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Abstract 23 

The ATP-binding cassette transporter G2 (ABCG2) is an efflux protein involved 24 

in the bioavailability and secretion into milk of several compounds including anti-25 

inflammatory drugs. The aim of this work was to determine the effect in sheep of an 26 

ABCG2 inhibitor, such as the macrocyclic lactone ivermectin, on the secretion into milk 27 

of meloxicam, a non-steroidal anti-inflammatory drug widely used in veterinary 28 

medicine, and recently reported as an ABCG2 substrate in mice. In vitro meloxicam 29 

transport assays in ovine ABCG2-transduced cells have shown that meloxicam is a 30 

substrate of ovine ABCG2 and that ivermectin is an efficient inhibitor of in vitro transport 31 

of meloxicam mediated by ovine ABCG2. In addition, the role of ovine ABCG2 in 32 

secretion into milk of meloxicam was corroborated using Assaf lactating sheep 33 

coadministered with ivermectin. Animals were administered subcutaneously with 34 

meloxicam (0.5 mg/kg) with or without ivermectin (0.2 mg/kg). A significantly lower 35 

concentration of meloxicam in milk was detected when ivermectin was coadministered, 36 

revealing a major role of ABCG2 in the secretion into milk of meloxicam and a relevant 37 

drug-drug interaction affecting this process. These results will contribute to the 38 

understanding of the potential factors that modulate the transfer of anti-inflammatory 39 

drugs into milk, opening their potential use in lactating ruminants, and the effect of drug 40 

coadministration on the presence of milk residues of these compounds.  41 

 42 
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 3 

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for their 45 

analgesic, anti-inflammatory and antipyretic properties in human and veterinary medicine 46 

(Lees et al., 2004). Meloxicam is an NSAID with high therapeutic potential in ruminants 47 

for pain (Colditz et al., 2019). Great benefits of the use of meloxicam in typical dairy 48 

cattle diseases have been described. In fact, treatments with meloxicam reduce pain, 49 

edema, temperature and number of somatic cells count caused by mastitis (McDougall et 50 

al., 2009; Fitzpatrick et al., 2013), which implies economic benefits for farmers (van Soest 51 

et al., 2018). However, its use in lactating cattle is reduced due to its high withdrawal 52 

period in milk (European Medicines Agency, 2019).  53 

The ATP-binding cassette transporter G2 (ABCG2) is one of the main factors 54 

involved in the active secretion of many compounds into milk, including veterinary drugs 55 

(Mealey, 2012; Mahnke et al., 2016; Garcia-Lino et al., 2019; Imperiale and Lanusse, 56 

2021; Blanco-Paniagua et al., 2022) and also specifically anti-inflammatory drugs 57 

(García-Mateos et al., 2019). Interest is focused on gaining information about potential 58 

mechanisms to reduce withdrawal periods and about factors influencing the appearance 59 

of drug residues in milk. For instance, drug-drug interactions leading to the inhibition of 60 

ABCG2 result in variation in drug secretion into milk (Real et al., 2011; Barrera et al., 61 

2013).  62 

Recently, ABCG2 has been identified as an important determinant of the secretion 63 

into milk of meloxicam using Abcg2-knockout mice (Garcia-Lino et al., 2020). However, 64 

whether this finding can be extrapolated to the secretion into milk of meloxicam in 65 

ruminants is unknown. In this study, therefore, the effect of a known ABCG2 inhibitor, 66 

such as the macrocyclic lactone ivermectin (Merino et al., 2009), on the secretion of 67 

meloxicam into milk was studied in sheep.  68 
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 4 

Beforehand, in vitro ovine ABCG2-mediated transport of meloxicam and the role 69 

of ivermectin as an inhibitor of this process were assessed in vectorial transport assays 70 

using Transwell plates with MDCKII cells transduced with ovine variant of ABCG2, as 71 

previously described (González-Lobato et al., 2014). Parental Madin-Darby Canine 72 

Kidney (MDCKII) cells and MDCKII cells transduced with ovine variant of ABCG2 73 

were seeded on microporous polycarbonate membrane filters at a density of 1.0 x 106 74 

cells per well. To check the tightness of the monolayer, transepithelial resistance was 75 

measured in each well using a Millicell ERS ohmmeter (Millipore). The presence of 76 

meloxicam (Sigma-Aldrich) in the acceptor compartment was presented as the fraction 77 

of total meloxicam added to the donor compartment at the beginning of the experiment. 78 

Active transport across MDCKII monolayers was expressed by the relative transport ratio 79 

(R), defined as the apically directed transport percentage divided by the basolaterally 80 

directed translocation percentage, after 4 h. Samples were analyzed by HPLC as described 81 

previously (Garcia-Lino et al., 2020). Standard samples in appropriate drug-free matrix 82 

were prepared and coefficients of correlation were > 0.99. The limit of quantification 83 

(LOQ) was 0.01 µg/mL. Statistical analysis for significant differences was performed 84 

using the Student’s t-test (normal variables) and the Mann-Whitney U test (not normally 85 

distributed variables). All analyses were carried out on the assumed significance level of 86 

p ≤ 0.05 using SPSS Statistics software (v. 24.0; IBM, Armonk, New York, NY, USA). 87 

Table 1 shows the results obtained in the meloxicam transport assay using 88 

ivermectin at 10 µM as ABCG2 inhibitor. In parental cells, apical to basal directed 89 

translocation was equal to basal to apical translocation of meloxicam (Relative transport 90 

ratio close to 1). However, in the ovine ABCG2-transduced cells, as has already been 91 

reported for murine Abcg2 (Garcia-Lino et al., 2020), apical to basal directed 92 

translocation was highly decreased and basal to apical directed translocation was 93 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 5 

increased compared with the MDCKII parental cell line. Subsequently, the relative efflux 94 

transport ratio at 4 h was significantly higher in the ovine ABCG2-transduced cells (24.85 95 

± 4.6 vs 1.06 ± 0.08, p≤ 0.05), indicating that meloxicam is an in vitro substrate for ovine 96 

ABCG2-transduced cells. When ivermectin at 10 µM was added, a reduction of 75% in 97 

the relative transport ratio of meloxicam was reported in the cells transduced with ovine 98 

ABCG2 (24.85 ± 4.62 vs 6.31 ± 1.37, p≤ 0.05). No differences in the transport ratio of 99 

meloxicam were observed comparing parental cells with or without ivermectin. These 100 

results show that ivermectin inhibits meloxicam transport mediated by ovine ABCG2, as 101 

shown previously for other substrates (Merino et al., 2009; Real et al., 2011). 102 

Therefore, to check for possible in vivo interactions, studies with sheep were 103 

conducted according to institutional guidelines complying with European legislation 104 

(2010/63/EU), and approved by the Animal Care and Use Committee of the University 105 

of León and Junta de Castilla y León ULE_008_2016 (09/06/2016). Lactating Assaf 106 

sheep (3–4 months in lactation) and weighing 70 to 85 kg were divided into 2 groups, and 107 

received a subcutaneous injection of 0.5 mg/kg of Metacan® (20 mg/mL) with or without 108 

the co-administration of a subcutaneous dose of ivermectin (Ivomec®) (0.2 mg/kg). The 109 

animals were parasite-free and drinking water was available ad libitum. The normal 110 

milking routine for all the animals involved milk being taken twice each day. Blood 111 

samples were collected from the jugular vein and milk samples were collected after 112 

completing milking of the gland before each treatment at 0.5, 1, 2, 4, 6, 8, 10, 12, 24, 36, 113 

48 and 72 h after meloxicam administration. Plasma was separated by centrifugation at 114 

3000 x g for 15 min. The conditions for the HPLC analysis have been described 115 

previously (Garcia-Lino et al., 2020). Standard samples in appropriate drug-free matrix 116 

were prepared and coefficients of correlation were > 0.99. The extraction recovery levels 117 
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 6 

for concentration in the standard curve were 88% for plasma and 90 % for milk samples. 118 

The LOQs were 0.02 µg/mL for plasma and 0.02 µg/mL for milk. 119 

No relevant differences in plasma levels of meloxicam were found between both 120 

groups of animals (Fig. 1A). Meloxicam plasma levels for both groups were similar to 121 

those reported previously in sheep (Shukla et al., 2007; Woodland et al., 2019). The 122 

absence of differences in plasma concentration is reflected in the pharmacokinetic 123 

parameters (Table 2). Despite the lack of differences in plasma, a lower milk 124 

concentration of meloxicam was found in the animals coadministered with ivermectin at 125 

12 and 30 h (Fig. 1B). The values of the area under concentration-time curve (AUC(0-∞)) 126 

for milk and the AUC milk-to-plasma ratio were reduced by more than 40% in ivermectin 127 

coadministered animals compared with control animals (Table 2). Although ivermectin 128 

interacts with other ABC transporters, such as P-glycoprotein (Lespine et al., 2009), the 129 

effect of ivermectin on meloxicam secretion into sheep milk can be attributed to ABCG2-130 

mediated interaction since no other ABC transporters are substantially expressed or 131 

induced in lactating mammary gland (Van Herwaarden and Schinkel, 2006). This kind of 132 

drug-drug interaction  mediated by the  ABCG2 transporter has been observed previously 133 

with the co-administration of ivermectin and other ABCG2 substrates, such as the 134 

antimicrobial danofloxacin, in sheep (Real et al., 2011). The present data show that 135 

secretion into milk of meloxicam can be modulated by ivermectin, producing drug-drug 136 

interaction, but also probably by other compounds that interact with the ABCG2 137 

transporter, as other drugs or molecules present in the diet such as flavonoids (Pulido et 138 

al., 2006; Otero et al., 2018), with consequences regarding the amount of milk residues.  139 

In conclusion, the major role of ABCG2 in the secretion of meloxicam into ovine 140 

milk and the effect of drug-drug interactions in this process using the macrocyclic lactone 141 

ivermectin as inhibitor of the transporter are demonstrated. These results will contribute 142 
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to the understanding of the factors that influence the transfer of anti-inflammatory drugs 143 

into ruminant milk.  144 
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 12 

Figure legends 254 

Figure 1. Concentration in plasma (A) and milk (B) vs. time curves for meloxicam 255 

obtained from lactating Assaf sheep treated with a single dose of meloxicam (Metacam®) 256 

at 0.5 mg/kg (s.c.) and co-administered with ivermectin (Ivomec®) at 0.2 mg/kg (s.c.). 257 

Each point represents a mean; bars indicate the standard deviation (n=5-6). (*) p ≤ 0.05 258 
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 1 

Table 1. Percentage of transport of meloxicam (30 µM) towards apical (BL-AP transport) 

or basal (AP-BL transport) compartments in MDCKII parental cells and the ovine-

ABCG2 transduced cells in the absence or presence of ivermectin at 10 µM (n= 3-7). 

Results are means  SDs. 
a p ≤ 0.05, significant differences from parental MDCKII cells 
b p ≤ 0.05, significant differences from MDCKII ovine ABCG2 cells without ivermectin 

 

 

 

 

Time 

(h) 

 

BL-AP 

(%transport) 

 

 

AP-BL 

(%transport) 

 

Ratio 

BL-AP/AP-BL 

Meloxicam 

 

MDCKII 

2 30.71  2.89 27.71  2.43  

4 38.59  2.39 36.62  2.62 1.06  0.08 

MDCKII ovine 

ABCG2 

2 43.31  4.96 2.43  1.40  

4 62.87  4.72 2.77  0.75 24.85  4.62a 

Meloxicam 

+ 

Ivermectin (10µM) 

 

MDCKII 

2 25.45  1.09 19.30  0.95  

4 38.87  1.85 27.09  1.88 1.16  0.04 

MDCKII ovine 

ABCG2 

2 44.66  2.30 5.66  1.07  

4 63.52  3.38 10.36  1.85 6.31  1.37 a,b 
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Table 2. Mean (±SD) pharmacokinetic parameters of meloxicam in plasma and milk after 

subcutaneous administration at a dosage of 0.5 mg/kg in sheep co-administered with 

ivermectin (0.2 mg/kg s.c.) (n=5-6). 

 
 Meloxicam 0.5 mg/kg 

Meloxicam 0.5 mg/kg + 

Ivermectin 0.2 mg/kg 

Plasma 

AUC (0-∞) (µg·h/mL) 24.3 ± 4.02 24.0 ± 2.87 

Cmax (µg/mL) 1.53 ± 0.29 1.68 ± 0.15 

Tmax (h) 4.33 ± 0.82 4.00 ± 0.00 

T1/2 (h) 8.93 ± 1.38 8.90 ± 0.42 

MRT (h) 16.85 ± 0.85 14.60 ± 2.09 

Milk 

AUC (0-∞) (µg·h/mL) 4.48 ± 0.89 2.72 ± 1.58* 

Cmax (µg/mL) 0.48 ± 0.23 0.30 ± 0.21 

Tmax (h) 4.33 ± 0.82 3.60 ± 1.67 

T1/2 (h) 7.02 ± 4.34 5.03 ± 2.46 

MRT (h) 13.80 ± 4.05 9.24 ± 2.94 

Milk/plasma AUC 0.19 ± 0.03 0.11 ± 0.06* 

* p ≤ 0.05, significant differences from meloxicam 0.5 mg/k 
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