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A Comparison of Model Forms for the Development
of Height-Diameter Relationships in Even-Aged Stands
Esteban Gómez-Garcı́a, Ulises Diéguez-Aranda, Fernando Castedo-Dorado, and
Felipe Crecente-Campo

Several model forms were analyzed to develop a height-diameter (h-d) relationship for even-aged, birch-dominated stands (8,454 h-d pairs of 198 plot-inventory
combinations) in northwestern Spain. A basic model (which includes only d as predictor) and a generalized model (which also considers stand variables as regressors)
were selected from among available models. Fixed and mixed forms of these models were evaluated. An approximate Bayesian estimator was used to obtain a calibrated
response (prediction with fixed parameters and random effects) of the mixed models from prior height measurements of trees selected by different strategies. From
a practical point of view, the calibrated basic mixed model is recommended if a randomly selected sample of 4 –11 trees is available or if only the 3 trees that are
the diameter quartiles are measured. If the random sample includes more than 11 trees, the basic fixed model should be locally fitted, and the generalized fixed model
is recommended when only dominant height is known. Finally, the predictions of the latter model may be outperformed by the calibrated generalized mixed model,
which also requires inclusion of the height of the smaller diameter trees.
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The most important individual tree variables in forest man-
agement are dbh (d) and total tree height (h). In field inven-
tories, the cost of measuring h is greater than that of mea-

suring d, which favors the use of equations to estimate h from
measured d. Tree height is important in the study of growth and
yield because it is used to characterize the stand structure, to esti-
mate individual tree and stand volumes, and to determine dominant
height and site index (Peng 2001).

In even-aged stands, the differences in h-d relationships mainly
depend on age, density, and site (Curtis 1967, Prodan et al. 1997).
Therefore, a single curve cannot be used to estimate all possible h-d
relationships that may be found within a forest. The method most
commonly used to minimize this level of variance is to fit a “basic
model” (which includes dbh as the sole independent variable) for
each plot and measurement occasion. This modeling approach rep-
resents the best equation that can be obtained for a specific stand and
point in time. The main problem with this approach is the large
sampling effort required. Generalized and mixed h-d models are
alternative approaches that reduce this effort.

“Generalized models” use d and stand-specific variables as regres-
sors, which account for the differences in the h-d relationship across
stands and within stands over time. Several generalized and region-

wide equations have been developed for many tree species (e.g.,
Curtis 1967, Larsen and Hann 1987, López Sánchez et al. 2003,
Temesgen and Gadow 2004).

Mixed models allow for both mean and subject-specific responses.
The first considers only fixed parameters, common to the popula-
tion, whereas the second considers both fixed parameters and ran-
dom effects, specific to each subject (in this study each plot-inven-
tory combination). The inclusion of random effects enables the
variability in the h-d relationship between different locations and
time to be modeled, after defining a common fixed functional struc-
ture (Lindstrom and Bates 1990). If a prediction for a new stand at
a specific point in time is required and prior information is available
(a sample of trees measured for h and d), the random effects of the
h-d curve can be predicted, which provides for a calibrated response.
Several studies have used mixed models to develop h-d relationships
(e.g., Lappi 1997, Calama and Montero 2004, Sharma and Parton
2007, Trincado et al. 2007).

Birch (Betula pubescens Ehrh., also referred to as Betula alba L.
and Betula pubescens subsp. celtiberica Rothm. & Vasc.: Castroviejo
et al. 1990) is an important fast-growing pioneer tree species in
Galicia (northwestern Spain), where it covers 32,000 ha as the main
tree species (Xunta de Galicia 2001). Management of broadleaf
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Affiliations: Esteban Gómez-García (esteban.gomez@usc.es), University of Santiago de Compostela, Departamento de Ingeniería Agroforestal, Escuela Politécnica
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species, including birch, is important for preserving biodiversity and
also from an economic point of view. Despite this, there is a lack of
management tools, such as h-d relationship, for this species in the
region.

The overall objective of the present study was to compare several
h-d model forms for even-aged, birch-dominated stands in Galicia.
The two specific objectives were as follows: to evaluate alternative
fixed and mixed, basic, and generalized h-d models and to compare
these models in terms of predictive capability and sampling effort,
thus providing recommendations for practical use.

Data
The data were obtained from a network of research plots installed

in even-aged, birch-dominated stands (85% or more of the standing
basal area consisting of birch) throughout the area of distribution of
this species in Galicia. In the winters of 1997–1998, 1998–1999,
and 2001–2002, 137 plots were subjectively selected to represent
the existing range of ages, stand densities, and sites. The plot size
ranged from 200 to 1000 m2, depending on stand density. Although
the smallest plot size may appear very small, only 2 plots (selected to
include extreme site and stand conditions) were of this size. The
other plots were larger than 500 m2.

All trees in each sample plot were labeled. Two measurements of
dbh (1.3 m aboveground level) were made at right angles to each
other (with tree calipers, to the nearest 0.1 cm) and the arithmetic
mean value was calculated. Total height was measured with a hyp-
someter, to the nearest 0.25 m, in a randomized sample of 30 trees
and in an additional sample including the dominant trees (the pro-
portion of the 100 largest-diameter trees per hectare, depending on
plot size). Descriptive variables for each tree were also recorded, e.g.,
if they were alive or dead.

All of the initially established plots that were not lost because of
forest fires or clear cutting were remeasured in the winter of
2008–2009 (50 plots). In addition, 11 new plots were established in
the winter of 2009–2010 to complete the database for this and
future studies. In both of these inventories, the total height of all
trees was measured with a digital hypsometer, to the nearest 0.1 m,
together with dbh and descriptive variables.

To develop the generalized model, different stand variables were
calculated for each of the 198 plot-inventory combinations (first
inventory of 148 plots plus second inventory of 50 plots). Summary
statistics of the individual tree and stand variables used to fit the
models are shown in Table 1.

Methodology
Models

In an initial step, five basic models (four already analyzed by
Calama and Montero [2004] for stone pine in Spain and a logarith-
mic model) were fitted by ordinary nonlinear least squares (ONLS)
for each plot-inventory combination. The model developed by
Burkhart and Strub (1974) performed slightly better than the others
and was selected as the basic model

hij � 1.3 � �a1 � u1i�exp�a2 � u2i

dij
� � eij (1)

where hij is the total height of the jth tree in the ith plot-inventory
combination, dij is its dbh, ak are fixed parameters (k � 1, 2), uki are
the corresponding random effects, and eij are tree-level errors inde-
pendent of the uki.

Two different sets of random effects assumptions were investi-
gated, leading to the following model forms

Model I: uki are fixed with uki � 0; Var�eij� � �2.

Model II: uki are random with E[uki] � 0, Var(uki) � �uk

2 ,

and Cov�u1i, u2i� � �u1u2; Var�eij� � �2.

In a second step, several generalized models selected from previ-
ous studies (Krumland and Wensel 1988, Tomé 1988, López Sán-
chez et al. 2003, Sharma and Zhang 2004, Castedo Dorado et al.
2006, Sharma and Parton 2007, Crecente-Campo et al. 2010) were
fitted by ONLS to the whole data set. A new generalized model was
also developed from Equation 1, by relating its fixed parameters to
stand variables (graphical analysis was used to investigate the type of
relationship: linear, power function, or exponential) and imposing
the restriction to pass through the point (dominant diameter [d0i]
and dominant height [Hi]). The generalized form of Equation 1
performed slightly better than the other candidate models and was
selected as the generalized model

hij � 1.3 � �Hi � 1.3�exp���a1 � u1i� � �a2 � u2i�Hi

� �a3 � u3i�dgi�� 1

dij
�

1

d0i
�� � eij (2)

where dgi is the quadratic mean diameter of the ith plot-inventory
combination, ak are fixed parameters (k � 1, 2, 3), and uki are the
corresponding random effects; the remaining variables were defined
previously.

Again, two different sets of random effects assumptions were
investigated, leading to the following model forms:

Model III: uki are fixed with uki � 0; Var�eij� � �2.

Model IV: uki are random with E[uki] � 0, Var(uki) � �uk

2 ,

Cov�u1i, u2i� � �u1u2, Cov�u1i, u3i� � �u1u3,

and Cov�u2i, u3i� � �u2u3; Var�eij� � �2.

The mixed models II and IV include both fixed parameters (com-
mon to the population) and Gaussian-distributed random (subject-
specific) effects (Lindstrom and Bates 1990, Pinheiro and Bates
1995). In accordance with Pinheiro and Bates (1995) and Fang and

Table 1. Summary statistics of the fitting data set (8,454 h-d
observations in 198 plot-inventory combinations).

Variable Mean Minimum Maximum SD

d (cm) 15.3 4.7 42.4 5.6
h (m) 14.3 4.3 27.0 3.7
t (yr) 35.2 12 94 11.9
N (trees ha�1) 1,707 350 6,000 1,048
dg (cm) 15.3 7.4 25.1 3.6
G (m2 ha�1) 27.6 3.3 71.8 10.9
h� (m) 14.3 6.5 20.0 2.9
d0 (cm) 22.6 10.7 36.6 4.9
H (m) 16.5 7.2 24.5 3.6

d, diameter at breast height (1.3 m above ground level) outside bark; h, total tree
height; t, stand age; N, number of live trees per hectare; dg, quadratic mean diam-
eter; G, stand basal area; h�, mean height; d0, dominant diameter, defined as the
mean diameter of the 100 largest-diameter trees per hectare; H, dominant height,
defined as the mean height of the 100 largest-diameter trees per hectare.
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Bailey (2001), an attempt was made to include random effects in all
fixed parameters.

The inclusion of random effects was only considered at the plot-
measurement level. Although some studies (e.g., Lappi 1997,
Mehtätalo 2004) have dealt with the temporal autocorrelation re-
sulting from repeated measurements in the development of h-d
curves, this measurement-occasion correlation was not considered
in the present study because the number of measurement occasions
per plot (1.34 as average) was too small.

In models II and IV, the fixed parameters can be used to predict
a mean response (i.e., setting the random effects to 0). If the vector
of random effects (ui) is predicted for a new plot-inventory combi-
nation i, through a calibration process, the total height for each
diameter can be estimated by using a specific calibrated model
(Vonesh and Chinchilli 1997). Prediction of the vector of random
effects requires one or more measurements of total tree height and
can be done by use of an approximate Bayesian estimator (Vonesh
and Chinchilli 1997)

û i � D̂Zi
T�ZiD̂Zi

T � R̂ i�
�1ê (3)

where D̂ is the estimated variance-covariance matrix for the random

effects ui, R̂ i is the estimated variance-covariance matrix for the
error term, Zi is the partial derivatives matrix with respect to the
random effects, and ê is the error matrix estimated using only
the fixed parameters.

For the mixed models II and IV, the calibrated response was
evaluated using different sampling designs (e.g., Castedo Dorado et
al. 2006, Crecente-Campo et al. 2010):

1. Total height of randomly selected trees (1–15 in the basic
mixed model and 1–10 in the generalized mixed model). The
mean and extreme values of the root mean squared error
(RMSE) after 100 simulations were obtained.

2. Total height of the trees used to calculate the dominant height
(Hi) (only for the basic mixed model).

3. Total height of the 1–3 smallest diameter trees.

4. Total height of the 3 trees that are the diameter quartiles (Q).

5. Total height of the 4 trees that are the diameter quintiles (K).

An example of the calibration process for both basic and generalized
mixed models is shown in the Appendix.

Model I was also refitted by plot-inventory data with measure-
ments from 5–15 randomly selected trees. The mean and extreme
values of the RMSE after 100 simulations were obtained. Smaller
samples were not considered because previous analyses showed that
fitting the basic fixed model with less than 5 trees (regardless of the
sampling design used) produces large errors.

Model Fit and Selection
The basic and generalized fixed models (I and III, respectively)

were fitted by ONLS, with the NLIN procedure of SAS/STAT (SAS
Institute, Inc. 2009), whereas the basic and generalized mixed mod-
els (II and IV, respectively) were fitted using the maximum likeli-
hood estimation by the adaptive Gauss-Hermite quadrature method
implemented in the NLMIXED procedure of the same statistical
analysis software. Evaluation of the different models was based on
statistical and graphical analysis of the residuals.

Two statistical criteria obtained from the residuals were exam-

ined: the model efficiency (EF), which is similar to the coefficient of
determination for linear regression and indicates the proportion of
the total variance that is explained by the model, and the RMSE.
The RMSE is useful because it is expressed in the same units as the
dependent variable, which therefore provides an idea of the mean
error involved in using the model. Moreover, the RMSE penalizes
models with more parameters, according to the general scientific
principle of simplicity (Peña 2002). The RMSE was also used to
compare the different fitting methodologies and calibration options
evaluated, because the EF value in mixed models analysis does not
connote “percent variation explained,” as is usually understood and
often leads to negative or meaningless values, even for moderately
well-fitted models (Huang et al. 2009). The same can be applied to
locally fitted basic fixed models. The expressions of these statistics
are summarized as follows

EF � 1 �

�
i�1

i�m �
j�1

j�ni

� yij � ŷ ij�
2

�
i�1

i�m �
j�1

j�ni

� yij � y��2

(4)

RMSE �
� �

i�1

i�m �
j�1

j�ni

� yij � ŷ ij�
2

n � p
(5)

where yij and ŷij are the jth observed and predicted values in the
plot-inventory combination i, respectively, y� is the grand mean of
the observed values, ni is the number of trees in the ith plot-inven-
tory combination, m is the number of plot-inventory combinations,
n is the number of observations used to fit the model, and p is the
number of model parameters.

These goodness-of-fit statistics were computed over the complete
data set, regardless of which trees were used for fitting or calibration.
This procedure may lead to goodness-of-fit statistics that will be
biased upward (EF) or downward (RMSE) because the same trees
(and plots in the case of models III and IV) are used to estimate the
fixed parameters (and the variance components for the random ef-
fects of models II and IV) and to evaluate the different model fits or
calibrations. The magnitude of this bias can be expected to increase
with the number of trees sampled or used for calibration.

Table 2. RMSEs of the basic fixed model I fitted by ONLS for each
plot-inventory combination with all observations and observations
for 5–15 randomly selected trees.

Data used in local fit RMSE (m)

All observations 1.532
5 random trees 3.674 (1.535–30.69)
6 random trees 2.071 (1.534–8.483)
7 random trees 1.855 (1.534–4.929)
8 random trees 1.785 (1.534–4.204)
9 random trees 1.736 (1.533–3.406)
10 random trees 1.700 (1.533–2.780)
11 random trees 1.676 (1.533–2.530)
12 random trees 1.657 (1.533–2.343)
13 random trees 1.644 (1.533–2.285)
14 random trees 1.632 (1.533–2.165)
15 random trees 1.621 (1.533–2.080)

Mean and minimum and maximum (in parentheses) RMSE values after 100 fit-
tings are shown.
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Results
Table 2 shows the RMSE values of the basic fixed model I fitted

by ONLS with all available observations and with 5–15 randomly
selected trees for each plot-inventory combination. In the latter case,

the RMSE values decreased sharply as the number of sample trees
increased from 5 to 6 (a 43.6% reduction in RMSE) and from 6 to
7 (10.4% reduction), and thereafter the RMSE decreased more
gradually (see also Figure 2).

Figure 1. Plots of residuals against predicted total height for (A) the local fit of the basic fixed model I, fitted by ONLS for each
plot-inventory combination with all observations, (B) the generalized fixed model III (Equation 7), (C) the mean response (considering only
fixed parameters) of the basic mixed model II (Equation 6), (D) Equation 6 calibrated with the total height of the 3 trees which are the
diameter quartiles (Q), (E) the mean response of the generalized mixed model IV (Equation 8), and (F) Equation 8 calibrated with the total
height of the 3 smallest diameter trees.

Table 3. Estimates of the fixed parameters and variance components for the random effects and approximate significance tests for basic
mixed model II (Equation 6).

Estimate Approximate SE t value
Approximate

P value Z value
Approximate

Z value

Fixed parameter
a1 18.97 0.3751 50.58 �0.001
a2 �5.471 0.1752 �31.23 �0.001

Variance component for the random effects
Var(u1i) 26.28 2.842 9.25 �0.001
Var(u2i) 4.687 0.5841 8.02 �0.001
Cov(u1i, u2i) �8.406 1.174 �7.16 �0.001
�2 (error variance) 2.493 0.03886 64.17 �0.001
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The estimates of the fixed parameters and variance components
for the random effects in the basic mixed model II, all of which were
significant at the 0.1% level, are shown in Table 3. The fitted equa-
tion is expressed as follows

ĥ ij � 1.3 � �18.97 � u1i�exp� � 5.471 � u2i

dij
� (6)

where ĥ ij is the estimated total height (m) of the jth tree in the ith
plot-inventory combination, and dij is its dbh (cm).

Plotting the residuals against estimated total heights for Equation
6 revealed a random pattern of residuals around zero, with homo-
geneous variance and no detectable significant trends for the sub-
ject-specific response, but not for the mean response (considering
only fixed parameters, Figure 1C). The RMSE values for the sub-
ject-specific, mean, and calibrated responses obtained using differ-
ent tree selection strategies are shown in Table 4. Calibration with
total height of the trees used to estimate the dominant height (with
an average of 5.7 trees per plot-inventory combination in this study)
yielded an error that was comparable to the average error obtained in
the calibration including 4 randomly selected trees and that was
slightly greater than the error of the generalized fixed model III.
Calibration with total height of randomly selected trees yielded
RMSE values that decreased sharply as the number of trees used for
the calibration increased, until 3 trees were selected (Figure 2).

The goodness-of-fit statistics of the generalized fixed-model III
fitted by ONLS were as follows: EF � 0.776 and RMSE � 1.757 m.
All parameters were significant at the 0.1% level (Table 5), and the
plot of residuals against estimated total heights showed a random
pattern of residuals around zero with homogeneous variance and no

detectable significant trends (Figure 1B). The fitted equation is ex-
pressed as follows

ĥ ij � 1.3 � �Hi � 1.3�

� exp��2.461 � 0.2336 Hi � 0.2737 dgi�� 1

dij
�

1

d0i
�� (7)

where dgi, Hi, and d0i, are the quadratic mean diameter (cm), dom-
inant height (m), and dominant diameter (cm) of the ith plot-in-
ventory combination, respectively, and the remaining variables were
defined previously.

In the generalized mixed model IV, convergence was not
achieved when random effects were included in all fixed parameters;
therefore, the three possible expansions of two fixed parameters with
random effects were evaluated. The estimates of these parameters
and of the variance components for the random effects were all
significant only at the 5% level when the random effects were in-
cluded in fixed parameters a1 and a3 (Table 6). The fitted equation
is expressed as follows

ĥ ij � 1.3 � �Hi � 1.3�exp��1.771 � u1i � 0.2098 Hi

� � � 0.2650 � u2i�dgi�� 1

dij
�

1

d0i
�� (8)

The RMSE values for the subject-specific, mean, and calibrated
responses obtained using different tree selection strategies are shown
in Table 7. Because dominant height is necessary for applying Equa-
tion 8, the alternative of calibration with dominant trees was not
evaluated.

Table 4. Basic mixed model II (Equation 6): RMSE values for the
subject-specific, mean (considering only fixed parameters) and
calibrated responses obtained with different tree selection
strategies.

Model RMSE (m)

Subject-specific response 1.543
Mean response 2.905
Calibrated response with

1 random tree 2.200 (1.629–4.202)
2 random trees 1.967 (1.571–3.661)
3 random trees 1.861 (1.562–3.159)
4 random trees 1.800 (1.556–2.810)
5 random trees 1.761 (1.553–2.564)
6 random trees 1.735 (1.552–2.416)
7 random trees 1.715 (1.551–2.335)
8 random trees 1.699 (1.551–2.261)
9 random trees 1.688 (1.550–2.212)
10 random trees 1.676 (1.550–2.132)
11 random trees 1.670 (1.551–2.090)
12 random trees 1.663 (1.551–2.061)
13 random trees 1.656 (1.550–2.020)
14 random trees 1.651 (1.551–2.007)
15 random trees 1.646 (1.551–1.977)
n-Hi 1.815
3 smallest diameter trees 2.541
Q 1.840
K 1.807

The mean and minimum and maximum (in parentheses) RMSE values for the
total height of 1�15 randomly selected trees after 100 simulations are shown along
with the total height of the trees used to calculate the dominant height (n-Hi), total
height of the 3 trees with smallest diameter, total height of the 3 trees that are
the diameter quartiles (Q), and total height of the 4 trees that are the diameter
quintiles (K).

Figure 2. Changes in RMSE with sampling effort for the basic
fixed model I fitted locally by ONLS with 5–15 randomly selected
trees per plot inventory-combination (‚), the basic mixed model II
(Equation 6) calibrated with data from 1–15 randomly selected
trees (�), the generalized fixed model III (Equation 7) (E), and the
generalized mixed model IV (Equation 8) calibrated with data from
1–3 smallest diameter trees (�). The lower horizontal dashed line
represents the RMSE obtained in a local fit of the basic fixed model
I, fitted by ONLS for each plot-inventory combination with all
observations.

Table 5. Parameter estimates and approximate significance tests
of the generalized fixed model III fitted by ONLS (Equation 7).

Parameter Estimate
Approximate

SE t value
Approximate

P value

a1 2.461 0.2552 9.64 �0.001
a2 �0.2336 0.0180 �12.99 �0.001
a3 �0.2737 0.0167 �16.40 �0.001
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Discussion and Conclusions
In the present study, the following models and methodologies

were tested and compared to develop a h-d relationship: a basic
model fitted locally by ONLS for each plot-inventory combination
(model I), a basic mixed model (model II), a generalized model fitted
by ONLS (model III), and a generalized mixed model (model IV).
The RMSE of model I locally fitted and averaged across the com-
plete data set was 1.532 m, which provides a reference of minimum
error for comparison with the other model forms. The same model
fitted over all data (RMSE � 2.804 m) provides a reference for the
maximum error allowable.

The generalized fixed model III included dominant diameter and
dominant height in its formulation. Models that include dominant
height have an advantage over those including mean height because
measurement of dominant height involves less sampling effort
(López Sánchez et al. 2003). Moreover, dominant height is usually
measured to calculate site index or is included as a regressor variable
in several submodels of forest growth simulators. The model also
includes a measure of stand density, i.e., quadratic mean diameter.
Stand density is the most obvious factor affecting the h-d relation-
ship in a stand (Zhang et al. 1997, Zeide and Vanderschaaf 2002,

Russell et al. 2010): for a given height, trees in dense stands typically
have smaller diameters than those in less dense stands.

If the heights of dominant trees are the only data available, it is
preferable to use the generalized fixed model (Equation 7, RMSE �
1.757 m) rather than the basic mixed model (Equation 6) calibrated
with dominant tree heights (average RMSE � 1.815 m). The results
suggest that the use of the calibrated basic mixed model is an advis-
able option for tree height estimation when the dominant height is
not known. The problem associated with the use of randomly se-
lected trees in a locally fitted basic fixed model or in calibration of a
basic or a generalized mixed model is that the error is expressed as an
average value, although it actually varies over an interval (see Tables
2, 4, and 7), within which the maximum value is much higher than
the mean value.

When a calibrated basic mixed model is used rather than a basic
fixed model fitted with data from randomly selected trees, the im-
provements are more evident when height data are scarce. However,
if the number of randomly selected trees is more than 11 (approxi-
mately 25% of the trees for an average plot), a locally fitted basic
fixed model will provide more accurate results than a calibrated basic
mixed model (see Figure 2). Calibration of a basic mixed model with
data from one randomly selected tree (as done by Trincado et al.
2007) did not perform adequately in this study (mean RMSE �
2.2 m, with a maximum RMSE � 4.202 m). The use of the total

Table 6. Estimates of the fixed parameters and variance components for the random effects, and approximate significance tests for the
generalized mixed model IV (Equation 8).

Estimate Approximate SE t value Approximate P-value Z value Approximate Z-value

Fixed parameter
a1 1.771 0.6749 2.625 0.009
a2 �0.2098 0.05202 �4.033 �0.001
a3 �0.2650 0.05421 �4.889 �0.001

Variance component for the random effects
Var(u1i) 9.571 2.092 4.574 �0.001
Var(u2i) 0.06779 0.01022 6.633 �0.001
Cov(u1i, u2i) �0.7298 0.1361 �5.361 �0.001
�2 (error variance) 2.496 0.03885 64.26 �0.001

Table 7. Generalized mixed model IV (Equation 8): RMSE values for
the subject-specific, mean (considering only fixed parameters), and
calibrated responses obtained with different tree selection strategies.

Model RMSE (m)

Subject-specific
response

1.566

Mean response 1.759
Calibrated response

with
1 random tree 1.729 (1.580–2.170)
2 random trees 1.706 (1.572–2.206)
3 random trees 1.687 (1.569–2.174)
4 random trees 1.673 (1.567–2.143)
5 random trees 1.658 (1.566–2.108)
6 random trees 1.647 (1.565–2.057)
7 random trees 1.637 (1.564–2.011)
8 random trees 1.630 (1.564–1.980)
9 random trees 1.622 (1.564–1.931)
10 random trees 1.616 (1.563–1.893)
1 smallest diameter 1.691
2 smallest diameters 1.658
3 smallest diameters 1.645
Q 1.702
K 1.695

The mean and minimum and maximum (in parentheses) RMSE values for total
height of 1–10 randomly selected trees after 100 simulations are shown, along with
the total height of the 1–3 trees with smallest diameter, total height of the 3 trees
that are the diameter quartiles (Q), and total height of the 4 trees that are the
diameter quintiles (K).

Figure 3. Plot of RMSE against diameter classes for the different
model forms evaluated in the study: the basic fixed model I locally
fitted by ONLS with data from all trees (‚), the basic mixed model
II (Equation 6) calibrated with the diameter quartiles (�), the gen-
eralized fixed model III (Equation 7) (�), and the generalized
mixed model IV (Equation 8) calibrated with data from the 3
smallest diameter trees (F).

Forest Science • June 2014 565

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article/60/3/560/4583751 by U

niversidad de Leon user on 05 July 2024



height of the 3 trees that are the diameter quartiles (Q) presented an
adequate balance between the error (RMSE � 1.840 m) and the
sampling effort.

All the methodologies analyzed provided similar and unbiased
distributions of the residuals against the predicted values (Figure 1)
and, in general, there were no problems related to heteroscedasticity.
The only exception is the mean response of the basic mixed model,
which exhibited heteroscedasticity and was constricted in its
predictions; therefore, the basic mixed model should always be
calibrated.

The error of the mean response from the generalized mixed
model (fixed parameters only, RMSE � 1.759 m) was similar to that
obtained from the generalized fixed model (Equation 7, RMSE �
1.757 m). Therefore, when data are not available for calibrating the
generalized mixed model, the use of more complex fitting tech-
niques seems unnecessary because the benefits are not obvious. In-
ventory plots of radius 10 m are very common in forest inventories
in Spain, so that the height of the 3–4 largest diameter trees per plot
must be measured to enable calculation of the dominant height.
However, in the present study, this calibration option does not
make sense because dominant height is already considered as a fixed
effect in the generalized mixed model, constraining the model by the
dominant height-dominant diameter condition (Castedo Dorado et
al. 2006). In this study, measurement of the smallest diameter trees
improved the accuracy over that of the fixed model and even over
that of the model calibrated with randomly selected trees. Calibra-
tion with the smallest trees was also considered adequate by Castedo
Dorado et al. (2006) and by Crecente-Campo et al. (2010), who
used generalized mixed models that included dominant height and
dominant diameter as stand-predictor variables, in a way similar to
that in the present study.

The total height of the trees used to calculate dominant height
must be known to enable use of the generalized fixed model (Equa-
tion 7). In the present study, this implied the use of approximately 6
heights per plot-inventory combination or, in relative terms, 13% of
all heights. After 100 simulations, the total height of 9 trees per
plot-inventory combination (21% of the trees) were required to
achieve an overall smaller error in the basic fixed model local fit,
whereas for the basic mixed model it was necessary to use 6 ran-
domly selected trees for calibration. Therefore, the use of the basic
mixed model calibrated with 6 randomly selected trees involved a

sampling effort and an RMSE similar to those for the generalized
fixed model (RMSE � 1.757) for the average plot size used in this
study. Moreover, the basic mixed model allows a simple model
structure to be maintained (Trincado et al. 2007). Nevertheless, one
advantage of the generalized fixed model is that it can be used in the
disaggregation system of the dynamic stand growth model devel-
oped for the species in the region, which includes a dominant height
over time prediction function (Gómez-García 2011).

All of the accuracies reported are averaged across all trees. To
analyze the behavior of the four model forms evaluated for different
tree sizes, the RMSE was calculated and plotted against diameter
classes of width 5 cm (Figure 3). Two trends became evident when
the first and last diameter classes (0–5 and 35–40 cm) were ex-
cluded because they included very few observations. For the basic
model (fitted by both ONLS and mixed-model techniques) and for
the generalized mixed model, the RMSE values increased with tree
size. Nevertheless, for the generalized fixed model, the RMSE values
remained quite constant for all diameter classes, which is an addi-
tional advantage over the other approaches.

In summary, on the basis of the RMSE values obtained (Figure
2), if a sample of heights of randomly selected trees is measured, use
of the calibrated basic mixed model (if the number of tree heights is
between 4 and 11) or the locally fitted basic fixed model (if the
number of tree heights is greater than 11) is recommended. If only
a small number of tree heights are measured, to reduce the sampling
effort involved in measuring heights, the basic mixed model should
be calibrated with the 3 trees that are the diameter quartiles. The
generalized fixed model can be recommended only where dominant
height alone is measured. Finally, if information about dominant
height and additional heights of the smaller diameter trees is avail-
able, the calibrated generalized mixed model could be used. The
locally fitted basic fixed model I has the advantage that it is more
flexible for application to new stand types or site conditions and
does not require prior investment in data collection and model
fitting. Although the remaining model forms (which require less
sampling effort for tree height prediction) have been developed from
a large and widely distributed set of data for the target region, they
are subject to regional ecological variations (e.g., related to climate)
that could affect their accuracy in future applications. Model devel-
opment should therefore continue as additional data are collected.

Figure 4. Example of height estimation and comparison with the basic fixed model I locally fitted by ONLS with data from all trees (thin
dashed line). This example comprises (A) height estimation from the generalized fixed model III (dashed line) and local fitting (solid line)
by the basic fixed model I with data from 12 randomly selected trees (solid points); (B) height estimation by the basic mixed model II for
the mean (dashed line) and calibrated (solid line) responses (the calibration was done with the quartiles of the diameter distribution, solid
points); and (C) height estimation by the generalized mixed model IV for the mean (dashed line) and calibrated (solid line) responses
(calibration was done with the 3 smallest diameters trees, solid points).
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2010. A generalized nonlinear mixed effects height-diameter model for
Eucalyptus globulus L. in northwestern Spain. For. Ecol. Manage.
259:943–952.

CURTIS, R.O. 1967. Height-diameter and height-diameter-age equations
for second-growth Douglas-fir. For. Sci. 13(4):365–375.

FANG, Z., AND R.L. BAILEY. 2001. Nonlinear mixed effects modeling for
slash pine dominant height growth following intensive silvicultural
treatments. For. Sci. 47:287–300.
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Appendix: Height Estimation—An Example
In a new plot, the dbh of every tree is measured and the quadratic

mean diameter (dgi) and dominant diameter (d0i) can therefore be
calculated. Assuming an example in which dgi � 10.80 cm and d0i �
17.12 cm and also the total height of some trees is known, we will
consider four cases: (1) total height of the trees corresponding to the
quartiles of the diameter distribution (h-d pairs of 12.4 m�7.65 cm,
15.4 m�10.10 cm, and 17.2 m�12.45 cm); (2) mean height of
dominant trees (Hi � 18.3 m); (3) mean height of dominant trees
plus total height of the 3 smallest diameter trees (h-d pairs of 10.6
m�5.85 cm, 8.6 m�6.2 cm, and 12.9 m�6.4 cm), and (4) total
height of 12 randomly selected trees. The example aims to describe
the calibration of both the basic (Equation 6) and generalized
(Equation 8) mixed models. Figure 4 shows the h-d curves obtained
for these calibrations, including those obtained from the generalized
fixed model (Equation 7) and from the basic fixed model I that was
fitted locally with the data corresponding to the randomly selected
trees.

Basic Mixed Model
The basic mixed model will be calibrated with the trees corre-

sponding to the quartiles of the diameter distribution. The esti-
mated variances and the covariance of the random effects (Table 3)

are the elements of the variance-covariance matrix D̂

D̂ � � 26.28 �8.406
�8.406 4.687 �

The variance-covariance matrix for the random error term is
determined by assuming that all estimations have constant variance
(�̂2) (Table 3) and that the errors are not correlated
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R̂ k � �̂ 2 � I3 � � 2.493 0 0
0 2.493 0
0 0 2.493

�
where I3 is the identity matrix with dimension (3 � 3) equal to the
number of data used for calibration.

The partial derivatives with respect to the random effects u1i and
u2i are Zu1

� exp(a2/dij) and Zu2
� a1 exp(a2/dij)(1/dij). Therefore,

the partial derivatives matrix with respect to the random effects Zk is

Zk � � 0.4891 1.213
0.5818 1.093
0.6444 0.9820

�
The matrix êk of residuals of total height obtained with the basic

mixed model mean response (only fixed parameters; Equation 6
with u1 and u2 equal 0) is

êk � � 1.823
3.063
3.675

�
Therefore, the random effects predicted with Equation 3 were

ûk � [4.733 � 0.3150]T. Thus, using Equation 6, the calibrated
response is expressed as follows

ĥ ij � 1.3 � �18.97 � 4.733�exp � � 5.471 � 0.3150

dij
�

The mean and calibrated responses (calibration with quartiles) of
the basic mixed model used in this example are shown in Figure 4B,
which also shows a local fit of the basic fixed model I with the
complete data set.

Generalized Mixed Model
In a way similar to that in the previous example, the generalized

mixed model will be calibrated with the 3 smallest diameter trees.
The estimated variances and the covariance of the random effects
(Table 6) are the elements of the variance-covariance matrix D̂

D̂ � � 9.571 �0.7298
�0.7298 0.06779 �

The variance-covariance matrix for the random error term is

determined by assuming that all estimations have constant variance
(�̂2) (Table 6) and that the errors are not correlated

R̂ k � �̂ 2 � I3 � � 2.496 0 0
0 2.496 0
0 0 2.496

�
The partial derivatives with respect to the random effects u1i and

u2i are Zu1 � �Hi � 1.3�exp��a1 � a2Hi � a3dgi� �

� 1

dij
�

1

d0i
��� 1

dij
�

1

d0i
� and Zu2 � �Hi � 1.3�exp��a1 �

a2Hi � a3dgi�� 1

dij
�

1

d0i
��� 1

dij
�

1

d0i
�dgi. Therefore, the partial

derivatives matrix with respect to the random effects Zk is

Zk � �1.099 11.88
1.054 11.39
1.028 11.10

�
The matrix êk of residuals of total height obtained with the gen-

eralized mixed model mean response (only fixed parameters; Equa-
tion 8 with u1 and u2 equal 0) is

êk � � �0.4672
2.944
1.098

�
Therefore, the random effects predicted with Equation 3) were

ûk � [0.5061 � 0.0008174]T. Thus, using Equation 8, the cali-
brated response is expressed as follows

ĥ ij � 1.3 � �Hi � 1.3�

� exp ��1.771 � 0.5061 � 0.2098 Hi

� � � 0.2650 � 0.0008174�dgi�� 1

dij
�

1

d0i
��

The mean and calibrated responses (calibration with smallest
diameter trees) of the generalized mixed model used in this example
are shown in Figure 4C, which also shows a local fit of the basic fixed
model I with the complete data set.
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