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The large number of sensors and actuators that make up the Internet of Things obliges these systems to use diverse technologies
and protocols. This means that IoT networks are more heterogeneous than traditional networks. This gives rise to new challenges
in cybersecurity to protect these systems and devices which are characterized by being connected continuously to the Internet.
Intrusion detection systems (IDS) are used to protect IoT systems from the various anomalies and attacks at the network
level. Intrusion Detection Systems (IDS) can be improved through machine learning techniques. Our work focuses on creating
classification models that can feed an IDS using a dataset containing frames under attacks of an IoT system that uses the MQTT
protocol. We have addressed two types of method for classifying the attacks, ensemble methods and deep learning models, more
specifically recurrent networks with very satisfactory results.

1. Introduction

The “Internet of Things” (IoT) describes many different
systems and devices that are constantly connected to Internet,
giving information from their sensors or interacting with
their actuators. By 2020 it is estimated that there will be
4.5 billion IoTs joining the Internet [1]. These devices have
special features, such as a low computing capacity and
the use specific lighter protocols. This makes IoT devices
more efficient, smaller, and less energy consuming; however
these low settings reduce their encryption capacity. These
heterogeneous systems and networks offer new challenges
in cybersecurity, such as new vulnerabilities and anomalies
[2, 3]. One of the most important attacks in recent years, the
Mirai botnet, exploited these vulnerabilities by carrying out
distributed denial of service attacks infecting IoT devices and
attacking with as many as 400,000 simultaneously connected
devices [4].

One way of improving network security is the use of
Intrusion Detection Systems (IDS). IDS are one of the most
productive techniques for detecting attacks within a network.

This tool can detect network intrusions and network misuses
by matching patterns of known attacks against ongoing net-
work activity [5]. With this purpose, our focus is to develop
an IDS with machine learning models for the IoT. IDS
use two different detection methods: signature-based detec-
tion and anomaly-based detection. Signature-based detection
methods are effective in detecting well-known attacks by
inspecting network traffic for specific patterns. Anomaly-
based detection systems identify attacks by monitoring the
behaviour of the entire system, objects, or traffic and com-
paring them with a predefined normal status [6].

Machine learning techniques are used to improve detec-
tion methods, by creating new rules automatically for
signature-based IDS or adapting the detection patterns of
anomaly-based IDS. These anomaly-based IDS have had
good results in qualifying frames that may be under attack
[7], and they are effective even in detecting zero-day attacks
[8].

To build a machine learning classifier it is necessary to
use a dataset. Within the network intrusion detection there
are some well-known datasets that are used to feed IDS
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with machine learning techniques [9]. As there are no public
datasets based onnetwork traffic using IoTprotocols, we have
used a dataset that has been created in our previous research
(the dataset is available in https://joseaveleira.es/dataset. ©�
reg#LE-229-18). The main focus of this paper is on the
three differentmachine learning techniques that classify three
different attacks and normal frames at the same time using
our IoT environment dataset.

2. Related Work

There are several approaches for the detection of anomalies
in traditional networks using machine learning. The most
widely used datasets are the KDD99 [10] and NSL-KDD
Dataset [11] (an improved version of KDD’99).These datasets
contain traffic captured on the TCP protocol and collect
different types of attacks. Based on these datasets, some
models have been developed for anomaly detection using a
SupportVectorMachine andRandomForest [12, 13]. Another
technique used on this dataset is K-Centroid clustering,
whose objective is to improve the performance of other
models [14]. There are also ways of upgrading these datasets,
such as balancing classes to increase the models’ prediction
accuracy, which improves their performance [15].

Other detection techniques with good results are the use
of Fuzziness based semisupervised learning getting an accu-
racy of 84 [16] and also obtaining good results analyzing the
network traffic using sequential extreme learning machine
with accuracies around 95 [17]. These good results indicate
that machine learning is a good approach to improve the
detection of intrusions in the network layer.

The machine learning methods are based on deep learn-
ing [18]. There are many approaches for solving anomaly
detection using deep learning. One proposed way is to use
the Deep Belief Network (DBN) as a feature selector on the
KDDdataset, combined with a SVM that classifies the attacks
[19, 20]. Another proposed method is to use deep learning
models as feature selectors using the Fisher Score, a classical
statistic method, combined with an autoencoder to reduce
the dimensions of the data and extract the highest-valued
features [21]. Deep learning models are used as classifiers too.
Understanding that the temporary data sequence of network
attacks is important, the Long Short Term Memory (LSTM)
network, a variant of recurrent networks, has been used to
classify the KDD’s attacks [22].

As regards the IoT IDS, there is an approach that uses
fog computing combined withmobile edge computing. Using
this combination, a numerical simulation is made for the
NSL-KDD dataset, where it has been demonstrated that
this type of IDS has a good performance both in accuracy
and time dependence [23]. Using this dataset, there is also
an IDS based on rules which rules are modified using
machine learning KNN and SVM techniques [24]. Because
the research into IDS schemes for IoT is still incipient, the
proposed solutions do not cover a wide range of attacks or
IoT technologies [25].

There are other more recent datasets such as the AWID
[26] which collects TCP frames of data from a WLAN net-
work over which several attacks were made on 802.11 security

mechanism through which a study on Wi-Fi intrusions was
made using a neural network classifier [27]; another current
dataset is the CICIDS2017 [28] used to validate the detection
algorithms on which training has been carried out with
recurrent neural networks [29].

This research is based on a dataset specialized in a
protocol implemented in IoT environments to detect specific
vulnerabilities. It is specialized in an IoT protocol where
does not exist dissection of traffic ready to use with research
purposes.

3. Methods and Materials

This section describes the methods, from a theoretical point
of view as well as the materials used for implementing the
experiments.

3.1. MQTT Dataset. In order to classify anomalies in an
IoT environment, we built a dataset using MQTT, which is
a publish-subscribe-based messaging protocol. It is a light
protocol widely used in IoT [30].

The MQTT’s architecture follows a star topology, with a
central node that functions as a server or broker. The broker
is in charge of managing the network and transmitting. The
communication is based on topics created by the client that
publishes the message and the nodes that wish to receive it
must subscribe to it. The communication can be one to one,
or one to many.

This dataset has been obtained in a test environment with
several sensors, actuators, and a server. This server hosts
the management application, also working as the broker that
manages the messages of the MQTT protocol. The scheme of
the environment is detailed in the Figure 1.

We carried out several attacks against theMQTTprotocol
in the test environment. We captured these attacks at the
network level along with all generated traffic. The attacks
carried out were as follows:

(i) DoS: denial of service is one of the most common
attacks on the Internet [31]. In the case of the MQTT
protocol, the broker is attacked by saturating it with
a large number of messages per second and new
connections. Using the MQTT-malaria program [32],
this program is used for testing the scalability and
load testing utilities for MQTT environments.

(ii) Man in the middle (MitM) consists of intercepting
the messages between two communication points in
an attempt to modify the content; in this case it is
done between a sensor and the broker by modifying
the sensor data. To carry out the attack we used the
distribution Kali Linux and the tool Ettercap.

(iii) Intrusion: taking into account the characteristics of
the MQTT protocol, this attack consists of using
the well-known port (1883) for this protocol and a
command that uses the special character “#” can be
used by an external attacker for knowing the active
topics available for being subscripted. To find out
which topics a client outside the system [33].
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Figure 1: Test environment schema.

The relevant fields and the protocol are selected after cap-
turing the network traffic in the system. All communication
frames are tagged to show whether one of them is under
attack or is normal. There are three CSV files generated, one
for each attack, all of them being part of the dataset used.
Selecting features and labeling the frames indicating whether
or not they are under attack enable supervised learning
techniques to be used on this dataset.

The features of the data set are as follows:

(i) DoS.csv that contains the capture of 94.625 frames
and of which 45.513 are under attack traffic and 49.112
are normal traffic.

(ii) MitM.csv that contains 110668 frames with 3855
under man in the middle attack and 106.813 normal
traffic frames.

(iii) Intrusion.csv with 80,893 total frames with 1898
under attack and 78,995 normal traffic frames.

3.2. Classification Methods. We have chosen XGBoost be-
cause other research delivered good results like [34–36]. We
have also chosen recurrent networks for our experiments

because of the importance of time in network attacks [22], as
frames are produced sequentially, and the sequence and time
between frames provide relevant information for detecting
an attack. We shall go into our classification models in more
detail in the following sections.

3.2.1. XGBoost (Gradient Boosting). Gradient boosting sys-
tems build additive models in a forward way through steps,
allowing the optimization of arbitrary differentiable loss
functions. In each forward step, regression trees are fitted
onto the negative gradient of the binomial or multinomial
loss function [37]. XGBoost stands for Extreme Gradient
Boosting [38]. It is a scalable machine learning system for tree
boostingwhich optimizesmany systems and algorithms, such
as a tree learning algorithm that handles sparse data, handling
instance weights in approximate tree learning or exploiting
out-of-core computation. For the implementation of this
method, we are using the XGBoost library for Python [39].

3.2.2. Recurrent Neural Networks. Recurrent neural net-
works are a variant of neural networks designed for highly
sequenced problems. RNN contain cycles that feed the
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network activation from a previous time step as inputs into
the network, influencing predictions at the current time step.
The addition of cycles gives the RNNa new dimension, where
instead of mapping only inputs to outputs, the network will
learn a mapping function for the inputs to an output over
time. One of the main disadvantages of this kind of network
is the training problems, such as a vanishing gradient and
exploding gradients [40]. These problems can be addressed
through variations in the neurons, such as GRU or LSTM
cells.

LSTM Recurrent Network. LSTM networks have a unique
formulation that allows them to prevent the problems of
scaling and training of the vanilla RNN, avoiding the back
propagation error that either blows up or decays expo-
nentially. An LSTM layer consists of a set of recurrently
connected blocks, known as memory blocks that are the
computational units of the LSTM network [41]. These cells
are made up of weights and gates. Each memory block
contains one or more recurrently connected memory cells
and three multiplicative units: input, output, and forget gates.
The gates allow the information flows to interact with the
cells. The forget gate and the input gate update the internal
state, while the output gate is the final limiter of the cells’
output. These gates and the consistent data flow called CEC,
or constant error carrousel, keep each cell stable [42]. For
the implementation of this network, we are using the Keras
framework for Python with the Tensorflow backend, using
GPU processing and an improved-performance version that
uses Cudnn (CudnnLSTM) [43].

GRU Recurrent Network. Just like LSTM networks, GRU
networks have a structure and formulation that improve the
vanilla RNN. GRU was first proposed in Cho et al. [44]
as an alternative to the LSTM to capture dependencies of
different time scales adaptively. The only difference between
these networks is the procedure for updating the CEC. It
is similar to the LSTM but with one difference, the GRU
units have no mechanism for controlling the exposure to
which this data flow is submitted [45]. This lack of control
mechanisms makes the GRU units faster than the LSTM and
more adaptable to the changes in the time flow [46]. For
the implementation of this network, we are using the Keras
framework for Python with the Tensorflow backend, using
GPU processing and an improved-performance version that
uses Cudnn (CudnnGRU) [43].

3.3. OptimizationMethods. SGDmethods are iterative meth-
ods used for optimizing an objective function. Adam is based
on adaptive estimates of lower-order moments. This method
is simple to implement and computationally efficient and has
few memory requirements. It does not change as a result of
the diagonal rescaling of the gradients and works well for
problems that are large in data and/or parameters. Adam is
also appropriate for changing objectives and problems with
very noisy and/or sparse gradients. The hyperparameters of
this method are easy and intuitive to understand and usually
require little tuning [47]. Based on Adam we have Nadam,
which is an Adam version applying Nesterov momentum

[48]. We have tested RMSprop, Adam, and Nadam, all of
which are stochastic gradient descent methods, but we got
our best results using Nadam to optimize our loss. Nadam
brings more speed in learning in eachminibatch step. Nadam
gave us better results because we have a complex net and
fewer epochs. We needed a faster loss function optimizer to
learn more in fewer epochs, without fearing a fast Decay into
overfitting.

3.4. Batch Normalization. This method works by making
normalization a part of the model architecture and carrying
out a normalization step for each training minibatch. It
addresses the problem of the internal covariate shift, brought
about by the values of the input layers’ changing during
training. This problem requires low learning rates and a
careful parameter initialization and makes it harder to train
models with saturating nonlinearities. Batch Normalization
allows us to use higher learning rates and pay less attention
to initialization. It can also act as a regularizer, in some cases
eliminating the need for other regularization techniques [49].

3.5. Evaluation Metrics. Metrics evaluate the performance
of a machine learning model. Every metric measures the
efficiency in a different way, so we use several metrics for our
models in order to obtain a more accurate view.

3.5.1. Multiclass Logarithmic Loss and Categorical Cross
Entropy. The logarithmic loss metric measures the perfor-
mance of a classification model in which the prediction input
is a probability value of between 0 and 1. Its formula is as
follows:

− (𝑦 ∗ log (𝑦𝑝𝑟𝑒𝑑) + (1 − 𝑦) ∗ log (1 − 𝑦𝑝𝑟𝑒𝑑)) (1)

where 𝑦 𝜖 [0, 1] is the known label and 𝑦𝑝𝑟𝑒𝑑 𝜖 [0, 1] is
the prediction of the model. Logarithmic loss and cross
entropy in machine learning when calculating error rates of
between 0 and 1 lead to the same thing. The cross-entropy
formula is as follows:

𝐻 (𝑝, 𝑞) = −∑
𝑥

(𝑝 (𝑥) ∗ log (𝑞 (𝑥))) (2)

If 𝑝 𝜖 [𝑦, 1 − 𝑦] and 𝑞 𝜖 [𝑦𝑝𝑟𝑒𝑑, 1 − 𝑦𝑝𝑟𝑒𝑑],

− (𝑦 ∗ log (𝑦𝑝𝑟𝑒𝑑) + (1 − 𝑦) ∗ log (1 − 𝑦𝑝𝑟𝑒𝑑)) (3)

The same formula is applied in both situations. We can
extend the logarithmic loss to multiclass problems, given the
true labels of a set of samples encoded as a 1-of-K binary
indicator matrix 𝑌, where 𝑦𝑖,𝑘 = 1 if sample 𝑖 has label 𝑘 taken
from a set of 𝐾 labels. Let 𝑌𝑝𝑟𝑒𝑑 be a matrix of probability
estimates, with 𝑦𝑝𝑟𝑒𝑑𝑖,𝑘 = 𝑃𝑟(𝑡𝑖,𝑘 = 1):

𝐿 𝑙𝑜𝑔 (𝑌, 𝑌𝑝𝑟𝑒𝑑) = − 1
𝑁

𝑁−1

∑
𝑖=0

𝐾−1

∑
𝑘=0

𝑦𝑖,𝑘 ∗ log (𝑦𝑝𝑟𝑒𝑑𝑖,𝑘) (4)
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3.5.2. Multiclass Classification Error Rate. The multiclass
error rate is the percentage of misclassifications made by the
model:

𝑝𝑤𝑟𝑜𝑛𝑔
𝑃

(5)

3.5.3. F-Beta Score. The F-beta score is the weighted har-
monic average of precision and recall, obtaining its best value
at 1 and its worst value at 0. The 𝛽 parameter determines the
weight of precision in the combined score. 𝛽 < 1 lends more
weight to precision, while 𝛽 > 1 favors recall.

𝐹𝛽 = (1 + 𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙 (6)

3.5.4. Categorical Accuracy. The calculation of the average
accuracy rate across all predictions made for a multiclass
problem is made using the following formula:

1
𝑁

𝑁−1

∑
𝑖=0

𝐸𝑞𝑢𝑎𝑙𝑠 (argmax (𝑦) , argmax (𝑝)) (7)

3.6. Dropout. Dropout is used to prevent overfitting. It works
by randomly dropping units and their connections from the
neural network during training. This prevents network units
from adapting too much to a problem [50].

4. Experiments

Our experiments are based on three datasets, one for each
attack. Before joining them, we balanced each one of them
to reduce the huge differences between all of the classes.
We balance the classes of each dataset using the resample
method provided by Scikit-learn [51]. Once all of the datasets
were balanced, we put them together to build a multiclass
dataset. With the complete dataset ready, we chose the most
representative features using a Feature Importance (FIM)
report system. Our FIM algorithm is a hybrid method based
on the mutual information function and it is composed
by two routines; one corresponding to a filter process
(based on the minimum-redundancy-maximum-relevance)
and another corresponding to a wrapper process, where we
used several models like SVM, Decision Trees, or Random
Forests. This method confronts each feature of the dataset
against the target feature. Choosing the highest values gives us
themost important features for each set of data. After that, we
confront each of the variables chosen in pairs between them
and then we delete the highest-valued features to decrease
redundancy. We also have to prepare our custom metric F-
beta score. Taking into account the F-beta formula presented
on the paper, we select beta = 1 to increase the value of
the recall variable. The recall is the amount of data well
classified in both parts, referring to the amount of present
false positives and negatives. The classifications problems,
in networks specifically, have many problems with false
positives and negatives, so giving more value to the metric
can make it more sensitive to these failures and could give us

...
le Msg = LabelEncoder()
dataset combined[’mqtt.msg’] = le Msg.fit transform
(dataset combined[’mqtt.msg’].astype(str))
...

Box 1

input timesteps = 3
features = 11
X train = scaler.fit transform(X train)
X test = scaler.fit transform(X test)
#Three timesteps plus the actual one
X train = X train.reshape
(X train.shape[0], input timesteps+1, features)
X test = X test.reshape
(X test.shape[0], input timesteps+1, features)

Box 2

amore accurate vision. Immediately after that, we prepare the
categorical values in order to make it possible to train both
recurrent neural networks Box 1.

Finally, we set four timesteps for both recurrent LSTM
and GRU networks, transforming the inputs into tensors
made up of samples, timesteps, and features Box 2.

A hyperparameter search on recurrent networks is com-
putationally expensive, so we have chosen their hyperparam-
eters depending on logs of training, increasing the width
and length of the network or increasing the periods if it is
underfitted or by applying a batch normalization, dropout or
reducing the length, width, or epochs to reduce overfitting.
Now, we will describe our three different classification meth-
ods in greater detail.

4.1. XGBoost. Wedefine theXGBoostmodel for our problem,
highlighting the four types that we wish to classify and
specifying both the tree method and the booster. We use a
version of the tree method called the XGBoost fast-histogram
algorithm. This method is much faster and uses considerably
less memory than other methods [52], but it needs a specific
version of CUDA to work.We also highlighted the evaluation
metrics thatwewanted to use (multiclass logarithmic loss and
multiclass classification error rate), the number of threads
and the number of estimators in the model. We have applied
a grid search with a threefold cross validation to take the best
parameters of the model.These are the parameters we wish to
tune in Box 3.

This grid search gives us a set of parameters that perform
best on the problem in Box 4.

4.2. Recurrent LSTM. For our LSTM network, we first
compile some of the parameters of the net, setting the
loss, the optimizer, and the metrics. Our loss is a variant
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Table 1: Results of evaluation metrics for XGBoost.

Model M. logarithmic loss M. classification error rate
XGBoost-Train 0.075348 0.024753
XGBoost-Test 0.079451 0.025651

param = [’max-depth’: [1, 5, 10, 20, 25],
’learning-rate’: [0.4, 0.6, 0.8],
’min-child-weight’: [1, 5, 10],
’gamma’: [0.5, 1, 1.5, 2, 5],
’sub-sample’: [0.6, 0.8, 1.0],
’col-sample-by-tree’: [0.6, 0.8, 1.0]]

Box 3

’learning-rate’: 0.4,
’gamma’: 0.5,
’min-child-weight’: 10,
’col-sample-by-tree’: 1.0,
’max-depth’: 5,
’sub-sample’: 0.8

Box 4

model.compile(loss=’categorical crossentropy’,
optimizer=’Nadam’,
metrics=[metrics.categorical accuracy, fbeta])

Box 5

history = model.fit(X train, y train, batch size=128,
validation split=0.1, epochs=15,
verbose=2, callbacks=[tb LOG])

Box 6

of cross entropy for multiclassification called categorical
cross entropy. We are using the unmodified version of the
Nadam optimizer. We tested Adam, RMSprop, and Nadam,
establishing that Nadam is more efficient than Adam and
RMSprop for our model. We set the metrics categorical
accuracy and f-score to measure the model’s accuracy and
reliability, setting 𝛽 parameter for Fbeta-score metric at 2 in
Box 5.

We fit the model with our data, using a batch size of 128
and 15 epochs. We use a 10% validation split to validate the
results of the training in Box 6.

We use an Encoder-Decoder approach for our LSTM
network. We also use a CUDA version of the LSTM cell from

the Keras library [43]. In order to avoid overfitting, we used
dropout, setting its value between 0.3 and 0.4 depending on
the size of the previous layers, and batch normalization to
control exploding gradients and speed up the training process
in Box 7.

4.3. Recurrent GRU. For our GRU network, we compile the
parameters of the net, setting the loss, the optimizer, and
the metrics. We have set some of the GRU net parameters
similar to our LSTM net. Our loss is a variant of cross entropy
formulticlassification called categorical cross entropy.We are
using the unmodified version of the Nadam optimizer. As we
did on LSTM, we tested both Adam and Nadam, finding that
Nadam is more efficient than Adam for our model. We set
the categorical accuracy and f-score of the metrics tomeasure
the model’s accuracy and reliability, setting 𝛽 parameter for
F-beta-score metric at 2 in Box 8.

We fit the model with our data, using a batch size of 256
and 17 epochs. We use a 10% validation split to validate the
results of the training in Box 9.

We use a linear structure approach for our GRU network.
We also used a CUDA version of GRU cell from the Keras
library [43]. In order to avoid overfitting, we used dropout,
setting its value between 0.2 and 0.3 depending on the size
of the previous layers, and batch normalization to control
exploding gradients and speed up the training process.
Because of the GRU cell design, it needs more time to learn
than LSTM, although it is faster.This also affects dealing with
the overfitting, needing fewer dropout values for the GRUnet
in Box 10.

5. Results and Discussion

Once we had the results of the search for the XGBoost, we
trained themodel and tested it on our data, with the following
results as detailed in Figure 2 and Table 1.

Our LSTM and GRU networks gave us the following
results for training and validation (Figures 3, 4, 5, 6 and
Table 2).

In our previous work, the ensemble methods gave us bet-
ter accuracies than the linear methods on the three datasets
separately; i.e., for DoS, the best accuracy achieved was
0.99377 using a random forest model and Boosting Gradient
achieved 0.99373, while SVM achieved 0.99023, taking into
account the best twomodels and theworst.Thedifferencewas
smaller for DoS, but on intrusion and MitM the difference
between these two types of method was higher. Specifically,
on intrusion Random Forest and Boosting Gradient they got
0.95294 and 0.95385, respectively, while SVMgot 0.93031.The
results were similar for intrusion. In our experiments on this
paper, XGBoost achieved the highest accuracy. This result
confirms that ensemble methods achieve higher accuracies
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...
model.add(CuDNNLSTM(128, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(CuDNNLSTM(128, return sequences=True))
model.add(BatchNormalization())
model.add(CuDNNLSTM(256, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(CuDNNLSTM(256, return sequences=True))
model.add(BatchNormalization())
...

Box 7

Table 2: Results of evaluation metrics for LSTM and GRU.

Model Categorical Cross
Entropy

Categorical
Accuracy F-beta Score

LSTM-Train 0.2093 0.9276 0.9148
GRU-Train 0.1334 0.9554618 0.952418
LSTM-Validation 0.1821 0.9337 0.9328
GRU-Validation 0.1280 0.960836 0.95777

model.compile(loss=’categorical crossentropy’,
optimizer=’Nadam’,
metrics=[metrics.categorical accuracy, fbeta])

Box 8

history = model.fit(X train, y train, batch size=256,
validation split=0.1, epochs=18,
verbose=2, callbacks=[tb LOG])

Box 9

and less loss than other linearmodels or neural networks such
as SVM, GRU, and LSTM for problems involving attacks on
IoT networks.

Multiclass classification problems tend to be more com-
plex than binary problems, making getting better results
harder for these problems. We had similar results in both
experiments on ensemble models when classifying, where we
maintain the highest metrics and results. Focusing on our
GRU and LSTM models, we had better results overall using
deep learning than using linear models, but we had worse
results than ensembles. LSTMgotworse result than the SVM’s
DoS model and slightly better results than the SVM model
for intrusion andMitM.GRUperformed better, gettingworse
results than the SVM’sDoS, but better than SVM for intrusion
and MitM.

Even though we dealt with imbalance, there are still
huge differences between classes. This may have affected the
accuracy in some of our models negatively, specifically the
GRU and LSTM.We have been able tomaintain a good result
by taking the sequencing of the problem into account.

6. Conclusion

IoT systems have been growing in recent years and are
expected to increase considerably. The special features of
these devices make the network technologies more heteroge-
neous than traditional networks, presenting new challenges
to cybersecurity. Taking into account the fact that IDS are
an important security barrier that can detect intrusions and
security risks in the network quickly, we propose models
for the detection of attacks in IoT environments that can
provide an IDS oriented for IoT. We use specific datasets
with particular attacks for these systems, specifically for
the MQTT protocol. In this case, machine learning tech-
niques can be used to classify the frames that an IDS can
assign as attack or normal. We chose the LSTM, GRU, and
XGBoost models for our classification problem. We selected
these recurrent models because of the importance of time
and sequencing in network attacks. We picked XGBoost
because the structure of the problem benefits the hierarchical
ensemble method’s performance, enabling them to achieve
the highest accuracies. All these three classification methods
are very efficient, with GPU implementations. Ensemble
methods obtained the highest results, and deep learning
models achieved better results in general than linear models,
but not as good as ensemble methods. These models can
be used for future work in which an IDS is fed with a
model.This IDS will be implemented in a standard computer
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...
model.add(CuDNNGRU(128, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(CuDNNGRU(256, return sequences=True))
model.add(BatchNormalization())
model.add(CuDNNGRU(256, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(CuDNNGRU(256, return sequences=True))
model.add(BatchNormalization())
...

Box 10
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Figure 2: Training and testing graphics for XGBoost.
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Figure 3: F-beta score and categorical accuracy LSTM.
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similar to the one use for the creation of machine and deep
learning models. Thus, the Python model will be deployed in
a standard unit with a Port Mirroring from the router.

Data Availability

The dataset used to support the findings of this study is
available in https://joseaveleira.es/dataset. ©� reg#LE-229-18.
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