated with the two SNP-chip

platforms and the WGR technology were converted to PLINK

format and standardised to the same strand direction for the

three platforms (Purcell et al. 2007). To maintain
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congruency while comparing the allelic information of

markers across SNP-chips and WGR data, all the multial-

lelic markers were excluded from our analyses. For both

Affymetrix and Illumina SNP-chip raw datasets, we per-

formed a quality control (QC) per individual first, keeping

those samples with call rates >90%, and second, a QC per

marker, considering a marker call rate >95%, a minor allele

frequency (MAF) >5%, and genotype frequencies in HWE

(P > 0.05), as described by Atlija et al. (2016). After this

filtering, all the shared markers among the three technolo-

gies (Affymetrix SNP-chip, Illumina SNP-chip, and WGR)

were considered for the subsequent genotype concordance

rate calculation. The genotype concordance rate for each

SNP (Ci) among the three datasets was estimated through

pairwise comparison of the different platforms, considering

the raw and QC-filtered data, for each SNP marker, as

follows:

Ci ¼ 1

n
∑n

i¼11ðG1¼G2Þ

where n is the number of individuals considered in this

study and G1 and G2 are the individual genotypes of each

SNP marker (i) considered in the pairwise platform com-

parison. Finally, the global genotype concordance rate (Cg)

among the three platforms was calculated as the average

overall SNP genotype concordance (Ci).

Results

Raw dataset statistics

For the newest ovine genome reference assembly, Oar_ram-

bouillet_v1.0, the Affymetrix and Illumina platforms

included 44 456 SNPs and 45 444 SNPs with known

positions, respectively (Fig. 1). The global genotyping call

rate (number of non-missing genotypes across all individ-

uals and all SNPs) was higher on the Affymetrix platform

(99.35%) than on the Illumina platform (94.92%). How-

ever, considering only the 33 806 shared SNPs, the

Illumina platform (99.96%) showed a slightly higher call

rate than Affymetrix (99.46%).

The 31 considered WGR datasets showed read lengths

ranging between 36 and 126 bp and 228 798 583 raw

reads per sample on average. The numbers of variants

detected with GATK software for the Oar_v3.1 and Oar_ram-

bouillet_v1.0 reference genome assemblies were

44 866 545 and 38 916 540, respectively. Following the

QC filtering steps, the numbers of variants retained were

37 674 392 and 36 514 565 for the Oar_v3.1 and

Oar_rambouillet_v1.0 assemblies, respectively. The geno-

types for these high-quality variants were used for compar-

ison and concordance estimations with each of the two

SNP-chip datasets analysed here, considering both reference

ovine genome assemblies (Fig. 1).

Concordance rates among raw datasets

A total of 33 806 SNPs (Oar_rambouillet_v1.0) were

shared between the two SNP-chips (Fig. 1). After removing

the multiallelic variants and performing the certainty

quality control based on the number of reads supporting

the WGR-based genotypes, the WGR datasets provided a

total of 32 493 variants shared with the SNPs genotyped on

the Illumina and Affymetrix genotyping platforms (Fig. 1).

For these markers and based on all 31 DNA samples, the

pairwise comparison estimates for Cg were estimated

between the Affymetrix SNP-chip and WGR (97.32%),

between the Illumina SNP-chip and WGR (98.33%), and

between both SNP-chip platforms (98.07%) (Table 1). The

SNP classification based on the concordance among the raw

and filtered chip data compared with WGR data is depicted

in Table 2, considering the 31 animals and the two sheep

reference genomes included in this study (Oar_v3.1 and

Oar_rambouillet_v1.0). Globally, considering the 772 598

genotypes compared in the raw dataset of the Oar_ram-

bouillet_v1.0 reference genome assembly, the Cg estimated

across the three considered platforms was 96.88%, as

represented in Table 2 and Fig. S1. The remaining non-

concordant genotypes (3.12%) were classified into three

concordance groups (CG): CG1, where all platform geno-

types differ; CG2, where only genotypes of the SNP-chip

platforms agree; and CG3, where only one of the SNP-chip

platforms agrees with the WGR-based genotype, as shown

in Table 2 and Fig. S1. For all 32 493 markers shared

among the three considered platforms, the Affymetrix and

Illumina arrays showed 4099 and 310 missing genotypes,

respectively (genotypes with no information). As shown in

Table 2, the majority of the genotyping discrepancies

between the SNP-chips and WGR (CG2) resulted from

single allotyping errors (heterozygotes vs. homozygotes),

following by double allotyping errors. In addition, the third

group of discordances (CG3), composed of genotypes only

concordant between Affymetrix-WGR or Illumina-WGR,

highlighted the difference for the Cg estimated from each of

the SNP-chip platforms and the WGR dataset, showing a

higher concordance for Illumina than for Affymetrix [3.30

(Illumina):1(Affymetrix); Fig. S1], henceforth referenced

here as the CG3 ratio (discordance ratio).
When comparing the genotypes from both SNP-chip

platforms with the WGR genotypes, the Ci distribution

across the genome shows the number and distribution of

the SNPs with Ci values lower than 95% (red line) for both

SNP-chip platforms (Fig. 2). The Ci values lower than 95%

for the pairwise comparison among the three platforms here

are represented in Table S1. In addition, the Ci values for

SNPs included in the Illumina Ovine SNP50 BeadChip are

depicted in Table S2, considering both ovine genome

assemblies included in this study. In particular, when

considering the genotype concordance rate per chromo-

some, the value estimated between the Illumina and WGR

© 2021 The Authors. Animal Genetics published by
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platforms was slightly higher than that obtained between

Affymetrix and WGR, as can be seen in Fig. 2. The slightly

lower genotype concordance rate on the X chromosome

compared to the autosomes might be because the animals

considered in this study belong to heterogametic sex.

Further studies are required to compare the average

genotype concordance rate between the autosomes and

the X chromosome in the homogametic sex.

Concordance rates among QC-filtered datasets

The described QC applied on the SNP-chip datasets did not

discard any individuals. In contrast, 2294 and 58 markers

genotyped on Affymetrix and Illumina, respectively, were

eliminated based on a call rate lower than 95%. Likewise,

1.83% and 2.38% of the markers with MAFs lower than 5%

and 3.37% and 3.25% of the markers with a P-

value < 0.0001 in the HWE test were removed for the

Affymetrix and Illumina platforms, respectively. Fig. 3

shows the average and standard deviation of Ci values for

Affymetrix-WGR (A) and Illumina-WGR (B) pairwise com-

parison for all the variants that passed the QC (HQ). To

better understand which of the filtering criteria applied in

the QC had a major impact on the control of markers with

a Ci value <1, we also provide the Ci averages and standard

deviations of the SNP markers discarded based on the call

rate (GENO), the HWE test, and the MAF. As shown in

Fig. 3, most of the markers that passed the QC showed a Ci
value equal to 1; nevertheless, the Affymetrix platform

showed a higher number of markers with Ci values lower

than 1 compared to the Illumina platform (Table S1). The

parameter that filtered out most of the markers with low Ci
values was a call rate >95% (GENO). Increasing the SNP

threshold value for call rate, the most useful parameter to

discard SNPs with low Ci values, did not improve the

number of SNPs discarded with a Ci <95%. However, this

action eliminated markers with a high Ci value (95–100%,

data not shown). The HWE and MAF parameters also

discarded SNPs with low Ci values, but several remained

after the QC procedure.

In summary, after applying a QC filtering to the SNP-chip

datasets based on the Oar_rambouillet_v1.0 positions, a

total of 29 849 of the remaining markers were shared

among the three platforms. Based on these markers, the

concordance accuracy estimated among the three platforms

was 97.65%. The remaining non-concordant genotypes

(2.35%) were categorised into the three CG categories

previously defined, as illustrated in Table 2 and Fig. S2. The

QC filtering procedure reduced the number of missing

genotypes to 1629 (60.26% less than before QC) on the

Affymetrix chip and to 42 genotypes (86.45% less than

before QC) on the Illumina chip, as seen within the CG3

group (Table 2, Figs. S1 and S2). The QC procedure

increased the Cg values between the Affymetrix and WGR

platforms by 0.70%, between Illumina and WGR by 0.06%,

and between the two SNP-chips (Affymetrix and Illumina)

by 0.80% from the initial estimation based on the raw

genotypes (Table 1). Furthermore, as we can appreciate in

Table 2, the discordance ratio, which quantifies the number

of genotypes only concordant between the Affymetrix-WGR

or the Illumina-WGR datasets, strongly decreased by

38.43% after the QC procedure for both SNP-chip platforms

GATK

Illumina

Affymetrix

33,806

32,493

(A)
Ram_v1.0

(C)

(B)

36,514,565

54,241

49,702

Figure 1 Venn diagrams. The Venn

diagrams represent the shared and

not shared SNPs among the three

platforms, considering both ovine

reference genomes included in this

study (Oar_v3.1 and Oar_rambouil-

let_v1.0). (a) Venn diagram showing

the shared and not shared SNPs in

raw data of Affymetrix chip and

Illumina chip. (b) Venn diagram

showing high-quality variants

obtained through the whole genome

resequencing (WGR) pipeline. (c) The

number of variants shared between

SNP-chips and WGR data after

removing the multiallelic variants

from WGR data.

Table 1 Global genotype concordance rates.

Before the QC filtering

(%)

After the QC filtering

(%)

Affymetrix-

Illumina

98.07 98.87

Affymetrix-WGR 97.32 98.01

Illumina-WGR 98.33 98.39

This figure summarises the global genotype concordance rate (Cg)

among the three technologies before and after the quality control (QC)

filter was performed on the SNP-chip genotypes, considering the

whole-genome resequencing data aligned against the Rambouillet

ovine reference genome assembly (Oar_rambouillet_v1.0).

© 2021 The Authors. Animal Genetics published by
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[2.03(Illumina):1(Affymetrix)] (Figs. S1 and S2). However,

the numbers of genotyping discrepancies among all tech-

nologies (CG1) and between both SNP-chip platforms and

WGR datasets (CG2) were barely reduced after the QC. In

this last group (CG2), most of the identified errors were

single allotyping errors (heterozygotes vs. homozygotes;

Fig. S2).

How the ovine reference genome assembly affects
concordance rates

After updating the positions at the ovine genome reference

assembly, from Oar_v3.1 to Oar_rambouillet_v1.0, a total

of 5246 SNPs for the Affymetrix platform and 8303 for the

Illumina platform were unmapped, which directly decreased

the number of markers compared in this study from 42 186

(Oar_v3.1) to 32 493 (Oar_rambouillet_v1.0). Comparing

the general concordance results between these two ovine

reference genomes, we appreciated a slight increase when

the genome reference version was updated (from Oar_v3.1

to Oar_rambouillet_v1.0), especially before SNP QC filtering

(1.35%), but also after the SNP QC filtering (0.36%; see

Table 2). Additionally, the proportion of markers classified

within the CG1 and CG2 non-concordance groups, which

included the total of markers compared between the

Oar_v3.1 and Oar_rambouillet_v1.0 reference genomes,

was slightly reduced by 0.03% and 0.08%, respectively

(Table 2). Particularly, the discordance ratio drastically

dropped off when the genome reference version was

updated, especially before the SNP QC filtering (from 6.00

to 3.30) and after SNP QC filtering (from 2.80 to 2.03).

Discussion

The importance of having shared SNPs among several

genotyping platforms lies in the fact that genotype data

from different studies through different platforms are being

generated and, in many cases, are publicly available.

Furthermore, the interest in performing meta-analyses to

increase the statistical power of gene-mapping analyses or

the accuracy of genomic predictions makes it necessary in

many cases that the genetic information from these different

array platforms can be analysed together (Lopes et al.

2018). Some studies that compare the genotype discrepan-

cies between the two most relevant platforms used in high-

throughput SNP genotyping, Affymetrix and Illumina, have

been previously reported in humans (Suarez et al. 2005;

Mägi et al. 2007; Kim et al. 2009), cattle (Wu et al. 2019),

Table 2 Results of genotype concordance.

Oar_rambouillet_v1.0_raw Oar_rambouillet_v1.0_QC OAR_v3.1_raw OAR_v3.1_QC

Total genotypes 772 598 722 336 1 000 378 903 283

Concordant genotypes (%) 748 464 (96.88%) 705 347 (97.65%) 955 535 (95.52%) 878 711 (97.28%)

Non-concordant genotypes (%) 24 134 (3.12%) 16 989 (2.35%) 44 843 (4.48%) 24 572 (2.72%)

(CG1) A ≠ I ≠ WGR 282 107 650 170

A ≠ I ≠ WGR 117 57 303 101

A or I = NA 165 50 347 69

I ≠ WGR and A = NA 116 38 280 54

A ≠ WGR and I = NA 49 12 67 15

(CG2) A = I ≠ WGR 9228 8845 12 788 12 037

(A = I) = NA 6 0 12 2

(A = I) ≠ NA 9222 8845 12 776 12 035

Chip: Hom and WGR: Hom 1070 873 1408 1087

Chip: Hom and WGR: Het 48 34 62 37

Chip: Het and WGR: Hom 8104 7938 11 248 10 854

Chip: Het and WGR: Het 0 0 58 57

(CG3) A ≠ I and (A or I) = WGR 14 624 8037 31 405 12 365

I = WGR 11 226 5388 26 917 9115

A ≠ WGR 7249 3797 17 419 6780

A = NA 3977 1591 9498 2335

A = WGR 3398 2649 4488 3250

I ≠ WGR 3143 2619 4186 3215

I = NA 255 30 302 35

A, Affymetrix platform; Het, heterozygous genotype; Hom, homozygous genotype; I, Illumina platform; NA, missing genotypes were represented as

‘NA’ (not available); WGR, whole-genome resequencing.

Genotype concordance between the SNP-chip data (raw and QC data) of Affymetrix (A) and Illumina (I) platforms compared with genotypes

determined through WGR analysis. The genotype concordance of shared SNPs between genotyping platforms was estimated considering the 31

animals and the two sheep reference genomes (Oar_v3.1 and Oar_rambouillet_v1.0). The non-concordant genotypes were classified as follows:

CG1: all platforms yield different genotypes (A ≠ I ≠ WGR); CG2: genotypes of Affymetrix and Illumina were identical but different from WGR

(A = I ≠ WGR); and CG3: genotypes were different between both SNPs genotyping platforms (Affymetrix ≠ Illumina), but one of them was

coincident with WGR.
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and sheep (Berry et al. 2016). As a novel approach focusing

on ovine DNA samples, we considered WGR datasets to

identify genotyping errors in SNP-chip-derived genotypes.

In this way, we think that estimating the genetic informa-

tion reliability of these two popular SNP-chip technologies is

more reliable than when the genotypes from two different

SNP-chip platforms are contrasted. Generally, it is difficult

to identify genotyping errors on a SNP-chip because two

heterozygous parents would be compatible with any

observed genotypes due to the diallelic nature of SNP

markers (Hinrichs & Suarez 2005). Genotyping errors can

reduce the accuracy of imputation and genomic predictions

and can also determine false-positive associations in gene-

mapping studies by masking the true segregation of alleles

(Berry & Kearney 2011; Hong et al. 2012a).

Reliability of WGR genotypes

Although we have taken WGR data here as a reference to

determine genotyping errors, we acknowledge that WGR

technology is certainly not devoid of sequencing errors. The

sequencing depth of WGR datasets is one factor that

substantially affects the total coverage of the genome (Sims

et al. 2014) and can also influence the reliability of the

genotypes identified through a variant calling analysis. In

this study, all the considered WGR-derived genotypes were

subjected to an additional filtering step by considering only

those genotypes with at least 99% of quality assurance, as

suggested by Ros-Freixedes et al. (2018). Higher average

sequencing depth requirements help detect more variants

and reach higher genome coverage and, henceforth, many

reliable genotypes (Taylor et al. 2016). The factors respon-

sible for the removal of WGR-derived genotypes during this

additional filtering can be attributed to the low quality of

the reads during the sequencing procedure, to an insuffi-

cient sequencing depth supporting the genotype, or to the

location of the variants in genome regulatory regions,

which are associated with lower coverage (Wang et al.

2011). Thus, comparing genotyping data with a reliable

reference (WGR) will help us make more reliable inferences

0.0

0.2

0.4

0.6

0.8

1.0

Affymetrix−WGR

Chromosome

C
i

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 X

0.0

0.2

0.4

0.6

0.8

1.0

Illumina−WGR

Chromosome

C
i

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 X

Figure 2 Genotype concordance rate for each SNP (Ci) comparing SNP platforms with whole genome resequencing (WGR). This figure represents

the genotype concordance rate for each SNPs (Ci) in both chips platforms (Affymetrix and Illumina) with WGR data aligned against the rambouillet

ovine reference genome assembly (Oar_rambouillet_v1.0). The X-axis represents the chromosome to which the SNP belongs, and the Y-axis shows

the Ci analysed against WGR. The red lines represent 95% concordance, and the blue lines represent Cg per each SNP-chip platform.
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and draw robust conclusions regarding the SNP-chip

platform that shows the lowest error rate.

Benefits of the SNP-chip QC procedure

The raw call rate estimates of the shared SNPs to the

Affymetrix (99.46%) and Illumina (99.96%) SNP-chip

platforms were in accordance with the call rate estimates

reported in the work of Berry et al. (2016), where shared

SNPs were also compared between two platforms for ovine

DNA samples. In the present study, the Cg estimate for the

Oar_rambouillet_v1.0 reference genome was calculated

before and after QC filtering of the shared SNPs genotyped

on the two SNP-chip platforms. Comparing the Cg before

and after the QC helped us understand how removing low-

quality SNPs affects the concordance rate and further

improves the genotype reproducibility of SNPs across

different platforms. The Cg among the three platforms

substantially increased (nearly 1%) after implementing QC

measures in the SNP-chip dataset (i.e., from 96.88% to

97.65%), as represented in Table 2. The increase in the

concordance rate after SNP-chip QC was previously

reported in humans (Hong et al. 2012b; Jiang et al. 2013).

Even though the QC filtering steps carried out over the

SNP-chip data do not directly consider the individual

genotype quality, we observed that a significant number

of erroneous genotypes were removed. Previous studies

have recommended SNP QC filtering before applying sub-

sequent association analyses because it reduces the rates of

genotyping errors and false-positive results (Zhao et al.

2018; Wu et al. 2019). As shown in Fig. 3, the parameters

included in the QC procedure filtered SNPs with low Ci
values. In particular, the genotype call rate filter was the

parameter that had a larger impact on increasing the Cg
value through the removal of SNPs with genotyping errors.

The average Ci of the removed genotypes was 77.08%,

which was significantly lower than the concordance

reported for the two SNP-chip platforms. In the QC applied

in this study to both SNP-chip datasets, those SNPs with a

call rate <95% were removed, which is a very conservative
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Figure 3 Bar plot of genotype concordance rate for each SNPs (Ci) categorised as concerned by before quality control (QC) filter procedure. The

image represents the Cg of all SNPs shared in both SNP-chip platforms [Affymetrix (A) and Illumina (I)] compared to whole genome resequencing

(WGR) data, aligned against the rambouillet ovine reference genome assembly (Oar_rambouillet_v1.0). The X-axis represents the four groups into

which SNPs have been classified during QC procedure: HQ (high-quality SNPs), GENO (markers filtered by a call rate lower than 95%), HWE

[markers filtered because their frequencies differ from the Hardy–Weinberg equilibrium (HWE P-value < 0.05)] and MAF (markers filtered by a minor

allele frequency <5%). The Y-axis represents the Cg value and the standard deviation for each group, together with a red line that represents 95%

concordance.
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value compared to the threshold (85%) recommended by

the Affymetrix and Illumina companies. However, the

distribution of the SNP Ci values filtered by this threshold

(SNP call rate >95%) was considerably lower than the

distribution of SNPs that remained after the QC filtering

steps (Fig. 3), which supports the need to apply such a

conservative threshold to remove SNPs with genotyping

errors. SNP genotyping errors are caused by multiple

factors, such as errors in the DNA sequence, mutations in

the probe complementary regions, errors due to the quality

and quantity of the DNA sample, and experimental errors

(Hinrichs & Suarez 2005).

The non-concordance rate before and after QC filtering

dropped from 3.12% to 2.35% (Table 2, Figs. S1 and S2). A

possible explanation for this decrease might be that SNPs

with a call rate <95% were eliminated and that the Ci
values for the discarded genotypes were lower than the

average, as shown in Fig. 3. Within the classification of

non-concordant genotypes, three subgroups were cate-

gorised. The first group (CG1), where all platforms provided

different genotype information, was mainly composed of

missing genotypes for one of the SNP-chip platforms,

whereas the other SNP-chip platform did not match the

WGR-based genotype. This group consisted of 0.48% of the

total non-concordant genotypes before QC and 0.34% after

QC. A possible explanation for the lack of concordance

among these genotypes could be that the region containing

these markers would be difficult to genotype or the

reference genome is poorly annotated at these specific

positions. The second group (CG2) refers to the genotypes

generated with the Affymetrix and Illumina arrays that

were concordant themselves but different from WGR

variants. Following Wu et al. (2019), most non-

concordant genotypes in this group may be due to a single

allotyping error when comparing the SNP-chip genotypes

versus the WGR genotypes (i.e., from heterozygous to

homozygous). This explanation agrees with our observa-

tions as, in our case, multiple allotyping errors in the CG2

group of genotypes were also relatively rare (i.e., between

opposing homozygotes). The high reliability of WGR geno-

types obtained in this work suggests that the cause of this

lack of concordance could be due to non-specific hybridi-

sation of both marker probes, which will reduce the Ci
values of the markers (Table S1). Moreover, the differently

genotyped SNPs shared between the SNP-chip platforms

and WGR could be due to breed-specific mutations in the

genome compared to the reference genome or incorrect

hybridisation of the probes. Particularly, this second group

of non-concordant genotypes (GC2), where the genotyping

information agrees between SNP-chip platforms, was not

filtered by the QC procedure applied to the SNP-chip

datasets, which highlights the importance that comparison

of SNP-chip derived genotypes with trustworthy WGR

genotypes may have to ensure the reliability of the SNP-

chip genotyping information (Berry & Kearney 2011).

Benefits of updating the reference genome version

Comparing the ovine reference genome versions included in

this study (Oar_v3.1 and Oar_rambouillet_v1.0), we appre-

ciated that the new assembly increases the genotype

concordance among the three platforms (Table 2) and in

the pairwise SNP-chip comparison (Table 1). Using a more

contiguous reference genome assembly has also reduced the

number of non-concordant markers, especially by reducing

the discordance ratio between the two SNP-chip platforms

(Table 2), which quantifies the number of genotypes only

concordant between the Affymetrix-WGR or the Illumina-

WGR datasets. The Oar_rambouillet_v1.0 reference genome

version, in comparison with the Oar_v3.1 genome, has

strongly improved the contiguity (contig N50) [from

40 376 (Oar_v3.1) to 2 572 683 (Oar_rambouillet_v1.0)

bp], and significantly reduced: (i) the smallest number of

contigs whose length sum makes up half of genome size

(contig L50) [from 18 404 to 313 bp]; (ii) the total

ungapped length [from 2 534 327 564 to

2 869 531 333 bp]; and (iii) the number of contigs that

compose the genome [from 130 764 to 7486] (Agarwala

et al. 2018). This new assembly also improves the existing

genome of the Texel sheep through a higher genomic

representation (about 2% more genes represented in the

RefSeq annotation) (Liu et al. 2016). Therefore, the higher

quality of the new assembly has allowed us to discard

incorrectly mapped markers in the Oar_v3.1 reference

genome version, as described in this study and as can be

appreciated in Tables S1 and S2. Accordingly, the upgrade

to the Rambouillet reference genome version increases the

reliability and concordance of genotypes and corrects the

differences between the Affymetrix and Illumina platforms.

Comparison of the reliability of the Affymetrix and
Illumina platforms

The Cg estimated between Affymetrix and Illumina before QC

filtering was 98.07%, which was in agreement with the

genotype concordance of 97.38% previously reported in a

multibreed sheep study presented by Berry et al. (2016) when

also contrasting Affymetrix- and Illumina-generated SNP-

chip genotypes. Comparing the Cg between the SNP-chips

and the WGR information before and after QC filtering, we

found that the Illumina array had a slightly higher number

of concordant genotypes per SNP marker than the

Affymetrix-based platform (Table 1). As we commented

above, the rate of non-concordant genotypes decreased from

3.12% to 2.35% after SNP-chip QC filtering (Table 2, Figs. S1

and S2). Regarding the three subgroups of the classification

of non-concordant genotypes, the first and second subgroups

(CG1 and CG2) are not helpful for comparing the SNP-chip

platforms accurately. However, the third group (CG3),

composed of genotypes only concordant between

Affymetrix-WGR or Illumina-WGR, may be useful to estimate
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the most accurate reliabilities of the SNP-chip platforms. The

ratio of genotypes only concordant between Affymetrix-WGR

or Illumina-WGR strongly decreased by 38.43% after QC

filtering, highlighting the need for performing QC before

switching between platforms. Additionally, we found that

despite the higher number of missing genotypes removed

from Affymetrix after QC filtering, the Illumina platform

maintained a slightly higher concordance rate with the WGR

genotypes than the Affymetrix platform when the two SNP-

chip platforms disagreed, thus providing evidence of the

slight advantage of the Illumina SNP-chip to the Affymetrix

genotypes (0,4% in filtered data).

Furthermore, the Ci values estimated for both SNP-chip

platforms, depicted in Fig. 2, showed that both platforms

achieved Cg values >95% (represented by a red line). In

addition, the Affymetrix-WGR comparison had more SNPs

with Ci values <95% across the genome compared to the

Illumina-WGR comparison (Fig. 2 and Table S1), which

reduced the Cg values. The genotypes of those markers with

a Ci value <95% need to be taken with caution for genomic

imputation, genomic prediction, and especially for genome-

wide association studies (Tables S1 and S2), as previously

recommended by Wu et al. (2019).

The Cg values before and after the QC filtering steps among

the three platforms indicate that genotyping a population on

the Affymetrix or Illumina platforms could influence the

outcomes of subsequent analyses, such as genome-wide

association studies (Hong et al. 2012a) and genomic predic-

tions (Berry & Kearney 2011), as SNP genotyping on both

genotyping arrays can contain hundreds to thousands of

SNPs with potential errors (Zhao et al. 2018). The results

from this study will help minimise the differences arising

between SNP-chip genotypes and will aid in assessing the

reliability of their genotypes. As suggested by Wu et al.

(2019), we recommend considering the genotyping concor-

dance rate reported here for each SNP (Ci) before carrying

out analyses based on SNP-chip datasets. This information

can also be interesting when considering the design of future

custom SNP-chip arrays, especially to maximise the number

of quality markers to be included in a low-density chip that

will be used later for imputation to a higher density array

(Tables S1 & S2). Moreover, we consider that the approach

presented here for genotyping platform comparisons should

be suggested as a preliminary step to meta-analyses where

genotype datasets from different technologies are merged to

gain statistical power. Ensuring that markers with low Ci
values are excluded from the meta-analysis will reduce the

introduction of errors in subsequent analyses, such as

genotype imputation, gene mapping associations and geno-

mic prediction.

Conclusions

When the two different platforms most commonly used for

high-throughput SNP genotyping were compared, a slightly

lower concordance rate with WGR data was observed for

the Affymetrix platform than for the Illumina platform. The

difference in the genotype concordance rate between SNP-

chip platforms was reduced after SNP-chip QC filtering

because the QC removed low-quality SNP makers, with

almost two times more markers filtered in the Affymetrix

array than in the Illumina array. The workflow presented

here allowed us to identify makers with systematic discor-

dances between SNP-chip platforms and WGR data cur-

rently being used to analyse commercial populations in

north-west Spain. This list of markers can help avoid their

use in subsequent studies to minimise the influence of

genotyping errors on the corresponding results. Therefore,

we suggest that before performing genomic analyses based

on SNP-chip datasets or the manufacturing of a custom

SNP-chip, concordance testing of SNP array-derived geno-

types with WGR may help to select and relocate markers

with low genotype concordance rates to provide an efficient

and reliable genomic tool to accomplish guaranteed unbi-

ased, accurate analyses such as GWAS, imputation and

genomic prediction. Finally, the comparison of results

presented here for the two considered sheep reference

genome assemblies offers an opportunity to identify how the

use of a new, more complete reference genome can

influence the concordance rate of SNP genotypes generated

by both SNP-chips or through analysis of WGR datasets.
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